A Q&A on ATP Bioluminescence Assay

Total Page:16

File Type:pdf, Size:1020Kb

A Q&A on ATP Bioluminescence Assay Food Defense What is ATP? What are expressed in Relative Light Units (RLU). the advantages and RLU numbers are directly proportional disadvantages of using to the amount of ATP, and therefore the ATP bioluminescence amount of organic/food residue or micro- assay? The answers bial biomass on the sampled surface. to these and other What are other uses of ATP bio- frequently asked luminescence assay? ATP biolumi- questions. nescence assay also are used to: • Detect microbial load in raw milk (cfu/ ml). • Assess microbiological quality of beef and pork carcasses and minced meat (cfu/g). • Monitor microbiological activity in indoor air (cfu/ml). • Monitor sanitary conditions in clinical settings. • Monitor yeast and bacteria in beverages and fruit juices. • Monitor cleanliness (bio-burden) of NASA spacecraft (to limit terrestrial microbes being transferred to other planetary bodies) and to detect life (living A Q&A on ATP cells) on other planets. • Monitor water quality. Bioluminescence Assay • Verify cleaning (whether equipment is clean enough to go for production). denosine triphosphate (ATP) food industry for hygiene monitoring and is the molecule used for energy cleaning validation. It was created mainly to What are the disadvantages of storage by all types of living cells validate the cleaning on a production surface ATP bioluminescence assay? (animal, plant, bacterial, yeast, before the use of the sanitizer. The disadvantages of the assay are that: Aand mold). ATP transfers energy within • It does not easily distinguish ATP from living cells to power the enzymes needed What are the advantages of microorganisms, animals, and plants. for cellular functions. After cell death, ATP bioluminescence assay? • Luminescence from food can affect the ATP is broken down by autolysis within a It is simple, highly sensitive, cost effective, actual ATP bioluminescence readings. few minutes. rapid (compared to conventional methods • The presence of detergents, sanitizers, which take days), and provides real-time or other chemicals also can affect the What is ATP bioluminescence results within minutes. It saves water used readings. assay? ATP bioluminescence assay cell for rinsing and optimizes sanitizer use. • It is not very sensitive for spore detec- detection was first developed in the 1950s tion since the level of ATP is very low by NASA scientists who were interested in What is the ATP biolumines- in spores. finding life (living cells) on other planets. cence assay principle? All living • It does not substitute using traditional In the food industry, it is a technique used cells (animals, plants, bacteria, yeast, and microbiological analysis. AIB to measure the cleanliness of a surface. mold) contain ATP. It is based on the fire- ATP bioluminescence detects the amount fly’s ATP luminescent reaction. The firefly The author is Director of Microbiology and of ATP, which is an indirect measurement has two chemical compounds, Luciferin Food Safety Education, AIB International. of the amount of organic/food residue on and Luciferase, that react with the insect’s a surface that has the potential to support ATP to produce bioluminescence light. The AIB now offers basic microbiology training for microbial growth and also microbial bio- ATP collected from a surface reacts with food plant personnel, environmental monitor- mass. In simple terms, it measures the dirt Luciferin/Luciferase compounds present ing program assistance, kill step validation or filth on a surface indicating the need for in the sample swab to create biolumines- assistance, and specialized microbiological cleaning and sanitizing. cence light. consulting. To schedule micro consultation at ATP bioluminescence assay is probably The amount of bioluminescence light your facility, contact Food Safety Education the most widely used technique in the is measured by the Luminometer and is at 800-633-5137 or [email protected]. AIB UPDATE SEPTEMBER/OCTOBER 2013 5.
Recommended publications
  • William Mcelroy
    NATIONAL ACADEMY OF SCIENCES WILLIAM DAVID MC ELROY 1917–1999 A Biographical Memoir by J. WOODLAND HASTINGS Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 85 PUBLISHED 2004 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. Photo by Anthony di Gesu, La Jolla, California WILLIAM DAVID MC ELROY January 22, 1917–February 17, 1999 BY J. WOODLAND HASTINGS ILLIAM DAVID MCELROY, a biologist who made ground- Wbreaking discoveries in bioluminescence and was an administrator of great talent, died of respiratory failure at Scripps Memorial Hospital in San Diego, California, at the age of 82. He was an innovative and internationally promi- nent scientist and administrator, with a continuing agenda for experimental projects and research support for all areas of science, both basic and applied. At the time of his death McElroy was a professor emeritus at the University of California, San Diego, having served as its chancellor from 1972 to 1980. He was on the faculty at the Johns Hopkins University, where from 1946 until 1969 he was the founding director of the McCollum-Pratt Institute, and from 1956 to 1969 the chairman of the biology depart- ment. He was a member of many professional scientific societies and served as president of several, including three of the largest: the American Society of Biological Chemists, the American Institute of Biological Sciences, and the 116,000- member American Association for the Advancement of Science. He served on the President’s Science Advisory Committee under both Kennedy and Johnson (1962-1966), was elected to the National Academy of Sciences in 1963, was director of the National Science Foundation under Nixon 3 4 BIOGRAPHICAL MEMOIRS (1969-1972), and was a member of the President’s Committee on the National Medal of Science Award (1972).
    [Show full text]
  • Bioluminescence Is Produced by a Firefly-Like Luciferase but an Entirely
    www.nature.com/scientificreports OPEN New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a Received: 8 November 2017 Accepted: 1 February 2018 frefy-like luciferase but an entirely Published: xx xx xxxx new luciferin Oliver C. Watkins1,2, Miriam L. Sharpe 1, Nigel B. Perry 2 & Kurt L. Krause 1 The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the frefy. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and 1H NMR spectroscopy. The purifed luciferase enzyme is in the same protein family as frefy luciferase (31% sequence identity). However, the luciferin substrate of this enzyme is produced from xanthurenic acid and tyrosine, and is entirely diferent to that of the frefy and known luciferins of other glowing creatures. A candidate luciferin structure is proposed, which needs to be confrmed by chemical synthesis and bioluminescence assays. These fndings show that luciferases can evolve independently from the same family of enzymes to produce light using structurally diferent luciferins. Glowworms are found in New Zealand and Australia, and are a major tourist attraction at sites located across both countries. In contrast to luminescent beetles such as the frefy (Coleoptera), whose bioluminescence has been well characterised (reviewed by ref.1), the molecular details of glowworm bioluminescence have remained elusive. Tese glowworms are the larvae of fungus gnats of the genus Arachnocampa, with eight species endemic to Australia and a single species found only in New Zealand2.
    [Show full text]
  • Understanding Bioluminescence in Dinoflagellates—How Far Have We Come?
    Microorganisms 2013, 1, 3-25; doi:10.3390/microorganisms1010003 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Review Understanding Bioluminescence in Dinoflagellates—How Far Have We Come? Martha Valiadi 1,* and Debora Iglesias-Rodriguez 2 1 Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse, Plӧn 24306, Germany 2 Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +49-4522-763277; Fax: +49-4522-763310. Received: 3 May 2013; in revised form: 20 August 2013 / Accepted: 24 August 2013 / Published: 5 September 2013 Abstract: Some dinoflagellates possess the remarkable genetic, biochemical, and cellular machinery to produce bioluminescence. Bioluminescent species appear to be ubiquitous in surface waters globally and include numerous cosmopolitan and harmful taxa. Nevertheless, bioluminescence remains an enigmatic topic in biology, particularly with regard to the organisms’ lifestyle. In this paper, we review the literature on the cellular mechanisms, molecular evolution, diversity, and ecology of bioluminescence in dinoflagellates, highlighting significant discoveries of the last quarter of a century. We identify significant gaps in our knowledge and conflicting information and propose some important research questions
    [Show full text]
  • Programmed Cell Death and Lysis in Bacteria and the Benefits to Survival
    Programmed Cell Death and Lysis in Bacteria and the Benefits for Survival. Mirjam Boonstra Rijksuniversiteit Groningen 2009 Teachers: Prof. Dr. O.P. Kuipers & Dr. A.T. Kovacs 1 Introduction Bacterial cell death is an interesting phenomenon because it plays a crucial role in many important processes. Bacterial cell death does not just occur in the late stationary phase when nutrient limitation can lead to starvation. Bacteria are capable of initiating autolysis during certain conditions, such as biofilm formation, competence, sporulation and stress response. One form of lysis is autolysis, bacterial suicide. Autolysis in bacteria constitutes programmed cell death (PCD) because death of the cell is the result of an internal mechanism that can be activated by internal or external signals. Another cause of death of a subpopulation of cells is allolysis; allolysis is the killing of sibling cells by bacteria. There are many different mechanisms that can cause lysis in bacteria. Which mechanisms are used depends on the species of bacteria and the circumstances. The possible benefits to killing sibling cells are obvious; killing other cells releases their nutrients into the environment. But what are the benefits to killing yourself? The answer to this lies in the complex nature of bacterial communities. Bacteria are for instance, capable of forming biofilms in which there exists a spatial and temporal difference in gene expression of genetically identical bacteria. The difference in gene expression patterns plays an important role in deciding which cells undergo autolysis. Bacteria also undergo complex developmental processes such as sporulation and competence in which autolysis and allolysis play a crucial role.
    [Show full text]
  • Who Has the Light?
    2004 Deep-Scope Expedition Who Has the Light? FOCUS TEACHING TIME Bioluminescence in deep-sea organisms One 45-minute class period, plus time for student research GRADE LEVEL 7-8 (Life Science) SEATING ARRANGEMENT Classroom style or groups of 3-4 students FOCUS QUESTION What deep-sea organisms are capable of bio- MAXIMUM NUMBER OF STUDENTS luminescence, and how does this ability benefit 30 these organisms? KEY WORDS LEARNING OBJECTIVES Chemiluminescence Students will be able to compare and contrast Bioluminescence chemiluminescence, bioluminescence, fluores- Fluorescence cence, and phosphorescence. Phosphorescence Luciferin Students will be able to explain at least three Luciferase ways in which the ability to produce light may be Photoprotein useful to deep-sea organisms. Counter-illumination Students will be able to explain how scientists BACKGROUND INFORMATION may be able to use light-producing processes in Deep-sea explorers face many challenges: deep-sea organisms to obtain new observations extreme heat and cold, high pressures, and of these organisms. almost total darkness. The absence of light poses particular challenges to scientists who want to MATERIALS study organisms that inhabit the deep ocean envi- ❑ None ronment. Even though deep-diving submersibles carry bright lights, simply turning these lights on AUDIO/VISUAL MATERIALS creates another set of problems: At least some ❑ (Optional) Images of deep-sea environments mobile organisms are likely to move away from and organisms that use bioluminescence (see the light; organisms with light-sensitive organs Learning Procedure) may be permanently blinded by intense illumina- tion; even sedentary organisms may shrink back, ceasing normal life activities and possibly becom- ing less noticeable; and small cryptic organisms 1 2004 Deep-Scope Expedition – Grades 7-8 (Life Science) Focus: Bioluminescence in deep-sea organisms oceanexplorer.noaa.gov may simply be unnoticed.
    [Show full text]
  • Towards Accelerated Autolysis? Dynamics of Phenolics, Proteins, Amino Acids and Lipids in Response to Novel Treatments and During Ageing of Sparkling Wine
    beverages Article Towards Accelerated Autolysis? Dynamics of Phenolics, Proteins, Amino Acids and Lipids in Response to Novel Treatments and during Ageing of Sparkling Wine Gail B. Gnoinski 1,*, Dugald C. Close 1, Simon A. Schmidt 2 and Fiona L. Kerslake 1 1 Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart 7005, Australia; [email protected] (D.C.C.); fi[email protected] (F.L.K.) 2 The Australian Wine Research Institute, Glen Osmond, Adelaide 5064, Australia; [email protected] * Correspondence: [email protected] Abstract: Premium sparkling wine produced by the traditional method (analogous to the French méthode champenoise) is characterised by the development of aged wine character as a result of a second fermentation in the bottle with lees contact and lengthy ageing. Treatments (microwave, ultrasound, or β-glucanase enzymes) were applied to disrupt the cell wall of Saccharomyces cerevisiae and added to the tirage liquor for the second fermentation of Chardonnay-Pinot Noir base wine cuvée and compared to a control, to assess effects on the release of phenolics, proteins, amino acids, and lipids at 6, 12 and 18 months post-tirage. General responses to wine ageing included a 60% Citation: Gnoinski, G.B.; Close, D.C.; increase in the total phenolic content of older sparkling wines relative to younger wines and an Schmidt, S.A.; Kerslake, F.L. Towards increase in protein concentration from 6 to 12 months bottle age. Microwave and β-glucanase enzyme Accelerated Autolysis? Dynamics of treatments of yeast during tirage preparation were associated with a 10% increase in total free amino Phenolics, Proteins, Amino Acids and acid concentration and a 10% increase in proline concentration at 18 months bottle age, compared to Lipids in Response to Novel control and ultrasound treatment.
    [Show full text]
  • Firefly Luciferin-Activated Rose Bengal: in Vitro Photodynamic Therapy by Intracellular Chemiluminescence in Transgenic NIH 3T3 Cells1
    [CANCER RESEARCH 63, 1818–1821, April 15, 2003] Firefly Luciferin-activated Rose Bengal: In Vitro Photodynamic Therapy by Intracellular Chemiluminescence in Transgenic NIH 3T3 Cells1 Theodossis Theodossiou,2,3 John S. Hothersall,2,3 Elizabeth A. Woods, Klaus Okkenhaug, Jake Jacobson, and Alexander J. MacRobert National Medical Laser Centre, Department of Surgery, University College London, W1W 7EJ London, United Kingdom [T. T., A. J. M.]; Department of Urology and Nephrology, University College London, London W1W 7EJ, United Kingdom [J. S. H.]; Ludwig Institute for Cancer Research, London W1W 7BS, United Kingdom [E. A. W., K. O.]; and Department of Molecular Pathogenesis, Institute of Neurology, London WC1N 3BG, United Kingdom [J. J.] ABSTRACT ATP. A photosensitizer that meets these criteria is the water-soluble xanthene dye, RB with a high singlet-oxygen quantum yield of ⌽⌬ Ϸ Photodynamic therapy (PDT) of cancer (1, 2) is a well-established 0.75, as reported in the literature (7). treatment modality that uses light excitation of a photosensitive substance to produce oxygen-related cytotoxic intermediates, such as singlet oxygen or free radicals (3, 4). Although PDT is advantageous over other forms of MATERIALS AND METHODS cancer treatments because of its limited side effects, its main disadvantage is the poor accessibility of light to more deeply lying malignancies. Exter- D-Luciferin CL Spectrum. Light emission from 100 ␮lofD-luciferin- nal light sources such as lasers or lamps can be applied either noninva- luciferase solution (Labsystems ATP monitoring kit) in 2 ml PBS after the sively to reach tumors that lie well within the penetration depth of the addition of 10 ␮M ATP was scanned in a Perkin-Elmer spectrofluorimeter light or in a minimally invasive fashion (interstitial treatments) in which (LS5) using a CL attachment.
    [Show full text]
  • Degradation of Lipids in Yeast (Saccharomyces Cerevisiae) at the Early Phase of Organic Solvent-Induced Autolysis
    Agric. Biol. Chem., 42 (2), 247•`251, 1978 Degradation of Lipids in Yeast (Saccharomyces cerevisiae) at the Early Phase of Organic Solvent-induced Autolysis MichikoISHIDA-ICHIMASA Departmentof Biology, Faculty of Science,Ibaraki University , Bunkyo,Mito, Japan ReceivedMay 30, 1977 Initial stage of organic solvent-induced autolysis in yeast was studied with 14C-acetate labeled cells. In the case of toluene-induced autolysis, primary cell injury which was estimated by leakage of UV absorbing substances from cell accompanied rapid deacylation of phos pholipids. Lysophospholipids did not occur during autolysis. When autolysis was induced by addition of ethyl acetate, phospholipids of yeast cells were not degraded so much. Ethyl acetate rather inhibited yeast phospholipase activity under the condition tested. Several organic solvents have been used to Extraction and analysis of lipids. The incubated mixtures were heated for 10 min in boiling water and initiate autolysis in yeast for the isolation of sonicated twice for 5 min at 20 KC in an ice bath. enzymes and other cell constituents. Some Then, lipids were extracted from the aqueous suspen examples are the applications of chloroform or sion by the procedure described by Bligh and Dyer.7) ethanol, toluene and ethyl acetate in the prepa Appropriate amounts of extracted lipids were chro rations of proteases,l) ƒÀ-fructofuranosidase,2,3) matographed on precoated thin-layer plates of silica gel 60 (without fluorescent indicator) (E. Merck Co.) with and cytochrome c,4) respectively. Although it solvents of petroleum ether-diethyl ether-acetic acid is well known that some organic solvents such (80: 30: 1, by vol8)) for neutral lipids, and chloroform- as diethyl ether and ethanol stimulate enzy methanol-acetic acid-water (25: 15: 4: 1, by vol.) for matic degradation of phospholipids, the me phospholipids.
    [Show full text]
  • ATP Bioluminescence for Assessing the Efficacy of the Manual Cleaning
    healthcare Article ATP Bioluminescence for Assessing the Efficacy of the Manual Cleaning Procedure during the Reprocessing of Reusable Surgical Instruments Maria Dolores Masia 1 , Marco Dettori 1,* , Grazia Maria Deriu 2, Sabina Bellu 2, Lisa Arcadu 1, Antonio Azara 1 , Andrea Piana 1 , Alessandra Palmieri 1 , Antonella Arghittu 2,3 and Paolo Castiglia 1 1 Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; [email protected] (M.D.M.); [email protected] (L.A.); [email protected] (A.A.); [email protected] (A.P.); [email protected] (A.P.); [email protected] (P.C.) 2 University Hospital of Sassari, 07100 Sassari, Italy; [email protected] (G.M.D.); [email protected] (S.B.); [email protected] (A.A.) 3 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy * Correspondence: [email protected]; Tel.: +39-079228467 Abstract: Achieving sterilization by adopting proper practices is essential to ensure that surgical instruments do not transmit microorganisms to patients. As the effectiveness of sterilization mandates effective cleaning, it is necessary to verify the success of cleaning procedures. In this study, we used the adenosine triphosphate (ATP) bioluminescence method for assessing the efficacy of the manual cleaning procedure during the reprocessing of reusable surgical instruments. The ATP bioluminescence assay was performed on 140 surgical instruments of 12 different types, both before Citation: Masia, M.D.; Dettori, M.; being cleaned (baseline) and after each of the cleaning procedures (i.e., decontamination, manual Deriu, G.M.; Bellu, S.; Arcadu, L.; washing, drying, and visual inspection). For each instrument, two swabs were used as follows: Azara, A.; Piana, A.; Palmieri, A.; Arghittu, A.; Castiglia, P.
    [Show full text]
  • Chemical and Cytological Changes During
    CHEMICAL AND CYTOLOGICAL CHANGES DURING THE AUTOLYSIS OF YEASTS A thesis submitted to The University of New South Wales as fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY by Tatang Hernawan Sarjana Farmasi, Apoteker (I T B, Indonesia) Master of Applied Science (UN SW, Australia) Department of Food Science and Technology The University of New South Wales Kensington, N. S. W. Australia February 1992 D E C L A R A T I O N The candidate, Tatang Hernawan, hereby declares that this thesis is his own work and that, to the best of his knowledge and belief, it contains no material previously published or written by another person nor material which to substantial extent has been accepted for the award of any degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text of the thesis. T a t a n g H e r n a w a n A C K N O W L E D G E M E N T S I wish to express my sincere gratitude to Associate Professor G. H. Fleet, Department of Food Science and Technology, University of New South Wales, Australia, as my supervisor for his guidance, advice and encouragement during this project and thesis production. I would like to acknowledge the assistance of laboratory staff of the Department of Food Science and Technology, Mr P. Mark, of the Electron Microscopy Unit, and Ir E. Poerwanto, a fellow postgraduate student, University of New South Wales. I would like to thank fell ow students in the Department of Food Science and Technology for a friendly situation throughout this study and Ms H.
    [Show full text]
  • D-Luciferin in Vivo Protocol
    D-Luciferin In Vivo Protocol Gold Bio © 2013 All Rights Reserved This Publication is a creation of Gold Biotechnology and is intended as a sourcebook for research laboratories. This publication may not be redistributed or copied for commercial use. D-Luciferin in vivo Protocol Procedure for use with Gold Biotechnology D-Luciferin; Catalog #: LUCK (Luciferin, Potassium Salt) and LUCNA (Luciferin, Sodium Salt) Table of Contents Introduction Page 3 Product Specifications Page 3 Luciferin Preparation Page 4 Determining the Kinetic Curve Page 5 Intraperitoneal Injection Method Page 7 Intravenous Injection Method Page 9 Subcutaneous Injection Method Page 12 Appendix Page 14 References Page 16 © 2013 by Gold Biotechnology All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of Gold Biotechnology. Editor - C. Menne (6/26/2014) Gold Biotechnology 2 | P a g e St. Louis, MO Web: www.goldbio.com Ph: (314) 890-8778 email: [email protected] Gold Biotechnology D-Luciferin in vivo Protocol Introduction Luciferin is a common bioluminescent reporter used for in vivo imaging of the expression of luciferase. This water soluble substrate for the Firefly luciferase enzyme utilizes ATP and Mg2+ as co-factors to emit a characteristic yellow-green emission in the presence of oxygen, which shifts to red light in vivo at 37°C. Through the utilization of ATP, the reaction can be further used to indicate the presence of energy or life in order to function as a life-death stain. D-Luciferin is a common reagent used throughout the Biotechnology field and specifically for in vivo imaging.
    [Show full text]
  • Biochemical Studies of Energy Production in the Failing Human Heart
    Biochemical studies of energy production in the failing human heart. C A Chidsey, … , P E Pool, A G Morrow J Clin Invest. 1966;45(1):40-50. https://doi.org/10.1172/JCI105322. Research Article Find the latest version: https://jci.me/105322/pdf Journal of Clinical Investigation Vol. 45, No. 1, 1966 Biochemical Studies of Energy Production in the Failing Human Heart * CHARLES A. CHIDSEY,t EUGENE C. WEINBACH, PETER E. POOL, AND ANDREW G. MORROW (From the Cardiology Branch and the Clinic of Surgery, National Heart Institute, and the Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md.) The defective myocardial performance responsi- and in vivo (6, 7), and one clinical syndrome, char- ble for the syndrome of congestive heart failure has acterized by nonthyroid hypermetabolism and re- been considered for many years to involve a bio- sulting from uncoupling of these two processes, chemical abnormality. However, identification of has been identified by Luft and associates (8). this abnormality remains to be achieved. Muscle Mitochondrial function in the failing heart has cell function is basically a process by which chemi- previously been studied only in experimental ani- cal energy is transformed into the mechanical work mals, where the findings have been conflicting. of myofibrillar shortening and force development. Oxidative phosphorylation and the content of high The presence of a biochemical abnormality in the energy phosphate compounds have been reported failing cardiac muscle must therefore be sought to be normal in some of these studies (9-12), either in the mechanism of energy production or whereas in others defective energy production has in the mechanism of energy utilization by the con- been observed (13-17).
    [Show full text]