Eryops Megacephalus

Total Page:16

File Type:pdf, Size:1020Kb

Eryops Megacephalus T Melbourne University, Trobe La Thesis. PhD Temnospondyli) (Tetrapoda: Temnospondyls Postcranial The Skeleton of 2006. K. Pawley, T jarrowensis jarrowensis Procochleosaurus lewisi Chenoprosopus schultzei Iberospondylus craigi Edops acadianum Dendrerpeton acadianum Dendrerpeton acadianum Dendrerpeton acadianum Dendrerpeton acadianum Dendrerpeton acadianum Dendrerpeton acadianum Dendrerpeton palustris Capetus bairdi Caerorhachis bairdi Caerorhachis bairdi Caerorhachis Balanerpeton woodi ABLE ABLE B ASAL ASAL C OCHLEOSAURIDAE TABLES OF PUBLICATIONS WITH FIGURESOF TABLES OFPUBLICATIONSWITH 3. 2. TEMNOSPONDYL POSTCRANIALMATERIAL T C B EMNOSPONDYLI ASAL OCHLEOSAURIDAE T EMNOSPONDYLI A A (Sequeira, 1996) * ** 1996) (Sequeira, 1993) (Hook, * * * * * * Gijón, 2001) Soler- and (Laurin 1934) 1942) Witter, and (Romer **** * ** (Steen, 1989) (Shishkin, 1982b) (Milner, * 1980b) ** 1998) (Milner, * ** al., * * * et * * 1967) * (Holmes ** ** * ** * * *** ** * ** * * 1882) * * ** * * (Dawson, ** * * * (Carroll, * 1993) 2002) Milner, and (Sequeira al., et *** (Ruta * * ** * * * * * *1995) * Holmes, (Godfrey and 1995) Holmes, (Godfrey and 1994) Sequeira, and (Milner UTHOR UTHOR A PPENDIX PPENDIX skull * * * * * * * * ** * * ** * **** * * * **** * * * ***** ** * * * ***** ** ** * **** ******** * * * skull* * mandible mandible axis / atlas axis / atlas presacral vert presacral vert 1. caudal vert caudal vert ribs ribs interclavicle interclavicle clavicle clavicle cleithrum cleithrum scapulocoracoid scapulocoracoid humerus humerus ulna ulna radius radius carpals carpals phalanges phalanges ilium ilium pubis pubis ischium ischium sacral rib sacral rib femur femur tibia tibia fibula fibula tarsals tarsals phalanges phalanges 247 branchials branchials scales / osteoderms scales / osteoderms 248 K. PAWLEY PHD THESIS TABLE 4. DVINOSAURIA d DVINOSAURIA AUTHOR es es es g g r ulocoracoi als p p resacral vert resacral vert halan ubis halan tibia fibula tarsals skull mandible atlas / axis p caudal vert ribs interclavicle clavicle cleithrum sca p p ischium rib sacral femu p humerus ulna radius car ilium branchials / osteoderms scales Acroplous vorax (Coldiron, 1978) * * * * * * * * * Acroplous vorax (Hotton, 1959) * * * * * * * * * * Acroplous vorax (Shishkin, 1989) * Dvinosaurus campbelli (Gubin, 2004) ** * ** * * Dvinosaurus egregius (Nikitin, 1995) * Dvinosaurus primus (Bystrow, 1938) * * * * * * * * * * * * * * * * * * * Dvinosaurus primus (Nikitin, 1995) * Dvinosaurus primus (Nikitin, 1997) * Dvinosaurus primus (Shishkin, 1989) * Dvinosaurus primus (Shishkin, 2000) * * Dvinosaurus primus (Sushkin, 1936) * * * * * * * * * * * * * Isodectes (Saurerpeton) (Milner, 1982a) ** ******** * * obtusus Isodectes obtusus (Watson, 1956) ** * ** * (Eobrachyops townendae) Isodectes? obtusus (Werneburg, 2002) * * * * * * * (Olson and Lammers, Kourerpeton bradyi * * *** ** * * 1976) Neldasaurus wrightae (Chase, 1965) * * * * * * * * * * * * * * * Thabanchuia oomie (Warren, 1998b) * * * * * * * * Trimerorhachis insignis (Case, 1911a) ** * * * * * * Trimerorhachis insignis (Case, 1935) ** * * **** * * * * * Trimerorhachis insignis (Colbert, 1955) * (Cope and Matthew, Trimerorhachis insignis ** * * * 1915) Trimerorhachis insignis (Olson, 1979) * * Trimerorhachis insignis (Williston, 1910a) * Trimerorhachis insignis (Williston, 1915a) * * * * * * * * * * * Trimerorhachis insignis (Case, 1911a) * (alleni) Trimerorhachis (Berman and Reisz, ** * ** * * * sandovalensis 1980) Tungussogyrinus bergi (Shishkin, 1998) * * * * * * * * * * * Tupilakosaurus (Shishkin, 1961) * Tupilakosaurus heilmani (Nielsen, 1954) * * * * * * Tupilakosaurus (Shishkin, 1989) * wetlugensis APPENDIX 1: TABLES OF PUBLICATIONS 249 TABLE 5. EUSKELIA d EUSKELIA AUTHOR es es es g g r ulocoracoi als p p resacral vert resacral vert halan ubis halan tibia fibula tarsals skull mandible atlas / axis p caudal vert ribs interclavicle clavicle cleithrum sca humerus ulna radius car p p ischium rib sacral femu p ilium branchials / osteoderms scales ? Actiobates peabodyi (Milner, 1985a) * * **** ? Eryops (Werneburg, 1993a) ** * * Acanthostomatops (Steen, 1937) * * ****** (Acanthostoma) vorax Acanthostomatops vorax (Boy, 1989) * ** * * * * * Acanthostomatops vorax (Werneburg, 1998) * * *** * * Acheloma cumminsi (Case, 1911a) * **** Acheloma cumminsi (Romer, 1922) * Acheloma cumminsi (Case, 1911a) * * * * * * * * * * * * * * * * * * * * * * (Trematops milleri) Acheloma cumminsi (Olson, 1941) * * * * * * * * * * * * * (Trematops milleri) Acheloma cumminsi (Schaeffer, 1941) **** (Trematops milleri) Acheloma cumminsi (Williston, 1909a) * * * * * * * * * * * * * ** * * (Trematops milleri) Acheloma spp. (Sullivan et al., 2000) * Alegeinosaurus aphthitos (Case, 1911a) * * ***** * * * Amphibamus grandiceps (Bolt, 1979) ** * Amphibamus grandiceps (Carroll, 1964a) * * * * * * * * * * * ** * Amphibamus grandiceps (Daly, 1994) Amphibamus grandiceps (Gregory, 1950) Amphibamus grandiceps (Milner, 1982a) * ** ** * * * * * Amphibamus grandiceps (Werneburg, 2002) ** * ******** * Amphibamus grandiceps (Watson, 1940) ** ********** * * * * ** * * (Miobatrachus romeri) Anconastes vesperus (Berman et al., 1987a) ** * Aspidosaurus (Zatrachys) (Case, 1907) * ******** * apicaulis Aspidosaurus (Zatrachys) (Case, 1911a) * * apicaulis (Berman and Lucas, Aspidosaurus binasser ** * 2003) Aspidosaurus chiton (Case, 1911a) * * Aspidosaurus crucifer (de Mar, 1966) * Aspidosaurus glascocki (Case, 1911a) * * * Aspidosaurus (Carroll, 1964a) * * * * novomexicanus Aspidosaurus sp. (Carroll, 1964a) * Astreptorhachis ohioensis (Vaughn, 1971) * 250 K. PAWLEY PHD THESIS d EUSKELIA AUTHOR es es es g g r ulocoracoi als p p resacral vert resacral vert halan ubis halan tibia fibula tarsals skull mandible atlas / axis p caudal vert ribs interclavicle clavicle cleithrum sca humerus ulna radius car p p ischium rib sacral femu p ilium branchials / osteoderms scales Brevidorsum profundum (Carroll, 1964a) * * * Broiliellus brevis (Carroll, 1964a) ** *** **** * Broiliellus texensis (de Mar, 1966) * Broiliellus texensis (Williston, 1915b) * * * Cacops aspidephorus (de Mar, 1966) * Cacops aspidephorus (Williston, 1910a) * * * * * * * * * * * * * * * * * * * * * * * * * Cacops cf. aspidephorus (Milner, 1985b) * * * (Trematopsis seltini) Cheliderpeton latirostre (Boy, 1993) ** * Conjunctio sp. (Carroll, 1964a) * * * * Dissorophid cf. Cacops (Sullivan et al., 2000) * Dissorophus angustus (Carroll, 1964a) * * * ** *** * Dissorophus multicinctus (de Mar, 1966) * * * * * * * * * * * * * * * * * * * * * * * * Dissorophus multicinctus (Williston, 1910b) * * * * * * * * * Dissorophus multicinctus (Case, 1911a) * **** * * (Otocoelus testudineus) Doleserpeton annectans (Bolt, 1969) * * Doleserpeton annectans (Carroll et al., 2004) * Doleserpeton annectans (Daly, 1973) * Doleserpeton annectans (Shishkin, 1989) * Ecolsonia cutlerensis (Berman et al., 1985) * * * * * * * * * * * * * * * * * Ecolsonia cutlerensis (Shishkin, 1989) * Eoscopus lockardi (Daly, 1994) * * * * * * * * * * * * * * * * * * * * * Eryopoidea ?Onchiodon (Werneburg, 1993c) * * * * * * Eryopoidea c.f. Onchiodon (Werneburg, 1995) * * Eryops megacephalus (Case, 1911a) * * * * * * * * * * (Cope and Matthew, Eryops megacephalus * * * *** * 1915) Eryops megacephalus (Cope, 1888) * * * * * * * * * Eryops megacephalus (Emery, 1897) **** (Gregory and Raven, Eryops megacephalus ******** 1941) Eryops megacephalus (Gregory et al., 1923) * * * * Eryops megacephalus (Gregory, 1949) * Eryops megacephalus (Miner, 1925) * * * * * * * * * Eryops megacephalus (Moulton, 1974) **** (Romer and Witter, Eryops megacephalus * 1941) APPENDIX 1: TABLES OF PUBLICATIONS 251 d EUSKELIA AUTHOR es es es g g r ulocoracoi als p p resacral vert resacral vert halan ubis halan tibia fibula tarsals skull mandible atlas / axis p caudal vert ribs interclavicle clavicle cleithrum sca humerus ulna radius car p p ischium rib sacral femu p ilium branchials / osteoderms scales Eryops megacephalus (Romer, 1922) ***** Eryops megacephalus (Williston, 1899) * * Eryops megacephalus (Langston, 1953) * * * * * * (grandis) Eryops megacephalus (Moodie, 1910) * * * **** * (willistoni) Fayella chickashaensis (Olson, 1972) * * * * * * * * * * (Broili and Schröder, Micropholis stowi ** *** * * * 1937) Micropholis stowi (Watson, 1913) ** * *** **** * * Onchiodon (Actinodon) (Gaudrey, 1884) * frossardi Onchiodon (Actinodon) (Werneburg and Steyer, ** ** * ** * frossardi 1999) Onchiodon labyrinthicus (Boy, 1971) ** * ****** * Onchiodon labyrinthicus (Boy, 1990) ** * * * Onchiodon labyrinthicus (Witzmann, 2005) ** * ******** * * * Onchiodon lagenhani (Werneburg, 1993b) * * Onchiodon manebachensis (Werneburg, 1996) ** * Onchiodon sp. (Werneburg, 1997) * * * * * * * * * * Parioxys bolli (Carroll, 1964b) * * * * * * * * * ** Parioxys ferricolus (Moustafa, 1955a) * * * * * * * * * * * * ** Peltobatrachus pustulatus (Panchen, 1959) * * * * * * * * * * * * Peltobatrachus pustulatus (Shishkin, 1989) * Perryella olsoni (Carlson, 1987) ** * ** Phonerpeton (Acheloma) (Dilkes, 1990) ** *** ***** pricei Platyhistrix rugosus (Langston, 1953) * * * (Lewis and Vaughn, Platyhistrix rugosus * 1965) Platyrhinops (Carroll et al., 1999) ** * ******** * * (Amphibamus) lyelli Platyrhinops (Carroll, 1964a) ************* * * * ** * (Amphibamus) lyelli Platyrhinops (Daly, 1994) (Amphibamus) lyelli Platyrhinops (Amphibamus) lyelli (Hook and Baird, 1984) * * * * * * * * ** * * * (Ichthycanthus platypus) Sclerocephalus credneri (Onchiodon labyrinthicus, (Werneburg, 1993b) ** * ****** * Lusor tenellus)
Recommended publications
  • Die Microsauria Des Mitteleuropäischen Rotliegend
    Die Microsauria des mitteleuropäischen Rotliegend Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften" im Promotionsfach Geologie/Paläontologie am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität in Mainz Sabine Glienke geb. in Worms Mainz, 2011 http://d-nb.info/1058187503 Inhalt Inhalt 1. Einleitung 6 1.1. Allgemeine Merkmale und Bearbeitungsgeschichte 6 1.2. Fundorte und Erhaltung 9 2. Methoden, Abkürzungen und Material 16 2.1. Methoden 16 2.1.1. Bearbeitung der Skelette 16 2.1.2. Gewinnung und Bearbeitung der Einzelknochen 16 2.1.3. Kladogramme 17 2.2. Abkürzungen 17 2.2.1. Sammlungen 17 2.2.2. In den Zeichnungen verwendete Abkürzungen 17 2.3. Übersicht über die untersuchten Skelette 19 3. Beschreibungen 21 3.1. Die Familie Brachystelechidae CARROLL& GASKILL, 1978 21 3.1.1. Systematische Stellung 21 3.1.2. Diagnose 21 3.2. Die Gattung Batropetes CARROLL & GASKILL, 1971 21 3.2.1. Systematische Stellung 21 3.2.2. Diagnose 22 3.2.3. Die vier Spezies der Gattung Batropetes 22 3.3. Batropetes niederkirchensis n. sp 26 3.3.1. Diagnose 26 3.3.2. Beschreibung 28 3.3.2.1. Schädel 28 3.3.2.1.1. Schädeldach 28 3.3.2.1.2. Gaumen 38 3.3.2.1.3. Hirnkapsel 43 3.3.2.1.4. Unterkiefer 46 3.3.2.2. Postcraniales Skelett 48 Inhalt 3.4. Batropetes palatinus n. sp 62 3.4.1. Diagnose 62 3.4.2. Beschreibung 63 3.4.2.1. Schädel 74 3.4.2.1.1. Schädeldach 74 3.4.2.1.2.
    [Show full text]
  • New Permian Fauna from Tropical Gondwana
    ARTICLE Received 18 Jun 2015 | Accepted 18 Sep 2015 | Published 5 Nov 2015 DOI: 10.1038/ncomms9676 OPEN New Permian fauna from tropical Gondwana Juan C. Cisneros1,2, Claudia Marsicano3, Kenneth D. Angielczyk4, Roger M. H. Smith5,6, Martha Richter7, Jo¨rg Fro¨bisch8,9, Christian F. Kammerer8 & Rudyard W. Sadleir4,10 Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the bio- geographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. 1 Centro de Cieˆncias da Natureza, Universidade Federal do Piauı´, 64049-550 Teresina, Brazil. 2 Programa de Po´s-Graduac¸a˜o em Geocieˆncias, Departamento de Geologia, Universidade Federal de Pernambuco, 50740-533 Recife, Brazil. 3 Departamento de Cs. Geologicas, FCEN, Universidad de Buenos Aires, IDEAN- CONICET, C1428EHA Ciudad Auto´noma de Buenos Aires, Argentina.
    [Show full text]
  • Limb Ossification in the Paleozoic Branchiosaurid Apateon (Temnospondyli) and the Early Evolution of Preaxial Dominance in Tetrapod Limb Development
    EVOLUTION & DEVELOPMENT 9:1, 69 –75 (2007) Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development Nadia B. Fro¨bisch,a,Ã Robert L. Carroll,a and Rainer R. Schochb aRedpath Museum, McGill University, 859 Sherbrooke Street West, Montreal H3A 2K6, Canada bStaatliches Museum fu¨r Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY Despite the wide range of shapes and sizes that divergent evolution of these two pathways and its causes are accompany a vast variety of functions, the development of still not understood. Based on an extensive ontogenetic series tetrapod limbs follows a conservative pattern of de novo we investigated the pattern of limb development of the 300 Ma condensation, branching, and segmentation. Development of old branchiosaurid amphibian Apateon. This revealed a the zeugopodium and digital arch typically occurs in a posterior preaxial dominance in limb development that was previously to anterior sequence, referred to as postaxial dominance, with believed to be unique and derived for modern salamanders. a digital sequence of 4–3–5–2–1. The only exception to this The Branchiosauridae are favored as close relatives of pattern in all of living Tetrapoda can be found in salamanders, extant salamanders in most phylogenetic hypotheses of the which display a preaxial dominance in limb development, a de highly controversial origins and relationships of extant novo condensation of a basale commune (distal carpal/tarsal amphibians. The findings provide new insights into the 112) and a precoccial development of digits I and II.
    [Show full text]
  • Stuttgarter Beiträge Zur Naturkunde
    S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid.
    [Show full text]
  • Cacopsamphibiala373bolt.Pdf
    v UNIVtRSlT Cp ILLINOIS I 5RARY AT URBANA-CHAMPAIGN L IOLOGY CO CO /&£^<-*x~*yw FIELDIANA Geology Published by Field Museum of Natural History Volume 37, No. 3 June 30, 1977 Cacops (Amphibia: Labyrinthodontia) From the Fort Sill Locality, Lower Permian of Oklahoma the The Library of John R. Bolt Assistant Curator, Fossil Reptiles and Amphibians 1978 Field Museum of Natural History MRRU ABSTRACT at Urbana-ChamP«* The armored dissorophid (Super family Dissorophoidea ) labyrinthodont amphi- bian Cacops aspidephorus is unusual in having a large otic notch closed posteriorly by the tabular. Cacops was previously known only from the "Cacops Bone Bed," Lower Permian of Texas. Poor preservation makes this material difficult to study. Excellently preserved, though disarticulated, Cacops material has now been recov- ered from the Fort Sill fissure fills, which are probably very close in age to the "Ca- cops Bone Bed." Identification of the Fort Sill material as Cacops is based on pala- tines (primarily), armor scutes, and quadrates; the latter are here described for the first time from Fort Sill. The Cacops quadrate resembles that of other dissorophoids in having a posterodorsal process, which is unusual in the marked anterior expan- sion of its dorsal end. Comparison with other dissorophoids having a closed otic notch shows that Cacops is not unique in this anterior expansion of the process. Orientation of the process can apparently be used to distinguish trematopsids with a slit-like, closed (by the tabular) otic notch, from dissorophids. At least one such trematopsid occurs at Fort Sill, and resembles Cacops in anterior expansion of the process.
    [Show full text]
  • Phylogeny and Evolution of the Dissorophoid Temnospondyls
    Journal of Paleontology, 93(1), 2019, p. 137–156 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.67 The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls Rainer R. Schoch Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany 〈[email protected]〉 Abstract.—Dissorophoid temnospondyls are widely considered to have given rise to some or all modern amphibians (Lissamphibia), but their ingroup relationships still bear major unresolved questions. An inclusive phylogenetic ana- lysis of dissorophoids gives new insights into the large-scale topology of relationships. Based on a TNT 1.5 analysis (33 taxa, 108 characters), the enigmatic taxon Perryella is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade. The dissorophoids proper are found to encompass a first dichotomy between the largely paedomorphic Micromelerpetidae and all other taxa (Xerodromes). Within the latter, there is a basal dichotomy between the large, heavily ossified Olsoniformes (Dissorophidae + Trematopidae) and the small salamander-like Amphibamiformes (new taxon), which include four clades: (1) Micropholidae (Tersomius, Pasawioops, Micropholis); (2) Amphibamidae sensu stricto (Doleserpeton, Amphibamus); (3) Branchiosaur- idae (Branchiosaurus, Apateon, Leptorophus, Schoenfelderpeton); and (4) Lissamphibia. The genera Platyrhinops and Eos- copus are here found to nest at the base of Amphibamiformes. Represented by their basal-most stem-taxa (Triadobatrachus, Karaurus, Eocaecilia), lissamphibians nest with Gerobatrachus rather than Amphibamidae, as repeatedly found by former analyses.
    [Show full text]
  • Heber Den Archegosaurus Der Stciiikohleiiforntatioii. Wenn Auch
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Palaeontographica - Beiträge zur Naturgeschichte der Vorzeit Jahr/Year: 1851 Band/Volume: 1 Autor(en)/Author(s): Meyer Hermann Christian Erich von Artikel/Article: Ueber den Archegosaurus der Steinkohlenformation. 209-215 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Heber den Archegosaurus der Stciiikohleiiforntatioii. Von Hermann von Meyer. Die Nachrichten über das Vorkommen von Reptilien in Gebilden älter als die Formation des Zechsteins hatten sich bei genauerer Prüfung immer als unhaltbar bewiesen. Man glaubte sich daher um so mehr berechtigt, anzunehmen, dass im Zechstein die ältesten Reptilien begraben lägen, als während der Versammlung der Naturforscher in Mainz Dr. Gergens und Alex. Braun mir eine Wirbelthier- Versteinerung aus dem der Steinkohlenformation angehörigen, durch seine Fische berühmten Schieferthon von Münster- Appel in der bayerschen Pfalz vorlegten, deren Beschaffenheit mehr auf ein Wirbelthier mit Füssen als auf einen Fisch schliessen Hess. Dieses merkwürdige kleine Geschöpf habe ich Anfangs 1844, es Apateon pedestris nennend, beschrieben (Jahrb. f. Min. 1844. S. 336), später aber in den Palaeontographicis (1. S. 152. Taf. 20. Fig. t.) dargelegt. Drei Jahre darauf gelang es dem Berghauptmann v. Dechen in den Sphärosideritnieren der Steinkohlenformation zu Lebach im Saarbrücken'schen, woraus zuvor ebenfalls nur Fische bekannt waren , Ueberreste zu entdecken , welche an die Gegenwart von Sauriern in diesem Ge- bilde glauben Hessen. Mit dem zu Münster-Appel gefundenen Thier stimmten sie nicht überein. Die erste Nachricht darüber theilte Goldfuss in der Niederrheinischen Gesellschaft für Natur- und Heilkunde in Bonn am 18. Februar 1847 mit.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • The Scapulocoracoid of an Early Triassic Stem−Frog from Poland
    The scapulocoracoid of an Early Triassic stem−frog from Poland MAGDALENA BORSUK−BIAŁYNICKA and SUSAN E. EVANS Borsuk−Białynicka, M. and Evans, S.E. 2002. The scapulocoracoid of an Early Triassic stem−frog from Poland. Acta Palaeontologica Polonica 47 (1): 79–96. The scapulocoracoid of Czatkobatrachus polonicus Evans and Borsuk−Białynicka, 1998, a stem−frog from the Early Tri− assic karst locality of Czatkowice (Southern Poland), is described. The overall type of scapulocoracoid is plesiomorphic, but the subcircular shape and laterally oriented glenoid is considered synapomorphic of Salientia. The supraglenoid fora− men is considered homologous to the scapular cleft of the Anura. In Czatkobatrachus, the supraglenoid foramen occupies an intermediate position between that of the early tetrapod foramen and the scapular cleft of Anura. The cleft scapula is probably synapomorphic for the Anura. In early salientian phylogeny, the shift in position of the supraglenoid foramen may have been associated with an anterior rotation of the forelimb. This change in position of the forelimb may reflect an evolutionary shift from a mainly locomotory function to static functions (support, balance, eventually shock−absorption). Laterally extended limbs may have been more effective than posterolateral ones in absorbing landing stresses, until the specialised shock−absorption pectoral mechanism of crown−group Anura had developed. The glenoid shape and position, and the slender scapular blade, of Czatkobatrachus, in combination with the well−ossified joint surfaces on the humerus and ulna, all support a primarily terrestrial rather than aquatic mode of life. The new Polish material also permits clarifica− tion of the pectoral anatomy of the contemporaneous Madagascan genus Triadobatrachus.
    [Show full text]
  • Redalyc.On the Squamation of Australerpeton Cosgriffi Barberena
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Dias, Eliseu V.; Richter, Martha On the squamation of Australerpeton cosgriffi Barberena, a temnospondyl amphibian from the Upper Permian of Brazil Anais da Academia Brasileira de Ciências, vol. 74, núm. 3, september, 2002, pp. 477-490 Academia Brasileira de Ciências Rio de Janeiro, Brasil Disponível em: http://www.redalyc.org/articulo.oa?id=32774310 Como citar este artigo Número completo Sistema de Informação Científica Mais artigos Rede de Revistas Científicas da América Latina, Caribe , Espanha e Portugal Home da revista no Redalyc Projeto acadêmico sem fins lucrativos desenvolvido no âmbito da iniciativa Acesso Aberto Anais da Academia Brasileira de Ciências (2002) 74(3): 477-490 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc On the squamation of Australerpeton cosgriffi Barberena, a temnospondyl amphibian from the Upper Permian of Brazil ELISEU V. DIAS and MARTHA RICHTER Universidade Federal do Rio Grande do Sul, Instituto de Geociências 91509-900 Porto Alegre, RS, Brasil Manuscript received on March 5, 2001; accepted for publication on February 26, 2002; presented by Milton Formoso ABSTRACT Abdominal scales of a juvenile specimen of Australerpeton cosgriffi Barberena 1998 are made of primary compact bone rich in osteocyte lacunae; vascular canals and primary osteons are rare with no sign of re- modelling of the tissue by resorption and redeposition. In contrast, the abdominal scales of an adult of the same species shows extensive reworking of the bone tissue. The scale grows by apposition of lamellar bone peripherally around the whole scale; the presence of Sharpey fibers in the periphery of the scales both basally and externally suggests that they remained deeply embedded in the dermis; the embryonic scale is completely remodelled in the adult by resorption and redeposition which produces a cancellous bone with large erosion bays and secondary osteons.
    [Show full text]
  • Phylogeny and Evolution of the Dissorophoid Temnospondyls
    Journal of Paleontology, 93(1), 2019, p. 137–156 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.67 The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls Rainer R. Schoch Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany 〈[email protected]〉 Abstract.—Dissorophoid temnospondyls are widely considered to have given rise to some or all modern amphibians (Lissamphibia), but their ingroup relationships still bear major unresolved questions. An inclusive phylogenetic ana- lysis of dissorophoids gives new insights into the large-scale topology of relationships. Based on a TNT 1.5 analysis (33 taxa, 108 characters), the enigmatic taxon Perryella is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade. The dissorophoids proper are found to encompass a first dichotomy between the largely paedomorphic Micromelerpetidae and all other taxa (Xerodromes). Within the latter, there is a basal dichotomy between the large, heavily ossified Olsoniformes (Dissorophidae + Trematopidae) and the small salamander-like Amphibamiformes (new taxon), which include four clades: (1) Micropholidae (Tersomius, Pasawioops, Micropholis); (2) Amphibamidae sensu stricto (Doleserpeton, Amphibamus); (3) Branchiosaur- idae (Branchiosaurus, Apateon, Leptorophus, Schoenfelderpeton); and (4) Lissamphibia. The genera Platyrhinops and Eos- copus are here found to nest at the base of Amphibamiformes. Represented by their basal-most stem-taxa (Triadobatrachus, Karaurus, Eocaecilia), lissamphibians nest with Gerobatrachus rather than Amphibamidae, as repeatedly found by former analyses.
    [Show full text]