Lipid Recovery from Wet Oleaginous Microbial Biomass for Biofuel Production: a Critical Review ⇑ Tao Dong, Eric P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programmed Cell Death and Lysis in Bacteria and the Benefits to Survival
Programmed Cell Death and Lysis in Bacteria and the Benefits for Survival. Mirjam Boonstra Rijksuniversiteit Groningen 2009 Teachers: Prof. Dr. O.P. Kuipers & Dr. A.T. Kovacs 1 Introduction Bacterial cell death is an interesting phenomenon because it plays a crucial role in many important processes. Bacterial cell death does not just occur in the late stationary phase when nutrient limitation can lead to starvation. Bacteria are capable of initiating autolysis during certain conditions, such as biofilm formation, competence, sporulation and stress response. One form of lysis is autolysis, bacterial suicide. Autolysis in bacteria constitutes programmed cell death (PCD) because death of the cell is the result of an internal mechanism that can be activated by internal or external signals. Another cause of death of a subpopulation of cells is allolysis; allolysis is the killing of sibling cells by bacteria. There are many different mechanisms that can cause lysis in bacteria. Which mechanisms are used depends on the species of bacteria and the circumstances. The possible benefits to killing sibling cells are obvious; killing other cells releases their nutrients into the environment. But what are the benefits to killing yourself? The answer to this lies in the complex nature of bacterial communities. Bacteria are for instance, capable of forming biofilms in which there exists a spatial and temporal difference in gene expression of genetically identical bacteria. The difference in gene expression patterns plays an important role in deciding which cells undergo autolysis. Bacteria also undergo complex developmental processes such as sporulation and competence in which autolysis and allolysis play a crucial role. -
Hyphenating Chromatographic, Electrophoretic and On-Line Immobilized Enzymatic Strategies for Improved Oligonucleotide Analysis
Hyphenating chromatographic, electrophoretic and on-line immobilized enzymatic strategies for improved oligonucleotide analysis Thesis submitted to the Faculty of Science in fulfilment of the requirements for the degree of Doctor in Science (Chemistry) PIOTR WIKTOR ALVAREZ POREBSKI Promotor Prof. Dr. Frederic Lynen 2016 Table of contents Table of Contents TABLE OF CONTENTS…………………………………………….………………………………………….……………………………… I I GENERAL INTRODUCTION AND SCOPE ............................................................................................. 1 INTRODUCTION .................................................................................................................................. 1 SCOPE .............................................................................................................................................. 3 REFERENCES ...................................................................................................................................... 4 II PRINCIPLES OF THE SEPARATION TECHNIQUES USED IN OLIGONUCLEOTIDE ANALYSIS ................ 7 SUMMARY ............................................................................................................................................. 7 PRINCIPLES OF HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ...................................................... 8 Ion exchange chromatography ........................................................................................... 10 Ion pair chromatography ................................................................................................... -
Towards Accelerated Autolysis? Dynamics of Phenolics, Proteins, Amino Acids and Lipids in Response to Novel Treatments and During Ageing of Sparkling Wine
beverages Article Towards Accelerated Autolysis? Dynamics of Phenolics, Proteins, Amino Acids and Lipids in Response to Novel Treatments and during Ageing of Sparkling Wine Gail B. Gnoinski 1,*, Dugald C. Close 1, Simon A. Schmidt 2 and Fiona L. Kerslake 1 1 Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Hobart 7005, Australia; [email protected] (D.C.C.); fi[email protected] (F.L.K.) 2 The Australian Wine Research Institute, Glen Osmond, Adelaide 5064, Australia; [email protected] * Correspondence: [email protected] Abstract: Premium sparkling wine produced by the traditional method (analogous to the French méthode champenoise) is characterised by the development of aged wine character as a result of a second fermentation in the bottle with lees contact and lengthy ageing. Treatments (microwave, ultrasound, or β-glucanase enzymes) were applied to disrupt the cell wall of Saccharomyces cerevisiae and added to the tirage liquor for the second fermentation of Chardonnay-Pinot Noir base wine cuvée and compared to a control, to assess effects on the release of phenolics, proteins, amino acids, and lipids at 6, 12 and 18 months post-tirage. General responses to wine ageing included a 60% Citation: Gnoinski, G.B.; Close, D.C.; increase in the total phenolic content of older sparkling wines relative to younger wines and an Schmidt, S.A.; Kerslake, F.L. Towards increase in protein concentration from 6 to 12 months bottle age. Microwave and β-glucanase enzyme Accelerated Autolysis? Dynamics of treatments of yeast during tirage preparation were associated with a 10% increase in total free amino Phenolics, Proteins, Amino Acids and acid concentration and a 10% increase in proline concentration at 18 months bottle age, compared to Lipids in Response to Novel control and ultrasound treatment. -
(12) United States Patent (10) Patent No.: US 8,685,240 B2 Malik Et Al
USOO8685240B2 (12) United States Patent (10) Patent No.: US 8,685,240 B2 Malik et al. (45) Date of Patent: Apr. 1, 2014 (54) HIGH EFFICIENCY SOL-GEL GAS (56) References Cited CHROMATOGRAPHY COLUMN (75) Inventors: Abdul Malik, Tampa, FL (US); Abuzar U.S. PATENT DOCUMENTS Kabir, Tampa, FL (US); Chetan 3,722,181 A 3/1973 Kirkland et al. Shende, Vernon, CT (US) 3,954,651 A 5, 1976 Donike (73) Assignee: University of South Florida, Tampa, FL (Continued) (US) (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP O315633 B1 10, 1991 U.S.C. 154(b) by 1875 days. EP O537851. B1 3/1996 (21) Appl. No.: 11/599,497 (Continued) (22) Filed: Nov. 13, 2006 OTHER PUBLICATIONS (65) Prior Publication Data Aichholz, R., “Preparation of Glass Capillary Columns Coated with US 2007/OO62874 A1 Mar. 22, 2007 OH-Terminated (3,3,3-Trifluoropropyl) Methyl Polysiloxane (PS Related U.S. Application Data 184.5), Journal of High Resolution Chromatography, 13, 71-73 1990). (63) Continuation of application No. 10/471.388, filed as ( ) application No. PCT/US02/07163 on Mar. 8, 2002, (Continued) now abandoned. (60) Provisional application No. 60/274,886, filed on Mar. Primary Examiner — Ernest G. Therkorn 9, 2001. (74) Attorney, Agent, or Firm — Saliwanchik, Lloyd & (51) Int. Cl. Eisenschenk BOI 20/285 (2006.01) BOI 20/28 (2006.01) (57) ABSTRACT BOLD 5/26 (2006.01) A capillary column (10)includes a tube structure having inner GOIN3/56 (2006.01) walls (14) and a sol-gel Substrate (16) coated on a portion of GOIN3O/60 (2006.01) inner walls (14) to form a stationary phase coating (18) on (52) U.S. -
Purification of Wastewater from the Ions of Copper
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/10 ( 96 ) 2018 Важкi метали потрапляють у водойми в результатi при- UDC 628.161.2: 628.31: 621.359.7 родних та антропогенних процесiв, накопичуючись у ґрунтi, DOI: 10.15587/1729-4061.2018.148896 донних вiдкладеннях, шламах, можуть далi мiгрувати в пiд- земнi i поверхневi води. Основними джерелами надходження важких металiв у природнi водойми є недостатньо очищенi PURIFICATION OF стiчнi води багатьох галузей промисловостi. Це робить акту- альною проблему видалення важких металiв iз стiчних вод WASTEWATER для запобiгання надмiрного забруднення водойм. Серед iсную- чих методiв очищення води вiд iонiв важких металiв при знач- FROM THE IONS них обсягах промислових стiчних вод досить перспективни- ми є електрохiмiчнi методи. Перевагою методу є можливiсть OF COPPER, переробляти вiдпрацьованi регенерацiйнi розчини з отриман- ням металiв, якi придатнi для повторного використання. ZINC, AND Приведенi результати дослiджень процесiв електрохiмiч- ного видалення катiонiв важких металiв в одно- та двохка- LEAD USING AN мерних електролiзерах iз розведених водних розчинiв. При проведеннi дослiджень в двокамерному електролiзерi катод- ELECTROLYSIS на i анодна область були роздiленi анiонообмiнною мембраною МА-40. Вивчено залежнiсть впливу жорсткостi, рН розчинiв, METHOD анодної щiльностi струму та часу електролiзу на ефектив- нiсть видалення iонiв важких металiв. Показано, що iони цинку, мiдi та свинцю ефективно вилучаються з водних роз- N. Gomelya чинiв з використанням електролiзу при початковiй концен- Doctor of Technical Sciences, 3 трацiй 10 мг/дм . Встановлено, що при низьких концентрацiях Professor* iонiв вихiд за струмом при вiдновленнi металiв сягав (4–20) E-mail: [email protected] 10–4 % i мало змiнювався з концентрацiєю. Визначено, що Ye. -
Continuous Electropermutation Using Ion-Exchange Textile Carl-Ola Danielsson Department of Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden
i i “lic” — 2004/10/24 — 23:38 — page i — #1 i i Continuous Electropermutation using Ion-Exchange Textile by Carl-Ola Danielsson Department of Mechanics November 2004 Technical Reports from Royal Institute of Technology Department of Mechanics S-100 44 Stockholm, Sweden i i i i i i “lic” — 2004/10/24 — 23:38 — page ii — #2 i i Typsatt i AMS-LATEX. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie licentiatexamen fredagen den 19:de november 2004 kl 10.15 i seminarierum S40, Kungliga Tekniska H¨ogskolan, Teknikringen 8, Stockholm. °c Carl-Ola Danielsson 2004 Universitetsservice US AB, Stockholm 2004 i i i i i i “lic” — 2004/10/24 — 23:38 — page iii — #3 i i Continuous Electropermutation Using Ion-Exchange Textile Carl-Ola Danielsson Department of Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden. Abstract Increased levels of nitrate in ground water has made many wells unsuitable as sources for drinking water. In this thesis an ion-exchange assisted electro- membrane process, suitable for nitrate removal, is investigated both theoret- ically and experimentally. A new ion-exchange textile material is introduced as a conducting spacer in the feed compartment of an continuous electroper- mutation cell. The ion-exchange textile have a high permeability and provides faster ion-exchange kinetics compared to ion-exchange resins. The sheet shaped structure of the textile makes it easy to incorporate into the cell. A report on the development of a new electro-membrane module, capable of incorporating an ion-exchange textile spacer, is presented. -
Degradation of Lipids in Yeast (Saccharomyces Cerevisiae) at the Early Phase of Organic Solvent-Induced Autolysis
Agric. Biol. Chem., 42 (2), 247•`251, 1978 Degradation of Lipids in Yeast (Saccharomyces cerevisiae) at the Early Phase of Organic Solvent-induced Autolysis MichikoISHIDA-ICHIMASA Departmentof Biology, Faculty of Science,Ibaraki University , Bunkyo,Mito, Japan ReceivedMay 30, 1977 Initial stage of organic solvent-induced autolysis in yeast was studied with 14C-acetate labeled cells. In the case of toluene-induced autolysis, primary cell injury which was estimated by leakage of UV absorbing substances from cell accompanied rapid deacylation of phos pholipids. Lysophospholipids did not occur during autolysis. When autolysis was induced by addition of ethyl acetate, phospholipids of yeast cells were not degraded so much. Ethyl acetate rather inhibited yeast phospholipase activity under the condition tested. Several organic solvents have been used to Extraction and analysis of lipids. The incubated mixtures were heated for 10 min in boiling water and initiate autolysis in yeast for the isolation of sonicated twice for 5 min at 20 KC in an ice bath. enzymes and other cell constituents. Some Then, lipids were extracted from the aqueous suspen examples are the applications of chloroform or sion by the procedure described by Bligh and Dyer.7) ethanol, toluene and ethyl acetate in the prepa Appropriate amounts of extracted lipids were chro rations of proteases,l) ƒÀ-fructofuranosidase,2,3) matographed on precoated thin-layer plates of silica gel 60 (without fluorescent indicator) (E. Merck Co.) with and cytochrome c,4) respectively. Although it solvents of petroleum ether-diethyl ether-acetic acid is well known that some organic solvents such (80: 30: 1, by vol8)) for neutral lipids, and chloroform- as diethyl ether and ethanol stimulate enzy methanol-acetic acid-water (25: 15: 4: 1, by vol.) for matic degradation of phospholipids, the me phospholipids. -
Chemical and Cytological Changes During
CHEMICAL AND CYTOLOGICAL CHANGES DURING THE AUTOLYSIS OF YEASTS A thesis submitted to The University of New South Wales as fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY by Tatang Hernawan Sarjana Farmasi, Apoteker (I T B, Indonesia) Master of Applied Science (UN SW, Australia) Department of Food Science and Technology The University of New South Wales Kensington, N. S. W. Australia February 1992 D E C L A R A T I O N The candidate, Tatang Hernawan, hereby declares that this thesis is his own work and that, to the best of his knowledge and belief, it contains no material previously published or written by another person nor material which to substantial extent has been accepted for the award of any degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text of the thesis. T a t a n g H e r n a w a n A C K N O W L E D G E M E N T S I wish to express my sincere gratitude to Associate Professor G. H. Fleet, Department of Food Science and Technology, University of New South Wales, Australia, as my supervisor for his guidance, advice and encouragement during this project and thesis production. I would like to acknowledge the assistance of laboratory staff of the Department of Food Science and Technology, Mr P. Mark, of the Electron Microscopy Unit, and Ir E. Poerwanto, a fellow postgraduate student, University of New South Wales. I would like to thank fell ow students in the Department of Food Science and Technology for a friendly situation throughout this study and Ms H. -
Two-Phase Electrophoresis of Biomolecules
Two-Phase Electrophoresis of Biomolecules Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Ing. Götz Münchow aus Reinbek Berichterstatter: Prof. Dr. Steffen Hardt (Technische Universität Darmstadt) Mitberichterstatter: Prof. Dr. Jörg Peter Kutter (Technical University of Denmark) Tag der Einreichung: 29. Mai 2009 Tag der mündlichen Prüfung: 17. Juli 2009 Darmstadt 2009 D17 TWO-PHASE ELECTROPHORESIS OF BIOMOLECULES Cells moving around a gas bubble. von Götz Münchow För miene Familje. Abstract Existing microfluidic separation technologies for biomolecules commonly rely on single phase liquid systems as well as on electrophoresis. But microfluidics also facilitates the generation of stable, well-controlled and immiscible liquid-liquid two-phase arrangements, since interfacial forces usually dominate over volume forces. The present work combines these approaches and reports on protein and cell transport as well as on enrichment and separation phenomena discovered in various experiments with a novel microfluidic setup for continuous-flow two-phase electrophoresis. Therefore, phase boundaries of aqueous two- phase systems are formed within a microchannel in flow direction and the characteristic partition behavior of proteins and cells is manipulated and tuned by applying an electric field perpendicular to the phase boundary. The two immiscible phases which separately are injected into a microchannel are taken from aqueous polyethylene glycol (PEG) - dextran systems. Different ways are possible to induce an electric field within a microchannel, but it was found out that electrodes have to be decoupled from the two-phase flow and especially hydrogels can be utilized as adequate ion conductors. -
MSB 2017 Program Book
MSB2017 33rd International Symposium on Microscale Separations and Bioanalysis Noordwijkerhout The Netherlands March 26-29 Programme Book SYMPOSIUM CO-CHAIRS Govert W. Somsen (Vrije Universiteit Amsterdam) Rawi Ramautar (Leiden University) www.msb2017.org Content Program Book MSB 2017 3 Sponsors 4 Welcome from the co-chairs of MSB 2017 5 Committees 6 Symposium history 7 Previous HPCE and MSB meetings 8 Arnold O. Beckman Medal and Award 9 Venue 10 General information 11 Short Courses 12 Scientific Programme 20 Science Cafe 22 Panel Discussion 23 Plenary speakers Abstracts & Biographies 28 Keynote speakers Abstracts & Biographies 42 Posters 47 Poster pitches 48 MSB 2017 Young Scientist Award 48 MSB 2017 Poster Awards 49 Social Program 2 Sponsors We wish to thank our sponsors for their generous support. Platinum sponsors Gold sponsors Silver sponsors Bronze sponsors Sponsors 3 Content Welcome from the co-chairs of MSB 2017 It is our great pleasure to welcome you to the 33rd International Symposium on Microscale Separations and Bioanalysis (MSB 2017) being held March 26-29, 2017 at the Conference Center Leeuwenhorst in Noordwijkerhout, The Netherlands. Originally started in 1989 as HPCE symposium, over the years MSB has evolved into an annual interactive forum for the discussion of research on the frontiers of microscale separation science and bioanalysis. Continuing this development, MSB 2017 will span the full range of microscale separation research, from fundamental technology development to high-impact applications relevant to health, medicine, food, forensics and the environment. The meeting is structured with short courses, plenary and parallel oral sessions, poster sessions and pitches, Science Cafe semi- nars, and a panel discussion. -
Biochemical Studies of Energy Production in the Failing Human Heart
Biochemical studies of energy production in the failing human heart. C A Chidsey, … , P E Pool, A G Morrow J Clin Invest. 1966;45(1):40-50. https://doi.org/10.1172/JCI105322. Research Article Find the latest version: https://jci.me/105322/pdf Journal of Clinical Investigation Vol. 45, No. 1, 1966 Biochemical Studies of Energy Production in the Failing Human Heart * CHARLES A. CHIDSEY,t EUGENE C. WEINBACH, PETER E. POOL, AND ANDREW G. MORROW (From the Cardiology Branch and the Clinic of Surgery, National Heart Institute, and the Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md.) The defective myocardial performance responsi- and in vivo (6, 7), and one clinical syndrome, char- ble for the syndrome of congestive heart failure has acterized by nonthyroid hypermetabolism and re- been considered for many years to involve a bio- sulting from uncoupling of these two processes, chemical abnormality. However, identification of has been identified by Luft and associates (8). this abnormality remains to be achieved. Muscle Mitochondrial function in the failing heart has cell function is basically a process by which chemi- previously been studied only in experimental ani- cal energy is transformed into the mechanical work mals, where the findings have been conflicting. of myofibrillar shortening and force development. Oxidative phosphorylation and the content of high The presence of a biochemical abnormality in the energy phosphate compounds have been reported failing cardiac muscle must therefore be sought to be normal in some of these studies (9-12), either in the mechanism of energy production or whereas in others defective energy production has in the mechanism of energy utilization by the con- been observed (13-17). -
Novel Sparkling Winemaking Technologies and Visualising Yeast Autolysis
Novel sparkling winemaking technologies and visualising yeast autolysis Gail Gnoinski, Fiona Kerslake, Dugald Close, Bob Dambergs and Simon Schmidt 1 Background − Complexity in sparkling wine is derived from viticultural practices, base wine composition, winemaking practices and wine maturation (Jones et al., 2014; Kerslake et al., 2013) − Sensory cues not well understood, distinguished or agreed upon − Wine Australia priority to identify important compounds contributing to flavour, mouth feel and texture of sparkling wine character Autolysis − Enzymatic degradation (hydrolysis) of yeast cell constituents after cell death Yeast cell structure − Cell wall mannoprotein, glucan − Amino acids, Proteins, Peptides Wine quality − Yeast cellular components released in wine − Autolytic character develops slowly Scientific research − Changes occur in the lees structure as wine ages 1 13 month months (Tudela et al. 2012) Research question & objectives − Can alternative methods be implemented to artificially induce yeast lysis in sparkling winemaking? − Application of novel technologies (ultrasound, microwave, enzymes) to break down yeast cells − Shorter ageing period on lees with developed characteristics for earlier release − Visualise cell level impact associated with novel-treated lees Tasting wine produced using novel technologies − Participants taste the five different sparkling wines presented − Make some notes to record impressions of the wines Industry trial application − Hill-Smith Family Vineyards Yalumba, Adelaide − Saccharomyces cerevisiae