Chemical and Cytological Changes During

Total Page:16

File Type:pdf, Size:1020Kb

Chemical and Cytological Changes During CHEMICAL AND CYTOLOGICAL CHANGES DURING THE AUTOLYSIS OF YEASTS A thesis submitted to The University of New South Wales as fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY by Tatang Hernawan Sarjana Farmasi, Apoteker (I T B, Indonesia) Master of Applied Science (UN SW, Australia) Department of Food Science and Technology The University of New South Wales Kensington, N. S. W. Australia February 1992 D E C L A R A T I O N The candidate, Tatang Hernawan, hereby declares that this thesis is his own work and that, to the best of his knowledge and belief, it contains no material previously published or written by another person nor material which to substantial extent has been accepted for the award of any degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text of the thesis. T a t a n g H e r n a w a n A C K N O W L E D G E M E N T S I wish to express my sincere gratitude to Associate Professor G. H. Fleet, Department of Food Science and Technology, University of New South Wales, Australia, as my supervisor for his guidance, advice and encouragement during this project and thesis production. I would like to acknowledge the assistance of laboratory staff of the Department of Food Science and Technology, Mr P. Mark, of the Electron Microscopy Unit, and Ir E. Poerwanto, a fellow postgraduate student, University of New South Wales. I would like to thank fell ow students in the Department of Food Science and Technology for a friendly situation throughout this study and Ms H. N. Ivan for helping me during studies in Australia. Sincere thanks are also given to my father, Mr H. Sadeli, during his life, and my mother, Mrs H. Oyoh Sadeli for their strong encouragement and support. To my children, Rogydesa and Bethasari, and my wife, Ora Ny. Nila Merli ta, I would like to thank them for their support during this study. I would like to thank the Commonwealth Government of Australia for granting me a Colombo Plan Award, and the Department of Food Science and Technology, University of New South Wales, and the Department of iii Pharmacy, Bandung Institute of Technology, Indonesia, for facilitating my PhD studies. iv T A B L E 0 F C O N T E N T S Page ACKNOWLEDGEMENTS . iii TABLE OF CONTENTS . v ABSTRACT . ix 1. INTRODUCTION . 1 2. LITERATURE SURVEY . 6 2.1 Autolysis - General Description ............ 6 2.2 Subcellular Organisation Of Yeast .......... 7 2.2.1 Cell wall............................ 7 2.2.2 Cytoplasmic membrane .............. ... 11 2. 2. 3 Organelles . 12 2.3 Cytological Changes During Autolysis Of Yeast 16 2.4. Biochemical Changes During Autolysis ...... 19 2.4.1 Carbohydrates ........................ 19 2.4.2 Proteins ............................. 22 2. 4. J Nucleic acids . 34 2.4.4 Lipids ............................... 38 2.4.5 Vitamins ............................. 50 2.5 Commercial Significance Of Yeast Autolysis . 51 2.5.1 Leavening power of compressed baker's yeast ................................ 52 2.5.2 Autolysed yeast extracts 52 2.5.J Industrial fermentations 53 3. MATERIALS AND METHODS ...... ... ...... ......... .. 57 3 .1 Yeast Strains And Culture . 57 3. 2 Autolysis Of Yeast Cells . 59 V 3.3 Cell Viability . 59 3.4 Cell Dry Weight; Soluble Autolysate ....... 59 3.5 Total Carbohydrate, Reducing Sugar. And Glucose. 60 3. 6 Organic Acids . 61 3.7 Protein 62 3.8 Amino Acids 62 3.9 Ribonucleic Acid 64 3.10 Deoxyribonucleic Acid ..................... 66 3.11 Lipids . 68 3.12 Free Fatty Acids . 70 3 .13 Glycerol . 71 3.14 Cytological Observations .................. 72 4. RESULTS . 75 4.1 Comparative Survey Of Autolysis In Several Species And Strains Of Yeasts . 7 5 4.1.1 Introduction ......................... 75 4.1.2 Results .............................. 75 Cell viability 75 Solubilization of cell biomass ........ 76 Reproducibility of data on dry weight analysis .............................. 78 Carbohydrates 78 Organic acids 78 Protein 84 Amino Acids 84 Ribonucleic acid 88 Deoxyribonucleic acid . 92 Lipid 94 vi Free Fatty Acids . 104 4.2 Chemical Changes During The Autolysis Of Saccharomyces cerevisiae 2180a, Kloeckera apiculata 202 And Candida stellata 8008 ..... 104 4.2.2 Introduction ......................... 104 4.2.3 Results ............................... 104 Cell viability 104 Solubilization of cell biomass ......... 106 Carbohydrates 106 Organic acids 111 Protein 114 Amino acids 114 Ribonucleic acid (RNA) 119 Deoxyribonucleic acid (DNA) 119 Lipids . 124 Glycerol . 130 4.3 Effect Of Cell Concentration On The Kinetics Of Yeast Autolysis . 130 4.3.1 Introduction 130 4.3.2 Results .............................. 134 Effect of cell concentration on the kinetics of cell death during autolysis. 134 Effect of cell concentration on the kinetics of cell weight changes and cell solubilization during autolysis ........ 134 4.4 Observations Of Yeast Autolysis With The Electron Microscope ........................ 136 4. 4 .1 Introduction . 136 4.4.2 Results .............................. 139 Scanning electron micrographs of auto- lysing yeasts . 139 Transmission electron micrographs of thin sections of autolvsing yeasts ..... 139 5. D I S C U S S I O N . 149 vii 5.1 Cell viability 150 5.2 Solubilization of cell biomass ............. 152 5.3 Carbohydrates 154 5.4 Organic acids 156 5.5 Proteins and Amino Acids ................... 159 5. 6 Nucleic acids . 164 Ribonucleic acid 164 =D~e~o~x-y~r~i=b~o~n~u=c-=l=e=i~c---aaa~c~i____ d ................. 166 5.7 Lipids . 168 5.8 Cytological changes ........................ 173 6. CON CL US ION ............................. 176 B I B L I O G R A P H Y . .. .. .. .. .. 182 viii ABSTRACT The chemical and cytological changes that occurred during the autolysis of three yeasts, Saccharomyces cerevisiae, Kloeckera apiculata, and Candida stellata, were examined. The yeasts were grown in yeast extract glucose broth for 48 h, after which the cells were harvested and autolysed by incubating in 0.1 M phosphate buffer, pH 4.5, at 45"C for up to 10 days. Three strains of each species were examined. Autolysis was characterised by rapid loss in cell viability and solubilization of cell biomass. After 10 days, 25-35 % of the cell dry weight was solubilized. The soluble autolysate consisted of carbohydrate (3-7 %), organic acids (3-6 %), protein (12-13 %), free amino acids (8-12 %), nucleic acids (3-5 %) , and lipids (1-2 %) , Carbohydrate in autolysates was predominantly polysaccharide with only traces of glucose or reducing sugars. The main organic acids in autolysates were propionic, succinic, oxalic, acetic, formic, and malic, with some variation in their individual concentrations depending on yeast species. Sixteen different free amino acids were found in autolysates, the main ones being phenylalanine, glutamic acid, leucine, alanine, and arginine. The concentrations of individual amino acids varied with yeast strain. Cellular RNA was 85-90 % degraded during autolysis with most of the degradation products appearing in the autolysates. Cellular DNA was only partially degraded and recovered in the autolysates. Approximately 40 % of cell lipid was lost during autolysis and recovered in autolysates. Both phospholipid and neutral lipid classes were degraded, with neutral lipids but not phospholipids being found in autolysates. The composition of cellular lipids as well as degradation of the different lipid classes varied with the yeast species. Autolysates contained 0.2-0.6 % glycerol. Scanning electron microscope and transmission electron microscope observations showed the cell shape and cell wall to remain intact during autolysis, although a decrease (13-14 %) in wall thickness was noted. After 5 days of autolysis, there was a retraction of the cell membrane from the cell wall, and some mernbraneous vesicularization. Such cytological changes were less evident in K. apiculata. There were minor variations in autolytic behaviour between strains of one species. The autolytic character of K. apiculata showed significant differences from the other two species. X 1 1. INTRODUCTION Autolysis or self degradation is a natural event that occurs after yeast cells have completed their normal growth cycle and have entered tt.e death phase. In general terms, it is characterized by a loss of membraneous function and organization, degradation and solubilization of cell macromolecules by th~ action of endogenous enzymes and the release of intracellular constituents and br_eakdown products into the extracellular environment. The phenomenon of autolysis in baker's yeast was first observed by Salkowski at the end of the 19th century (see Farrer (1956) for historical review), and since that time it has attracted the sporadic interests of scientists. Of potential commercial interest, were the findings that yeast autolysates were rich in amino acids, proteins, vitamins, and ctegradation products of nucleic acids, and that the autolytic process could be significantly accelerated or triggered by incubating yeast cells at high temperature, by addition of salt, or by treatment with various organic solvents, such as, toluene, chloroform, or ethanoJ. The commercial implications of yeast autolysis are varied and have been recognized for a long time. Indeed, they have attracted more attention than endeavours to understand the scientific basis of the process. Yeast autolysates, which are rich in nutrients 2 and strong in flavour profile, quickly found application as ingLedients in the food processing industries (Peppler 1982, Dziezak 1987ab). Autolysis was also seen as a process for preparing proteins, polysaccharides and pigments from various yeasts for use in the food and feed industries. Several enzymes, such as invertase and ~- galactosidase, also used in food processing, were prepared from yeast autolysates (Peppler 1982). On the negative side, it was quickly realized that autolysis was the process that decreased the leavening power of baker's yeast (Saccharomyces cerevisiae) during storage and that uncontrolled autolysis of brewer's and wine yeasts would lead to of £-flavours and bacterial spoilage problems in beer and wines.
Recommended publications
  • Programmed Cell Death and Lysis in Bacteria and the Benefits to Survival
    Programmed Cell Death and Lysis in Bacteria and the Benefits for Survival. Mirjam Boonstra Rijksuniversiteit Groningen 2009 Teachers: Prof. Dr. O.P. Kuipers & Dr. A.T. Kovacs 1 Introduction Bacterial cell death is an interesting phenomenon because it plays a crucial role in many important processes. Bacterial cell death does not just occur in the late stationary phase when nutrient limitation can lead to starvation. Bacteria are capable of initiating autolysis during certain conditions, such as biofilm formation, competence, sporulation and stress response. One form of lysis is autolysis, bacterial suicide. Autolysis in bacteria constitutes programmed cell death (PCD) because death of the cell is the result of an internal mechanism that can be activated by internal or external signals. Another cause of death of a subpopulation of cells is allolysis; allolysis is the killing of sibling cells by bacteria. There are many different mechanisms that can cause lysis in bacteria. Which mechanisms are used depends on the species of bacteria and the circumstances. The possible benefits to killing sibling cells are obvious; killing other cells releases their nutrients into the environment. But what are the benefits to killing yourself? The answer to this lies in the complex nature of bacterial communities. Bacteria are for instance, capable of forming biofilms in which there exists a spatial and temporal difference in gene expression of genetically identical bacteria. The difference in gene expression patterns plays an important role in deciding which cells undergo autolysis. Bacteria also undergo complex developmental processes such as sporulation and competence in which autolysis and allolysis play a crucial role.
    [Show full text]
  • Towards Accelerated Autolysis? Dynamics of Phenolics, Proteins, Amino Acids and Lipids in Response to Novel Treatments and During Ageing of Sparkling Wine
    beverages Article Towards Accelerated Autolysis? Dynamics of Phenolics, Proteins, Amino Acids and Lipids in Response to Novel Treatments and during Ageing of Sparkling Wine Gail B. Gnoinski 1,*, Dugald C. Close 1, Simon A. Schmidt 2 and Fiona L. Kerslake 1 1 Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart 7005, Australia; [email protected] (D.C.C.); fi[email protected] (F.L.K.) 2 The Australian Wine Research Institute, Glen Osmond, Adelaide 5064, Australia; [email protected] * Correspondence: [email protected] Abstract: Premium sparkling wine produced by the traditional method (analogous to the French méthode champenoise) is characterised by the development of aged wine character as a result of a second fermentation in the bottle with lees contact and lengthy ageing. Treatments (microwave, ultrasound, or β-glucanase enzymes) were applied to disrupt the cell wall of Saccharomyces cerevisiae and added to the tirage liquor for the second fermentation of Chardonnay-Pinot Noir base wine cuvée and compared to a control, to assess effects on the release of phenolics, proteins, amino acids, and lipids at 6, 12 and 18 months post-tirage. General responses to wine ageing included a 60% Citation: Gnoinski, G.B.; Close, D.C.; increase in the total phenolic content of older sparkling wines relative to younger wines and an Schmidt, S.A.; Kerslake, F.L. Towards increase in protein concentration from 6 to 12 months bottle age. Microwave and β-glucanase enzyme Accelerated Autolysis? Dynamics of treatments of yeast during tirage preparation were associated with a 10% increase in total free amino Phenolics, Proteins, Amino Acids and acid concentration and a 10% increase in proline concentration at 18 months bottle age, compared to Lipids in Response to Novel control and ultrasound treatment.
    [Show full text]
  • Degradation of Lipids in Yeast (Saccharomyces Cerevisiae) at the Early Phase of Organic Solvent-Induced Autolysis
    Agric. Biol. Chem., 42 (2), 247•`251, 1978 Degradation of Lipids in Yeast (Saccharomyces cerevisiae) at the Early Phase of Organic Solvent-induced Autolysis MichikoISHIDA-ICHIMASA Departmentof Biology, Faculty of Science,Ibaraki University , Bunkyo,Mito, Japan ReceivedMay 30, 1977 Initial stage of organic solvent-induced autolysis in yeast was studied with 14C-acetate labeled cells. In the case of toluene-induced autolysis, primary cell injury which was estimated by leakage of UV absorbing substances from cell accompanied rapid deacylation of phos pholipids. Lysophospholipids did not occur during autolysis. When autolysis was induced by addition of ethyl acetate, phospholipids of yeast cells were not degraded so much. Ethyl acetate rather inhibited yeast phospholipase activity under the condition tested. Several organic solvents have been used to Extraction and analysis of lipids. The incubated mixtures were heated for 10 min in boiling water and initiate autolysis in yeast for the isolation of sonicated twice for 5 min at 20 KC in an ice bath. enzymes and other cell constituents. Some Then, lipids were extracted from the aqueous suspen examples are the applications of chloroform or sion by the procedure described by Bligh and Dyer.7) ethanol, toluene and ethyl acetate in the prepa Appropriate amounts of extracted lipids were chro rations of proteases,l) ƒÀ-fructofuranosidase,2,3) matographed on precoated thin-layer plates of silica gel 60 (without fluorescent indicator) (E. Merck Co.) with and cytochrome c,4) respectively. Although it solvents of petroleum ether-diethyl ether-acetic acid is well known that some organic solvents such (80: 30: 1, by vol8)) for neutral lipids, and chloroform- as diethyl ether and ethanol stimulate enzy methanol-acetic acid-water (25: 15: 4: 1, by vol.) for matic degradation of phospholipids, the me phospholipids.
    [Show full text]
  • Biochemical Studies of Energy Production in the Failing Human Heart
    Biochemical studies of energy production in the failing human heart. C A Chidsey, … , P E Pool, A G Morrow J Clin Invest. 1966;45(1):40-50. https://doi.org/10.1172/JCI105322. Research Article Find the latest version: https://jci.me/105322/pdf Journal of Clinical Investigation Vol. 45, No. 1, 1966 Biochemical Studies of Energy Production in the Failing Human Heart * CHARLES A. CHIDSEY,t EUGENE C. WEINBACH, PETER E. POOL, AND ANDREW G. MORROW (From the Cardiology Branch and the Clinic of Surgery, National Heart Institute, and the Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md.) The defective myocardial performance responsi- and in vivo (6, 7), and one clinical syndrome, char- ble for the syndrome of congestive heart failure has acterized by nonthyroid hypermetabolism and re- been considered for many years to involve a bio- sulting from uncoupling of these two processes, chemical abnormality. However, identification of has been identified by Luft and associates (8). this abnormality remains to be achieved. Muscle Mitochondrial function in the failing heart has cell function is basically a process by which chemi- previously been studied only in experimental ani- cal energy is transformed into the mechanical work mals, where the findings have been conflicting. of myofibrillar shortening and force development. Oxidative phosphorylation and the content of high The presence of a biochemical abnormality in the energy phosphate compounds have been reported failing cardiac muscle must therefore be sought to be normal in some of these studies (9-12), either in the mechanism of energy production or whereas in others defective energy production has in the mechanism of energy utilization by the con- been observed (13-17).
    [Show full text]
  • Novel Sparkling Winemaking Technologies and Visualising Yeast Autolysis
    Novel sparkling winemaking technologies and visualising yeast autolysis Gail Gnoinski, Fiona Kerslake, Dugald Close, Bob Dambergs and Simon Schmidt 1 Background − Complexity in sparkling wine is derived from viticultural practices, base wine composition, winemaking practices and wine maturation (Jones et al., 2014; Kerslake et al., 2013) − Sensory cues not well understood, distinguished or agreed upon − Wine Australia priority to identify important compounds contributing to flavour, mouth feel and texture of sparkling wine character Autolysis − Enzymatic degradation (hydrolysis) of yeast cell constituents after cell death Yeast cell structure − Cell wall mannoprotein, glucan − Amino acids, Proteins, Peptides Wine quality − Yeast cellular components released in wine − Autolytic character develops slowly Scientific research − Changes occur in the lees structure as wine ages 1 13 month months (Tudela et al. 2012) Research question & objectives − Can alternative methods be implemented to artificially induce yeast lysis in sparkling winemaking? − Application of novel technologies (ultrasound, microwave, enzymes) to break down yeast cells − Shorter ageing period on lees with developed characteristics for earlier release − Visualise cell level impact associated with novel-treated lees Tasting wine produced using novel technologies − Participants taste the five different sparkling wines presented − Make some notes to record impressions of the wines Industry trial application − Hill-Smith Family Vineyards Yalumba, Adelaide − Saccharomyces cerevisiae
    [Show full text]
  • Dissolved ATP Turnover in the Bransfield Strait, Antarctica During a Spring Bloom
    MARINE ECOLOGY PROGRESS SERIES Vol. 57: 35-44. 1989 Published September 15 Mar. Ecol. Prog. Ser. Dissolved ATP turnover in the Bransfield Strait, Antarctica during a spring bloom Michele P. ~awrocki',David M. Karll, 2v* Department of Oceanography, University of Hawaii, Honolulu, Hawaii 96822, USA Division of Oceanic Biology, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822. USA ABSTRACT- Ambient concentrations and turnover rates of dissolved adenosine triphosphate (D-ATP) were measured at 5 stations in the Bransfield Strait, Antarctica during the 1986-87 Research on Antarctic Coastal Ecosystem Rates (RACER) field program. The study area was pre-selected to include several different coastal and oceanic habitats expected to vary considerably in timing and magnitude of the annual spring phytoplankton bloom. D-ATP concentrations varied both spatially and temporally during the 4 mo of observation. Dunng the initial stages of bloom development, there was a signif~cant positive correlation between the concentration of particulate (P) ATP (i.e. biomass) and D-ATP; how- ever, this relationship deteriorated later in the season. At the height of the spring bloom (January), we observed a D-ATP concentration gradient in excess of an order of magnitude for our coastal to open ocean transect. Dissolved ATP fluxes (uptake rate times ambient concentration; ng I-' d-l) were highly correlated with D-ATP concentrations, indicating that bloom conditions stimulated both production and removal processes. We assessed the potential role of 3 independent processes as a source of D-ATP in Antarctic coastal waters: excret~on/exudation,production during micro- or macrozooplankton grazing and cell death/autolysis.
    [Show full text]
  • Development of a New, Innovative, Specific Yeast Autolysate to Improve the Quality of Red Wine
    Development of a new, innovative, specific yeast autolysate to improve the quality of red wine Anthony Silvano1, Jose-Maria Heras1, Julie Mekoue-Nguela1,2, Marion Schiavone1,3, Nathalie Sieczkowski1 1 Lallemand SAS, 19, Rue des briquetiers, 31702 Blagnac, France 2 UMR 1083 Sciences pour l’Œnologie, INRA, Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France 3 LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 avenue de Rangueil, 31077 Toulouse, France Introduction Consumer demand for fruity red wines with intense colour and good mouthfeel continues to grow. Aging on lees is a widespread traditional winemaking technique aimed in part at reducing astringency and bitterness while increasing body and aromatic length and complexity. Aging on lees can also help stabilize the colour of red wines. During this step, winemakers reap the many well known benefits—including the release of mannoproteins—provided by adding dead or dying autolyzed yeast (Rodriguez et al., 2005). To avoid the inconvenience of traditional aging on lees, a practice has developed over the past 15 years where specific inactivated yeasts are added to promote the release of polysaccharides (Guadalupe et al., 2007, and Rodriguez-Bencomo et al., 2010). Recent scientific advances have provided more precise tools for characterizing wine yeasts and their products, leading to the development of a new yeast autolysate (MEX-WY1) with unique properties based on an innovative combination of a specific inactivation process and a special strain of Saccharomyces cerevisiae. A better understanding of how products derived from yeasts interact with polyphenols in red wine production The idea that certain polysaccharides can bind with tannins and thereby reduce the astringency of wines has been around for a number of years.
    [Show full text]
  • Detection of Protein Markers for Autophagy, Autolysis and Apoptosis Processes in A
    bioRxiv preprint doi: https://doi.org/10.1101/324772; this version posted May 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Detection of protein markers for autophagy, autolysis and apoptosis processes in a 2 Saccharomyces cerevisiae wine flor yeast strain when forming biofilm 3 4 Jaime Moreno-Garciaa, Juan Carlos Mauricioa#, Juan Morenob and Teresa Garcia- 5 Martineza 6 7 aDepartment of Microbiology, Agrifood Campus of International Excellence ceiA3, 8 University of Cordoba, Cordoba, Spain. 9 bDepartment of Agricultural Chemistry, Agrifood Campus of International Excellence 10 ceiA3, University of Cordoba, Cordoba, Spain. 11 12 Running tittle: Autophagy/autolysis/apoptosis proteins in flor biofilm 13 14 #Address correspondence to Juan Carlos Mauricio, [email protected]. 15 *Present address: Jaime Moreno-García, Department of Chemistry, Umeå University, 16 SE-901 87 Umeå, Sweden. 17 18 19 20 21 bioRxiv preprint doi: https://doi.org/10.1101/324772; this version posted May 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 Yeast autophagy, autolysis and apoptosis are triggered by nutrient starvation 24 conditions that usually take place in winemaking. Biological aging of Sherry wines 25 constitutes an enological environment suitable for the induction of these biological 26 processes due to the scarcity of nutrients and formation of yeast social communities, i.e. 27 biofilm; however, few studies have been carried out in this regard.
    [Show full text]
  • Subject: Zoology Cell Biology Name of the Topic : Lysosomes Lysosomes
    Subject: Zoology Cell Biology Name of the Topic : Lysosomes Lysosomes Animal cells have another set of organelles not found in plant cells i.e lysosomes. Lysosomes were initially named as ‘perinuclear dense bodies’. The name ‘lysosome’ was coined by C.De Duve in 1955. Lysosomes occur in all animal cells. However, they are not found in mature mammalian erythrocytes. Muscle cells contain very few lysosomes. They are numerous in epithelial cells of secretory and excretory organs. The lysosomes are so called because they contain lytic or destructive enzymes. Since most of the lysosomal enzymes function better under acidic conditions, they are collectively called as Acidic hydrolases. Enzymes within the lysosomes aid the breakdown of proteins, polysaccharides, lipids, nucleic acids, and even worn-out organelles. These enzymes are active at a much lower pH than that of the cytoplasm. Therefore, the pH within lysosomes is more acidic than the pH of the cytoplasm. Lysosomes are involved in intracellular digestion and are primarily meant for destroying unwanted and aged organelles inside the cells. The lysosomes are the cell’s “garbage disposal.” Recent studies reveal that lysosomes may contain up to 40 hydrolytic enzymes. The enzymes are mostly proteases, nucleases, glycosidases, lipases, phospholipases, phosphatases, and sulphatases. All the enzymes do not occur in the same lysosome but there are different sets of enzymes in different types of lysosomes. Because of the presence of these digestive enzymes, lysosomes are called “Suicidal bags”. Another interesting property of lysosomes, isolated from kidney cells is their ability to trap and concentrate the foreign proteins injected, suggesting that these may help in digestion or detoxification of foreign materials by pinocytosis.
    [Show full text]
  • Programmed Cell Death During Plant Growth and Development
    Cell Death and Differentiation (1997) 4, 649 ± 661 1997 Stockton Press All rights reserved 13509047/97 $12.00 Review Programmed cell death during plant growth and development Eric P. Beers tracheary element and sclereid differentiation, sieve element differentiation, and leaf and flower petal senescence. Due to Department of Horticulture, Virginia Polytechnic Institute and State University, the broad range of topics covered, it was not possible to Blacksburg, Virginia 24061-0327, USA present in this space comprehensive reviews of each subject. Rather, to examine whether apoptosis is a universal pathway Received 24.2.97; revised 30.6.97; accepted 14.7.97 to pcd in plants, I have reviewed reports describing Edited by B.A. Osborne morphology of cells undergoing pcd during the processes listed above. Information concerning potential biochemical and molecular markers for plant pcd is also reviewed, with Abstract special attention to possible roles for proteases, since This review describes programmed cell death as it signifies research in this area has established proteases as important the terminal differentiation of cells in anthers, xylem, the mediators of pcd in animals. suspensor and senescing leaves and petals. Also described There is continuing interest in whether apoptosis occurs are cell suicide programs initiated by stress (e.g., hypoxia- in plants. Electron microscopy has revealed that during apoptosis in animals, chromatin condenses and segregates induced aerenchyma formation) and those that depend on into sharply delineated masses positioned at the nuclear communication between neighboring cells, as observed for envelope (Ellis et al, 1991; Kerr and Harmon, 1991). incompatible pollen tubes, the suspensor and synergids in Condensed chromatin is electron dense and is often some species.
    [Show full text]
  • Differential Proteomics Study of Postharvest Volvariella Volvacea
    www.nature.com/scientificreports OPEN Diferential proteomics study of postharvest Volvariella volvacea during storage at 4 °C Lei Zha1,2, Mingjie Chen1,2, Changxia Yu1, Qian Guo1, Xu Zhao 1, Zhengpeng Li1, Yan Zhao1*, Chuanhua Li1 & Huanling Yang1 The postharvest storage of Volvariella volvacea is an important factor limiting the industry development. Low-temperature storage is the traditional storage method used for most edible fungi, but V. volvacea undergoes autolysis at low temperature. To understand the molecular mechanism underlying the low-temperature autolysis of V. volvacea after harvesting, fruiting bodies of V. volvacea strain V23 were stored at 4 °C. Based on our previous study, in which the changes of morphological and physiological indexes during storage for 0, 6, 12, 24, 30, 36, 48 and 60 h were measured; four time points, namely, 0, 12, 24 and 60 h, were selected for this diferential proteomics study. The proteomic changes in the postharvest storage samples were studied by isobaric tags for relative and absolute quantifcation-coupled two-dimensional liquid chromatography-tandem mass spectrometry (2D LC–MS/MS). A total of 2,063 proteins were identifed, and 192 diferentially expressed proteins (DEPs), including 24 up-regulated proteins and 168 down-regulated proteins, were detected after 12 h of storage. After 24 h of storage, 234 DEPs, including 48 up-regulated and 186 down-regulated proteins, were observed, and after 60 h, 415 DEPs, including 65 up-regulated proteins and 350 down-regulated proteins, were observed. An in-depth data analysis showed that the DEPs participated in various cellular processes, particularly metabolic processes.
    [Show full text]
  • Insights Into Plant Programmed Cell Death Induced by Heavy Metals—Discovering a Terra Incognita
    cells Review Insights into Plant Programmed Cell Death Induced by Heavy Metals—Discovering a Terra Incognita Klaudia Sychta * , Aneta Słomka and Elzbieta˙ Kuta Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa Str., 30-387 Kraków, Poland; [email protected] (A.S.); [email protected] (E.K.) * Correspondence: [email protected]; Tel.: +48-12-664-60-30 Abstract: Programmed cell death (PCD) is a process that plays a fundamental role in plant devel- opment and responses to biotic and abiotic stresses. Knowledge of plant PCD mechanisms is still very scarce and is incomparable to the large number of studies on PCD mechanisms in animals. Quick and accurate assays, e.g., the TUNEL assay, comet assay, and analysis of caspase-like enzyme activity, enable the differentiation of PCD from necrosis. Two main types of plant PCD, developmen- tal (dPCD) regulated by internal factors, and environmental (ePCD) induced by external stimuli, are distinguished based on the differences in the expression of the conserved PCD-inducing genes. Abiotic stress factors, including heavy metals, induce necrosis or ePCD. Heavy metals induce PCD by triggering oxidative stress via reactive oxygen species (ROS) overproduction. ROS that are mainly produced by mitochondria modulate phytotoxicity mechanisms induced by heavy metals. Complex crosstalk between ROS, hormones (ethylene), nitric oxide (NO), and calcium ions evokes PCD, with proteases with caspase-like activity executing PCD in plant cells exposed to heavy metals. This pathway leads to very similar cytological hallmarks of heavy metal induced PCD to PCD induced by other abiotic factors.
    [Show full text]