Two-Phase Electrophoresis of Biomolecules

Total Page:16

File Type:pdf, Size:1020Kb

Two-Phase Electrophoresis of Biomolecules Two-Phase Electrophoresis of Biomolecules Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Ing. Götz Münchow aus Reinbek Berichterstatter: Prof. Dr. Steffen Hardt (Technische Universität Darmstadt) Mitberichterstatter: Prof. Dr. Jörg Peter Kutter (Technical University of Denmark) Tag der Einreichung: 29. Mai 2009 Tag der mündlichen Prüfung: 17. Juli 2009 Darmstadt 2009 D17 TWO-PHASE ELECTROPHORESIS OF BIOMOLECULES Cells moving around a gas bubble. von Götz Münchow För miene Familje. Abstract Existing microfluidic separation technologies for biomolecules commonly rely on single phase liquid systems as well as on electrophoresis. But microfluidics also facilitates the generation of stable, well-controlled and immiscible liquid-liquid two-phase arrangements, since interfacial forces usually dominate over volume forces. The present work combines these approaches and reports on protein and cell transport as well as on enrichment and separation phenomena discovered in various experiments with a novel microfluidic setup for continuous-flow two-phase electrophoresis. Therefore, phase boundaries of aqueous two- phase systems are formed within a microchannel in flow direction and the characteristic partition behavior of proteins and cells is manipulated and tuned by applying an electric field perpendicular to the phase boundary. The two immiscible phases which separately are injected into a microchannel are taken from aqueous polyethylene glycol (PEG) - dextran systems. Different ways are possible to induce an electric field within a microchannel, but it was found out that electrodes have to be decoupled from the two-phase flow and especially hydrogels can be utilized as adequate ion conductors. Thus bubble generation inside the microchannel is prevented and a stable two- phase flow is guaranteed. In contrast to macroscopic systems, microfluidic setups allow detailed investigations of local effects at the phase boundary. The results of the experiments show that the diffusive as well as the electrophoretic transport behavior of proteins between the laminated liquid phases is strongly influenced by their partition coefficients. Furthermore, effects of the phase boundary itself, like electric double layers, are negligible in this case. This derived knowledge helps to design specific two-phase partition and enrichment procedures combined with electric fields for future studies. Besides a detailed examination of the transport behavior of proteins a continuous separation of proteins from cells is presented. While proteins in presence of an external electric field pass the boundary and leave the phase they have been initially dissolved in almost completely, lymphoblastoid cells can be retained, thus allowing a stable and continuous separation of these two kinds of biomolecules. And finally, further kinds of fluid combinations such as water and propylene carbonate are presented, supporting an enrichment of proteins at the phase boundary. II Zusammenfassung Bestehende mikrofluidische Techniken zur Separation von Biomolekülen basieren üblicherweise auf einphasigen Flüssigkeitssystemen sowie auf Elektrophorese. Da die Grenzflächenkräfte in der Regel die Volumenkräfte dominieren, ermöglichen die Gesetzmäßigkeiten der Mikrofluidik aber auch die Erzeugung von stabilen, gut kontrollierbaren Anordnungen von nicht mischbaren flüssig-flüssig Zweiphasensystemen. Die vorliegende Arbeit kombiniert die oben genannten Ansätze und beschreibt den Transport von Proteinen und Zellen sowie Anreicherungs- und Separationsphänomene, die während unterschiedlichster Experimente in einem neuartigen, mikrofluidischen Aufbau für kontinuierliche Zweiphasenelektrophorese ermittelt worden sind. Dafür werden Grenzflächen wässriger Zweiphasensysteme innerhalb eines Mikrokanals in Flussrichtung erzeugt und das charakteristische Partitionierungsverhalten von Proteinen und Zellen durch ein zusätzliches elektrisches Feld senkrecht zur Phasengrenze manipuliert bzw. neu eingestellt. Die zwei nicht mischbaren Flüssigkeitsphasen, jede für sich in den Mikrokanal injiziert, werden wässrigen Zweiphasensystemen entnommen, die aus Polyethylenglykol (PEG) und Dextran bestehen. Es bestehen unterschiedliche Möglichkeiten, ein elektrisches Feld im Mikrokanal zu erzeugen. Es wurde aber ermittelt, dass die Elektroden von dem Zweiphasensystem entkoppelt werden müssen und besonders Hydrogel als adäquater Ionenleiter verwendet werden kann. Dadurch ist es möglich, die Bildung von Gasblasen innerhalb des Mikrokanals zu unterbinden und einen stabilen Zweiphasenfluss zu garantieren. Im Gegensatz zu makroskopischen Systemen, erlauben mikroskopische Systeme eine detaillierte Untersuchung von lokalen Effekten direkt an der Phasengrenze. Dabei zeigen die Ergebnisse der Experimente, dass das diffusive als auch das elektrophoretische Transportverhalten von Proteinen zwischen den Flüssigkeitslamellen maßgeblich durch deren Partitionierungskoeffizienten beeinflusst wird. Außerdem sind Effekte, die durch die eigentliche Phasengrenze verursacht werden, wie z.B. durch eine elektrische Doppelschicht, in diesem Fall vernachlässigbar. Das durch die vorliegende Arbeit erlangte Wissen hilft dabei, für unterschiedliche Zielstellungen bestimmte Partitionierungs- und Anreicherungsprozeduren innerhalb von mit elektrischen Feldern gekoppelten Zweiphasensystemen zu designen. Neben der detaillierten Untersuchung der Transporteigenschaften der Proteine wird außerdem eine kontinuierliche Separation von Proteinen und Zellen beschrieben. In diesem Fall passieren die Proteine bei Vorhandensein eines elektrischen Feldes die Phasengrenze und verlassen vollständig die Phase, in der sie ursprünglich gelöst waren. Im Gegensatz dazu werden lymphoblastoide Zellen an der Phasengrenze zurückgehalten, was eine stabile und kontinuierliche Separation dieser beiden Biomoleküle ermöglicht. Schließlich werden noch weitere Fluidkombinationen, wie z.B. Wasser - Propylencarbonat, vorgestellt, die ebenso eine Anreicherung von Proteinen an der Phasengrenze ermöglichen. III Content 1 Introduction 1 1.1 Microfluidic Technologies 1 1.2 Downscaling Effects 2 1.3 Microfluidic Devices for Chemical Analysis and Separation 4 1.4 Aim and Structure of the Thesis 6 2 Biological Samples 9 2.1 Proteins 9 2.1.1 Protein Separation Methods 11 2.1.2 Protein Enrichment 12 2.1.3 Protein Labeling 12 2.2 Cells 13 2.2.1 Cell Separation Methods 14 2.2.2 Cell Labeling 14 3 Aqueous Two-Phase Systems 17 3.1 Fundamentals 17 3.2 Phase Separation and Diagrams 17 3.3 Preparation of Aqueous Tow-Phase Systems 19 3.4 Ion Distribution and Conductivity 21 3.5 Separation of Biomolecules 21 3.5.1 Hydrophobic Affinity Partitioning 22 4 Electrophoresis 25 4.1 Fundamentals 25 4.2 Proteins 27 4.3 Cells 27 5 Hydrodynamic Flow in Microchannels 29 5.1 Governing Equations 29 5.2 Non-dimensional Numbers 29 5.3 Two-Phase Flow 30 5.3.1 Liquid-Liquid Flow 30 6 Experimental Setup and Methods 35 6.1 Measurement Setup 35 6.2 Fluidic Setup 36 6.3 Fluidic Connections 37 6.4 Fluorescence Detection 39 6.5 Electric Connections and Electrodes 41 V 7 Fabrication of Microfluidic Chips 43 7.1 Construction and Manufacturing 43 7.2 Electrodes 45 7.2.1 Integrated Electrodes 45 7.2.2 Decoupled Electrodes 49 7.3 Sealing of Channel Network 57 8 Aqueous Two-Phase Flow 59 8.1 Flow Patterns and Flow Stability 59 8.2 Viscosity Adjustment 64 8.3 Phase Separation 66 9 Transport of Biomolecules in Microchannels 69 9.1 Diffusive Transport 69 9.2 Active Transport by Integrated Electrodes 69 9.2.1 Influence of Voltage Shape 73 9.3 Active Transport by Decoupled Electrodes 74 9.3.1 Dialysis Membranes 74 9.3.2 Hydrogels 76 9.3.3 Interface Instabilities 77 9.3.4 Buffer Reservoir 78 10 Diffusive Protein Transport 81 10.1 Introduction 81 10.2 Adapted Microfluidic Setup 82 10.3 Single Phase Diffusion 83 10.4 Diffusion across Phase Boundary 84 10.5 Theoretical Background 84 10.6 Results 86 10.6.1 Diffusion in Single Phase Systems 86 10.6.2 Protein Diffusion Across the Interface 88 10.7 Conclusion 91 11 Active Transport and Enrichment of Proteins 93 11.1 Introduction 93 11.2 Standard Aqueous Two-Phase System 93 11.3 Modified Aqueous Two-Phase System 99 11.3.1 Effect of PEG-Palmitate 99 11.3.2 Effect of Molecular Weights 103 11.4 Comparison to Existing Theories and Discussion 105 VI 12 Separation of Proteins and Cells 113 12.1 Cells in Aqueous Two-Phase Systems 113 12.2 Active Separation 113 12.3 Results 114 12.4 Conclusion 116 13 Further Two-Phase Systems 117 13.1 Propylene Carbonate-Water Two-Phase System 117 13.2 Oil-Water Two-Phase System 118 14 Conclusion and Outlook 121 14.1 Conclusion 121 14.2 Outlook 122 Acknowledgement 123 List of Abbreviations 124 References 126 Publications 139 VII 1 Introduction Over the last decades, analytical chemistry and, in particular, separation technology encountered an intensive trend towards miniaturization. This section introduces those trends and provides insight into the opportunities for microfluidics. Moreover, some governing scaling laws are discussed and an overview of realized microfluidic systems belonging to this field of research is given. The section closes with an outline of the aim and structure of this thesis. 1.1 Microfluidic Technologies Similar to the very miniaturization that has revolutionized the world of electronics with the invention of the transistor, over the last two decades the development of microfluidics has led to novel and innovative
Recommended publications
  • Hyphenating Chromatographic, Electrophoretic and On-Line Immobilized Enzymatic Strategies for Improved Oligonucleotide Analysis
    Hyphenating chromatographic, electrophoretic and on-line immobilized enzymatic strategies for improved oligonucleotide analysis Thesis submitted to the Faculty of Science in fulfilment of the requirements for the degree of Doctor in Science (Chemistry) PIOTR WIKTOR ALVAREZ POREBSKI Promotor Prof. Dr. Frederic Lynen 2016 Table of contents Table of Contents TABLE OF CONTENTS…………………………………………….………………………………………….……………………………… I I GENERAL INTRODUCTION AND SCOPE ............................................................................................. 1 INTRODUCTION .................................................................................................................................. 1 SCOPE .............................................................................................................................................. 3 REFERENCES ...................................................................................................................................... 4 II PRINCIPLES OF THE SEPARATION TECHNIQUES USED IN OLIGONUCLEOTIDE ANALYSIS ................ 7 SUMMARY ............................................................................................................................................. 7 PRINCIPLES OF HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ...................................................... 8 Ion exchange chromatography ........................................................................................... 10 Ion pair chromatography ...................................................................................................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,685,240 B2 Malik Et Al
    USOO8685240B2 (12) United States Patent (10) Patent No.: US 8,685,240 B2 Malik et al. (45) Date of Patent: Apr. 1, 2014 (54) HIGH EFFICIENCY SOL-GEL GAS (56) References Cited CHROMATOGRAPHY COLUMN (75) Inventors: Abdul Malik, Tampa, FL (US); Abuzar U.S. PATENT DOCUMENTS Kabir, Tampa, FL (US); Chetan 3,722,181 A 3/1973 Kirkland et al. Shende, Vernon, CT (US) 3,954,651 A 5, 1976 Donike (73) Assignee: University of South Florida, Tampa, FL (Continued) (US) (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP O315633 B1 10, 1991 U.S.C. 154(b) by 1875 days. EP O537851. B1 3/1996 (21) Appl. No.: 11/599,497 (Continued) (22) Filed: Nov. 13, 2006 OTHER PUBLICATIONS (65) Prior Publication Data Aichholz, R., “Preparation of Glass Capillary Columns Coated with US 2007/OO62874 A1 Mar. 22, 2007 OH-Terminated (3,3,3-Trifluoropropyl) Methyl Polysiloxane (PS Related U.S. Application Data 184.5), Journal of High Resolution Chromatography, 13, 71-73 1990). (63) Continuation of application No. 10/471.388, filed as ( ) application No. PCT/US02/07163 on Mar. 8, 2002, (Continued) now abandoned. (60) Provisional application No. 60/274,886, filed on Mar. Primary Examiner — Ernest G. Therkorn 9, 2001. (74) Attorney, Agent, or Firm — Saliwanchik, Lloyd & (51) Int. Cl. Eisenschenk BOI 20/285 (2006.01) BOI 20/28 (2006.01) (57) ABSTRACT BOLD 5/26 (2006.01) A capillary column (10)includes a tube structure having inner GOIN3/56 (2006.01) walls (14) and a sol-gel Substrate (16) coated on a portion of GOIN3O/60 (2006.01) inner walls (14) to form a stationary phase coating (18) on (52) U.S.
    [Show full text]
  • Purification of Wastewater from the Ions of Copper
    Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/10 ( 96 ) 2018 Важкi метали потрапляють у водойми в результатi при- UDC 628.161.2: 628.31: 621.359.7 родних та антропогенних процесiв, накопичуючись у ґрунтi, DOI: 10.15587/1729-4061.2018.148896 донних вiдкладеннях, шламах, можуть далi мiгрувати в пiд- земнi i поверхневi води. Основними джерелами надходження важких металiв у природнi водойми є недостатньо очищенi PURIFICATION OF стiчнi води багатьох галузей промисловостi. Це робить акту- альною проблему видалення важких металiв iз стiчних вод WASTEWATER для запобiгання надмiрного забруднення водойм. Серед iсную- чих методiв очищення води вiд iонiв важких металiв при знач- FROM THE IONS них обсягах промислових стiчних вод досить перспективни- ми є електрохiмiчнi методи. Перевагою методу є можливiсть OF COPPER, переробляти вiдпрацьованi регенерацiйнi розчини з отриман- ням металiв, якi придатнi для повторного використання. ZINC, AND Приведенi результати дослiджень процесiв електрохiмiч- ного видалення катiонiв важких металiв в одно- та двохка- LEAD USING AN мерних електролiзерах iз розведених водних розчинiв. При проведеннi дослiджень в двокамерному електролiзерi катод- ELECTROLYSIS на i анодна область були роздiленi анiонообмiнною мембраною МА-40. Вивчено залежнiсть впливу жорсткостi, рН розчинiв, METHOD анодної щiльностi струму та часу електролiзу на ефектив- нiсть видалення iонiв важких металiв. Показано, що iони цинку, мiдi та свинцю ефективно вилучаються з водних роз- N. Gomelya чинiв з використанням електролiзу при початковiй концен- Doctor of Technical Sciences, 3 трацiй 10 мг/дм . Встановлено, що при низьких концентрацiях Professor* iонiв вихiд за струмом при вiдновленнi металiв сягав (4–20) E-mail: [email protected] 10–4 % i мало змiнювався з концентрацiєю. Визначено, що Ye.
    [Show full text]
  • Continuous Electropermutation Using Ion-Exchange Textile Carl-Ola Danielsson Department of Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden
    i i “lic” — 2004/10/24 — 23:38 — page i — #1 i i Continuous Electropermutation using Ion-Exchange Textile by Carl-Ola Danielsson Department of Mechanics November 2004 Technical Reports from Royal Institute of Technology Department of Mechanics S-100 44 Stockholm, Sweden i i i i i i “lic” — 2004/10/24 — 23:38 — page ii — #2 i i Typsatt i AMS-LATEX. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie licentiatexamen fredagen den 19:de november 2004 kl 10.15 i seminarierum S40, Kungliga Tekniska H¨ogskolan, Teknikringen 8, Stockholm. °c Carl-Ola Danielsson 2004 Universitetsservice US AB, Stockholm 2004 i i i i i i “lic” — 2004/10/24 — 23:38 — page iii — #3 i i Continuous Electropermutation Using Ion-Exchange Textile Carl-Ola Danielsson Department of Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden. Abstract Increased levels of nitrate in ground water has made many wells unsuitable as sources for drinking water. In this thesis an ion-exchange assisted electro- membrane process, suitable for nitrate removal, is investigated both theoret- ically and experimentally. A new ion-exchange textile material is introduced as a conducting spacer in the feed compartment of an continuous electroper- mutation cell. The ion-exchange textile have a high permeability and provides faster ion-exchange kinetics compared to ion-exchange resins. The sheet shaped structure of the textile makes it easy to incorporate into the cell. A report on the development of a new electro-membrane module, capable of incorporating an ion-exchange textile spacer, is presented.
    [Show full text]
  • MSB 2017 Program Book
    MSB2017 33rd International Symposium on Microscale Separations and Bioanalysis Noordwijkerhout The Netherlands March 26-29 Programme Book SYMPOSIUM CO-CHAIRS Govert W. Somsen (Vrije Universiteit Amsterdam) Rawi Ramautar (Leiden University) www.msb2017.org Content Program Book MSB 2017 3 Sponsors 4 Welcome from the co-chairs of MSB 2017 5 Committees 6 Symposium history 7 Previous HPCE and MSB meetings 8 Arnold O. Beckman Medal and Award 9 Venue 10 General information 11 Short Courses 12 Scientific Programme 20 Science Cafe 22 Panel Discussion 23 Plenary speakers Abstracts & Biographies 28 Keynote speakers Abstracts & Biographies 42 Posters 47 Poster pitches 48 MSB 2017 Young Scientist Award 48 MSB 2017 Poster Awards 49 Social Program 2 Sponsors We wish to thank our sponsors for their generous support. Platinum sponsors Gold sponsors Silver sponsors Bronze sponsors Sponsors 3 Content Welcome from the co-chairs of MSB 2017 It is our great pleasure to welcome you to the 33rd International Symposium on Microscale Separations and Bioanalysis (MSB 2017) being held March 26-29, 2017 at the Conference Center Leeuwenhorst in Noordwijkerhout, The Netherlands. Originally started in 1989 as HPCE symposium, over the years MSB has evolved into an annual interactive forum for the discussion of research on the frontiers of microscale separation science and bioanalysis. Continuing this development, MSB 2017 will span the full range of microscale separation research, from fundamental technology development to high-impact applications relevant to health, medicine, food, forensics and the environment. The meeting is structured with short courses, plenary and parallel oral sessions, poster sessions and pitches, Science Cafe semi- nars, and a panel discussion.
    [Show full text]
  • Electromembrane Extraction—Looking Into the Future
    Analytical and Bioanalytical Chemistry https://doi.org/10.1007/s00216-018-1512-x TRENDS Electromembrane extraction—looking into the future Stig Pedersen-Bjergaard1,2 Received: 22 September 2018 /Revised: 7 November 2018 /Accepted: 22 November 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Analytical microextraction techniques, including solid-phase microextraction (SPME) Arthur & Pawliszyn (Anal Chem 62:2145–2148, 1990), stir bar sorptive extraction (SBSE), Baltussen et al. (J Microcol 11:737–747, 1999), single-drop microextraction (SDME) Jeannot & Cantwell (Anal Chem 68:2236–2240, 1996), hollow-fiber liquid-phase microextraction (HF-LPME) Pedersen-Bjergaard & Rasmussen (Anal Chem 71:2650–2656, 1999), dispersive liquid-liquid microextraction (DLLME) Berijani et al (J Chromatogr A. 1123:1–9, 2006), and electromembrane extraction (EME) Pedersen-Bjergaard & Rasmussen (J Chromatogr A 1109:183–190, 2006) have gained considerable interest in recent years. The latter technique, EME, differs from the others by the fact that mass transfer and extraction is facilitated by electrokinetic migration. Thus, basic or acidic analytes are extracted in their ionized form from aqueous sample, through an organic supported liquid membrane (SLM) and into an aqueous acceptor solution under the influence of an electrical potential. EME provides pre-concentration and sample clean-up, and can be performed in 96-well format using only a few microliter organic solvent per sample (green chemistry). Extraction selectivity is controlled by the direction and magnitude of the electrical field, by the chemical composition of the SLM, and by pH in the acceptor solution and sample. This trends article discusses briefly the principle, performance, and current status of EME, and from this future directions and perspectives are identified.
    [Show full text]
  • WO 2014/105944 Al 3 July 2014 (03.07.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/105944 Al 3 July 2014 (03.07.2014) P O P C T (51) International Patent Classification: (74) Agent: SHARP, Jeffrey, A.; 2040 Avenue C, Bethlehem, C21B 11/00 (2006.01) C22B 11/10 (2006.01) Pennsylvania 18017 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 13/077790 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 26 December 2013 (26. 12.2013) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/746,7 10 28 December 201 2 (28. 12.20 12) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (71) Applicant: FLSMIDTH A S [DK/DK]; 77 Vigerslev Alle, ZW. DK-2500 Valby (DK). (84) Designated States (unless otherwise indicated, for every (72) Inventor; and kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for US only): ROCKS, Sara S.
    [Show full text]
  • Electrodeposition Research
    NAT'L INST OF STANDARDS & TECH R.I.C. All 101 888778 /National Bureau of Standards circular QC100 .U555 V529;1953 C.1 NBS-PUB-R 1947 •'>1 A 1 .. _ 1- • .. yil Ur U . ^ 4 1 'U tt mm, Co mm ere ureat) ;o UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Electrodeposition Research Proceedings of the NBS Semicentennial Symposium on Electrodeposition Research Held at the NBS on December 4-6, 1951 National Bureau of Standards Circular 529 Issued May 22, 1953 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 31-50 Buckram National Bureau of Standards AUG 2 8 1953 Sli5£ QC 100 0555 Foreword Electrodeposition processes have become an integral and important part of many industries—for example, the printing, metal refining, extractive metallurgy, hardware, automobile, and electronic indus- tries. This has come about largely as a result of extensive research in the field of electrodeposition, especially during the past 25 years. To encourage further research in this field, to present current re- search results and problems, and to facilitate the exchange of informa- tion, the National Bureau of Standards held the Symposium on Electrodeposition Research as the last of a series of twelve symposia conducted during the Bureau’s semicentennial in 1951. The papers presented at the Symposium are published in this volume. These papers represent a cross section of research currently being conducted in electrodeposition by industrial, university, and government labora- tories in Europe and the United States.
    [Show full text]
  • Enzyme-Assisted Method for Phycobiliproteins Extraction from Porphyra and Evaluation of Their Bioactivity
    processes Article Enzyme-Assisted Method for Phycobiliproteins Extraction from Porphyra and Evaluation of Their Bioactivity Chung-Hsiung Huang * , Wei-Chen Chen, Yu-Huei Gao, Guan-Wen Chen , Hong-Ting Victor Lin and Chorng-Liang Pan * Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; [email protected] (W.-C.C.); [email protected] (Y.-H.G.); [email protected] (G.-W.C.); [email protected] (H.-T.V.L.) * Correspondence: [email protected] (C.-H.H.); [email protected] (C.-L.P.); Tel.: +886-2-2462-2192 (ext. 5115) (C.-H.H.); +886-2-2462-2192 (ext. 5116) (C.-L.P.) Abstract: Due to the poor protein availability of algae in their unprocessed form, development of extraction methods for phycobiliproteins is of great significance. This study aimed to extract phycoerythrin (PE) and phycocyanin (PC) from Porphyra via bacterial enzymatic hydrolysis and to evaluate their bioactivity. To induce enzyme production, Porphyra powder was added into the culture medium of two marine bacterial strains. The pH and enzyme activity of the cultured supernatant, namely crude enzyme solution, were significantly raised. For PE and PC extraction, Porphyra were incubated within crude enzyme solution with homogenization and ultrasonication followed by ultrafiltration process. After distinguishing by fast performance liquid chromatography (FPLC), three major fractions were observed and identified as R-PE, R-PC and small molecular PE by high- performance liquid chromatography (HPLC) and polyacrylamide gel electrophoresis (PAGE) analysis. With respect to bioactivity, these three fractions exhibited free radical scavenging and antioxidant Citation: Huang, C.-H.; Chen, W.-C.; activities in a various degree.
    [Show full text]
  • On-Line Concentration Techniques in Capillary Electrophoresis and the Experimental Investigation of Electroextraction
    ON-LINE CONCENTRATION TECHNIQUES IN CAPILLARY ELECTROPHORESIS AND THE EXPERIMENTAL INVESTIGATION OF ELECTROEXTRACTION Riikka-Mari Haara Master's thesis 4.8.2016 University of Helsinki Laboratory of Analytical Chemistry Tiedekunta/Osasto Fakultet/Sektion – Faculty Laitos/Institution– Department Faculty of science Chemistry Tekijä/Författare – Author Riikka-Mari Haara Työn nimi / Arbetets titel – Title On-line concentration techniques in capillary electrophoresis and the experimental investigation of electroextraction Oppiaine /Läroämne – Subject Analytical chemistry Työn laji/Arbetets art – Level Aika/Datum – Month and year Sivumäärä/ Sidoantal – Number of pages Master's thesis 08/2016 94 Tiivistelmä/Referat – Abstract Capillary electrophoresis is a great option for analyzing metabolomics compounds since the analytes are often charged. The technique is simple and cost-efficient but it is not the most popular equipment because it lacks high concentration sensitivity. Therefore, on-line concentration techniques have been developed for capillary electrophoresis. The aim of this thesis is to give an introduction to the most common on-line concentration methods in capillary electrophoresis, and to demonstrate a novel on-line concentration technique termed electroextraction. Until now, the research of on-line concentration techniques in capillary electrophoresis is mainly focused on methods based on field amplification, transient isotachophoresis, titration incorporated methods or sweeping, which are presented in the literature section. In a two-phase electroextraction, the electrodes are placed in an aqueous acceptor phase and in an organic donor phase, in which the analytes are dissolved. When the voltage is applied, the conductivity difference in the two phases cause high local field strength on organic phase leading to fast migration of the cationic analytes towards the cathode.
    [Show full text]
  • Integration of Three-Phase Microelectroextraction Sample Preparation Into Capillary Electrophoresis
    Journal of Chromatography A 1610 (2020) 460570 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Integration of three-phase microelectroextraction sample preparation into capillary electrophoresis ∗ Amar Oedit a, Bastiaan Duivelshof a, Peter W. Lindenburg a,b, , Thomas Hankemeier a a Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2300 RA Leiden, the Netherlands b University of Applied Sciences Leiden, Faculty Science & Technology, Research Group Metabolomics, Mailbox 382, 2300 AJ, Leiden, the Netherlands a r t i c l e i n f o a b s t r a c t Article history: A major strength of capillary electrophoresis (CE) is its ability to inject small sample volumes. However, Received 11 July 2019 there is a great mismatch between injection volume (typically < 100 nL) and sample volumes (typically Revised 25 September 2019 20–1500 μL). Electromigration-based sample preparation methods are based on similar principles as CE. Accepted 25 September 2019 The combination of these methods with capillary electrophoresis could tackle obstacles in the analysis of Available online 26 September 2019 dilute samples. Keywords: This study demonstrates coupling of three-phase microelectroextraction (3PEE) to CE for sample Electromembrane extraction preparation and preconcentration of large volume samples while requiring minimal adaptation of CE Electroextraction equipment. In this set-up, electroextraction takes place from an aqueous phase, through an organic filter Sample preparation phase, into an aqueous droplet that is hanging at the capillary inlet. The first visual proof-of-concept for Capillary electrophoresis this set-up showed successful extraction using the cationic dye crystal violet (CV).
    [Show full text]
  • Aqueous Two-Phase Systems: Towards Novel and More Disruptive Applications
    Fluid Phase Equilibria 505 (2020) 112341 Contents lists available at ScienceDirect Fluid Phase Equilibria journal homepage: www.elsevier.com/locate/fluid Aqueous two-phase systems: Towards novel and more disruptive applications * Jorge F.B. Pereira a, , Mara G. Freire b,Joao~ A.P. Coutinho b a Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao~ Paulo State University (UNESP), Rodovia Araraquara-Jaú/01, Campos Ville, 14800-903, Araraquara, SP, Brazil b CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal article info abstract Article history: Aqueous two-phase systems (ATPS) have been mainly proposed as powerful platforms for the separation Received 31 August 2019 and purification of high-value biomolecules. However, after more than seven decades of research, ATPS Received in revised form are still a major academic curiosity, without their wide acceptance and implementation by industry, 12 September 2019 leading to the question whether ATPS should be mainly considered in downstream bioprocessing. Accepted 1 October 2019 Recently, due to their versatility and expansion of the Biotechnology and Material Science fields, these Available online 6 October 2019 systems have been investigated in novel applications, such as in cellular micropatterning and bioprinting, microencapsulation, to mimic cells conditions, among others. This perspective aims to be a reflection on Keywords: Aqueous two-phase systems the current status of ATPS as separation platforms, while overviewing their applications, strengths and Aqueous biphasic systems limitations. Novel applications, advantages and bottlenecks of ATPS are further discussed, indicating Biotechnology some directions on their use to create innovative industrial processes and commercial products.
    [Show full text]