Capillary Electrophoresis-Mass Spectrometry for Micro-Metabolomics

Total Page:16

File Type:pdf, Size:1020Kb

Capillary Electrophoresis-Mass Spectrometry for Micro-Metabolomics 3 Capillary Electrophoresis-Mass Spectrometry for Micro-Metabolomics Wei Zhang1 and Rawi Ramautar1* 1Biomedical Microscale Analytics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands *Corresponding author: Dr Rawi Ramautar, Email: [email protected] To address biomedical questions intrinsically dealing with limited sample amounts with a metabolomics approach, the design of novel or improved analytical techniques is needed. In this paper, we highlight the possibilities of capillary electrophoresis-mass spectrometry (CE-MS) as a microscale analytical platform for metabolic profiling of small amounts of biological material. A few examples from my group are discussed in order to show the utility of CE-MS for this purpose. Finally, we reflect on a number of analytical challenges that still need to be addressed in order to make CE-MS a viable approach for material-limited metabolomics. Introduction and biomedical questions intrinsically population of mammalian cells, and as such dealing with small amounts of sample to obtain a better understanding on the role Metabolomics has become an important material, new analytical technology with a of cell heterogeneity in tumour biology. tool in biomedical and clinical research dramatically improved sensitivity is needed. and is particularly promising in biomarker In CE, nanolitre injection volumes can be The approach of micro-metabolomics was discovery. Currently, reversed-phase LC-MS, used from just a few microliters of sample first coined by Moco et al. in the field of GC-MS and nuclear magnetic resonance or less in the injection vial. Therefore, plant metabolomics [4], however, here we spectroscopy (NMR) are used as the main CE-MS can be regarded as a highly suited refer to this approach in the context of analytical tools for metabolomics studies. approach for the analysis of especially polar biomedical and clinical questions. It is our These analytical techniques require sample and charged metabolites in tiny sample conviction that the successful development material which often ranges in the amount amounts, as demonstrated by our group for of a microscale analytical platform for from 10 to 50 μL for LC-MS and GC-MS example for mouse CSF [11]. This body fluid material-restricted biological samples will (in this case needed for both sample can only be obtained in a few microliters constitute a real breakthrough in the field preparation and injection), and up to 500 under the right experimental conditions. By of metabolomics as it will open the way μL for NMR. Consequently, the need for employing a 1:1 dilution of CSF with water, for a deeper understanding of biological these minimal sample amounts often and as a result completely retaining sample processes in sample-limited cases. prevents their use for biomedical and clinical integrity, more than 300 compounds could problems inherently dealing with very low be detected by CE-MS. For the injection amounts of material [1-3]. For example, CE-MS is a preferred only 45 nL of the sample was consumed from a vial containing not more than 2 μL metabolic profiling of cerebrospinal fluid analytical method for (CSF) from transgenic mouse models, of a 1:1 diluted CSF. Therefore, the CE-MS spheroids/microtissues, liquid biopsies extracting (more) approach allows multiple analyses on a and samples from microfluidic 3D cell chemical information single highly valuable mouse CSF sample, culture models, is seriously hindered by the using less material enabling repeatability studies and, even more interestingly, to analyse the same standard analytical technologies. Capillary electrophoresis-mass spectrometry sample at different separation conditions in Until now, relatively little effort has been (CE-MS) can be considered an attractive order to enhance resolution and therefore made to downscale the analytical technique microscale analytical technique for metabolic coverage. The ability to perform and /or workflow for metabolomics addressing biological questions inherently multiple analyses on a single scarcely studies, as the application has been often dealing with low amounts of material [5-10]. available biological sample is not possible focused on addressing biomedical and An example that cannot be properly studied with the conventional analytical techniques clinical questions associated with human with the current standard analytical tools, employed in metabolomics. urine and plasma (or serum) samples. In and which is of particular interest to our order to enable micro-metabolomics, group, concerns the disentanglement of the In CE, analytes are separated on the i.e. the metabolomics study of biological behaviour of a single cell within a group or basis of differences in their intrinsic electrophoretic mobilities which is, 4 February / March 2019 Figure 1. Extracted ion electropherograms for selected endogenous metabolites detected by sheathless CE-MS in extracts from HepG2 cells using starting amounts from 10,000 to 500 cells (Figure 1A and 1C). The detector response for the selected metabolites as a function of the starting amount of HepG2 cells used for analysis is shown in Figure 1B and 1D. Experimental conditions: MS detection in positive ion mode; CE was coupled to MS via a sheathless porous tip emitter; BGE, 10% acetic acid (pH 2.2); Separation voltage: 30 kV; sample injection: 6.0 psi for 60 s. except for the low sample and solvent studies were often focused on the analysis HepG2 cells as a model system [23]. requirement of CE, fundamentally different of a relatively large single non-mammalian The aim was to profile a wide range of from chromatographic-based analytical cell (diameter in the range of 100 to 1000 endogenous metabolites in just a few techniques. Consequently, CE-MS provides μm with a cellular sample content ranging cells, as the latter will enable to study a complementary view on the composition from circa 10 to 1000 nL). The content of a the effect of cell heterogeneity, which of endogenous metabolites present in a single mammalian cell is estimated to be really matters in various key fundamental given biological sample [12]. Compared to around 1 pL (diameter ~10 μm) [13], and biological questions. The sheathless porous chromatographic-based separation methods that of a single HepG2 cell is estimated tip interface was developed by Moini a the separation efficiency of CE is very high to be around 3 pL (diameter ~12 μm). decade ago by removing the polyimide due to the flat flow profile of the electro- Therefore, the profiling of (endogenous) coating of a fused-silica capillary outlet osmotic flow. Moreover, there is no mass metabolites in a single mammalian cell is via etching of the capillary wall with 49% transfer between phases and therefore only clearly a vast analytical challenge. Over the solution of hydrofluoric acid to a thickness longitudinal diffusion contributes to band past few years, various research groups have of about 5 μm [24]. The electrical connection broadening under proper experimental done pioneering work in the development to the capillary outlet is achieved in this conditions. The intrinsically high separation of analytical techniques for acquiring configuration by inserting the etched efficiency of CE is very advantageous for metabolic profiles from a single cell [14-19]. conductor into an ESI needle which is filled the high resolution separation of structurally For an overview of these technological with separation buffer. The sheathless similar metabolites in complex samples. developments, we refer to the following porous tip design is especially useful for recent reviews [20-22]. interfacing narrow (<30 μm inner diameter) Until now, various research groups have capillaries and for low flow-rate (<100 nL/ developed CE-MS approaches for metabolic In my group, we have recently assessed the min) nano-ESI-MS analyses. profiling of limited sample amounts, utility of CE-MS employing a sheathless and also for single cell analysis [3, 10]. porous tip interface for metabolic profiling By the integration of an in-capillary Concerning the latter, the metabolomics of low numbers of mammalian cells using preconcentration technique, in this 5 case transient isotachophoresis, in the sample vials, pipette tips, etc.), notably Conflict of Interest sheathless CE-MS approach low nanomolar with sample volumes far below 1 μL, The authors have no other relevant detection limits could be easily obtained may result in significant analyte losses. affiliations or financial involvement with any for a wide range of basic metabolites (e.g., A more critical factor is the fraction of organisation or entity with a financial interest amino acids, amines, small peptides). It the sample that needs to be (effectively) in or financial conflict with the subject matter is important to stress that low nanomolar injected into the CE-MS system. In this or materials discussed in the manuscript detection limits could be obtained by only context, miniaturisation and optimisation apart from those disclosed. using an injection volume of circa 40 nL of sample preparation will be crucial for (total capillary volume is ~600 nL). In cases material-limited metabolomics studies. where sample volume is not an issue LC-MS For CE-MS-based metabolomics studies, References will be a preferred analytical technique, fractionation procedures based on liquid- however, it is important to highlight that liquid extraction for the selective isolation 1. Fessenden, M., Nature
Recommended publications
  • Hyphenating Chromatographic, Electrophoretic and On-Line Immobilized Enzymatic Strategies for Improved Oligonucleotide Analysis
    Hyphenating chromatographic, electrophoretic and on-line immobilized enzymatic strategies for improved oligonucleotide analysis Thesis submitted to the Faculty of Science in fulfilment of the requirements for the degree of Doctor in Science (Chemistry) PIOTR WIKTOR ALVAREZ POREBSKI Promotor Prof. Dr. Frederic Lynen 2016 Table of contents Table of Contents TABLE OF CONTENTS…………………………………………….………………………………………….……………………………… I I GENERAL INTRODUCTION AND SCOPE ............................................................................................. 1 INTRODUCTION .................................................................................................................................. 1 SCOPE .............................................................................................................................................. 3 REFERENCES ...................................................................................................................................... 4 II PRINCIPLES OF THE SEPARATION TECHNIQUES USED IN OLIGONUCLEOTIDE ANALYSIS ................ 7 SUMMARY ............................................................................................................................................. 7 PRINCIPLES OF HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ...................................................... 8 Ion exchange chromatography ........................................................................................... 10 Ion pair chromatography ...................................................................................................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,685,240 B2 Malik Et Al
    USOO8685240B2 (12) United States Patent (10) Patent No.: US 8,685,240 B2 Malik et al. (45) Date of Patent: Apr. 1, 2014 (54) HIGH EFFICIENCY SOL-GEL GAS (56) References Cited CHROMATOGRAPHY COLUMN (75) Inventors: Abdul Malik, Tampa, FL (US); Abuzar U.S. PATENT DOCUMENTS Kabir, Tampa, FL (US); Chetan 3,722,181 A 3/1973 Kirkland et al. Shende, Vernon, CT (US) 3,954,651 A 5, 1976 Donike (73) Assignee: University of South Florida, Tampa, FL (Continued) (US) (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP O315633 B1 10, 1991 U.S.C. 154(b) by 1875 days. EP O537851. B1 3/1996 (21) Appl. No.: 11/599,497 (Continued) (22) Filed: Nov. 13, 2006 OTHER PUBLICATIONS (65) Prior Publication Data Aichholz, R., “Preparation of Glass Capillary Columns Coated with US 2007/OO62874 A1 Mar. 22, 2007 OH-Terminated (3,3,3-Trifluoropropyl) Methyl Polysiloxane (PS Related U.S. Application Data 184.5), Journal of High Resolution Chromatography, 13, 71-73 1990). (63) Continuation of application No. 10/471.388, filed as ( ) application No. PCT/US02/07163 on Mar. 8, 2002, (Continued) now abandoned. (60) Provisional application No. 60/274,886, filed on Mar. Primary Examiner — Ernest G. Therkorn 9, 2001. (74) Attorney, Agent, or Firm — Saliwanchik, Lloyd & (51) Int. Cl. Eisenschenk BOI 20/285 (2006.01) BOI 20/28 (2006.01) (57) ABSTRACT BOLD 5/26 (2006.01) A capillary column (10)includes a tube structure having inner GOIN3/56 (2006.01) walls (14) and a sol-gel Substrate (16) coated on a portion of GOIN3O/60 (2006.01) inner walls (14) to form a stationary phase coating (18) on (52) U.S.
    [Show full text]
  • Purification of Wastewater from the Ions of Copper
    Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/10 ( 96 ) 2018 Важкi метали потрапляють у водойми в результатi при- UDC 628.161.2: 628.31: 621.359.7 родних та антропогенних процесiв, накопичуючись у ґрунтi, DOI: 10.15587/1729-4061.2018.148896 донних вiдкладеннях, шламах, можуть далi мiгрувати в пiд- земнi i поверхневi води. Основними джерелами надходження важких металiв у природнi водойми є недостатньо очищенi PURIFICATION OF стiчнi води багатьох галузей промисловостi. Це робить акту- альною проблему видалення важких металiв iз стiчних вод WASTEWATER для запобiгання надмiрного забруднення водойм. Серед iсную- чих методiв очищення води вiд iонiв важких металiв при знач- FROM THE IONS них обсягах промислових стiчних вод досить перспективни- ми є електрохiмiчнi методи. Перевагою методу є можливiсть OF COPPER, переробляти вiдпрацьованi регенерацiйнi розчини з отриман- ням металiв, якi придатнi для повторного використання. ZINC, AND Приведенi результати дослiджень процесiв електрохiмiч- ного видалення катiонiв важких металiв в одно- та двохка- LEAD USING AN мерних електролiзерах iз розведених водних розчинiв. При проведеннi дослiджень в двокамерному електролiзерi катод- ELECTROLYSIS на i анодна область були роздiленi анiонообмiнною мембраною МА-40. Вивчено залежнiсть впливу жорсткостi, рН розчинiв, METHOD анодної щiльностi струму та часу електролiзу на ефектив- нiсть видалення iонiв важких металiв. Показано, що iони цинку, мiдi та свинцю ефективно вилучаються з водних роз- N. Gomelya чинiв з використанням електролiзу при початковiй концен- Doctor of Technical Sciences, 3 трацiй 10 мг/дм . Встановлено, що при низьких концентрацiях Professor* iонiв вихiд за струмом при вiдновленнi металiв сягав (4–20) E-mail: [email protected] 10–4 % i мало змiнювався з концентрацiєю. Визначено, що Ye.
    [Show full text]
  • Continuous Electropermutation Using Ion-Exchange Textile Carl-Ola Danielsson Department of Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden
    i i “lic” — 2004/10/24 — 23:38 — page i — #1 i i Continuous Electropermutation using Ion-Exchange Textile by Carl-Ola Danielsson Department of Mechanics November 2004 Technical Reports from Royal Institute of Technology Department of Mechanics S-100 44 Stockholm, Sweden i i i i i i “lic” — 2004/10/24 — 23:38 — page ii — #2 i i Typsatt i AMS-LATEX. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie licentiatexamen fredagen den 19:de november 2004 kl 10.15 i seminarierum S40, Kungliga Tekniska H¨ogskolan, Teknikringen 8, Stockholm. °c Carl-Ola Danielsson 2004 Universitetsservice US AB, Stockholm 2004 i i i i i i “lic” — 2004/10/24 — 23:38 — page iii — #3 i i Continuous Electropermutation Using Ion-Exchange Textile Carl-Ola Danielsson Department of Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden. Abstract Increased levels of nitrate in ground water has made many wells unsuitable as sources for drinking water. In this thesis an ion-exchange assisted electro- membrane process, suitable for nitrate removal, is investigated both theoret- ically and experimentally. A new ion-exchange textile material is introduced as a conducting spacer in the feed compartment of an continuous electroper- mutation cell. The ion-exchange textile have a high permeability and provides faster ion-exchange kinetics compared to ion-exchange resins. The sheet shaped structure of the textile makes it easy to incorporate into the cell. A report on the development of a new electro-membrane module, capable of incorporating an ion-exchange textile spacer, is presented.
    [Show full text]
  • Two-Phase Electrophoresis of Biomolecules
    Two-Phase Electrophoresis of Biomolecules Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Ing. Götz Münchow aus Reinbek Berichterstatter: Prof. Dr. Steffen Hardt (Technische Universität Darmstadt) Mitberichterstatter: Prof. Dr. Jörg Peter Kutter (Technical University of Denmark) Tag der Einreichung: 29. Mai 2009 Tag der mündlichen Prüfung: 17. Juli 2009 Darmstadt 2009 D17 TWO-PHASE ELECTROPHORESIS OF BIOMOLECULES Cells moving around a gas bubble. von Götz Münchow För miene Familje. Abstract Existing microfluidic separation technologies for biomolecules commonly rely on single phase liquid systems as well as on electrophoresis. But microfluidics also facilitates the generation of stable, well-controlled and immiscible liquid-liquid two-phase arrangements, since interfacial forces usually dominate over volume forces. The present work combines these approaches and reports on protein and cell transport as well as on enrichment and separation phenomena discovered in various experiments with a novel microfluidic setup for continuous-flow two-phase electrophoresis. Therefore, phase boundaries of aqueous two- phase systems are formed within a microchannel in flow direction and the characteristic partition behavior of proteins and cells is manipulated and tuned by applying an electric field perpendicular to the phase boundary. The two immiscible phases which separately are injected into a microchannel are taken from aqueous polyethylene glycol (PEG) - dextran systems. Different ways are possible to induce an electric field within a microchannel, but it was found out that electrodes have to be decoupled from the two-phase flow and especially hydrogels can be utilized as adequate ion conductors.
    [Show full text]
  • MSB 2017 Program Book
    MSB2017 33rd International Symposium on Microscale Separations and Bioanalysis Noordwijkerhout The Netherlands March 26-29 Programme Book SYMPOSIUM CO-CHAIRS Govert W. Somsen (Vrije Universiteit Amsterdam) Rawi Ramautar (Leiden University) www.msb2017.org Content Program Book MSB 2017 3 Sponsors 4 Welcome from the co-chairs of MSB 2017 5 Committees 6 Symposium history 7 Previous HPCE and MSB meetings 8 Arnold O. Beckman Medal and Award 9 Venue 10 General information 11 Short Courses 12 Scientific Programme 20 Science Cafe 22 Panel Discussion 23 Plenary speakers Abstracts & Biographies 28 Keynote speakers Abstracts & Biographies 42 Posters 47 Poster pitches 48 MSB 2017 Young Scientist Award 48 MSB 2017 Poster Awards 49 Social Program 2 Sponsors We wish to thank our sponsors for their generous support. Platinum sponsors Gold sponsors Silver sponsors Bronze sponsors Sponsors 3 Content Welcome from the co-chairs of MSB 2017 It is our great pleasure to welcome you to the 33rd International Symposium on Microscale Separations and Bioanalysis (MSB 2017) being held March 26-29, 2017 at the Conference Center Leeuwenhorst in Noordwijkerhout, The Netherlands. Originally started in 1989 as HPCE symposium, over the years MSB has evolved into an annual interactive forum for the discussion of research on the frontiers of microscale separation science and bioanalysis. Continuing this development, MSB 2017 will span the full range of microscale separation research, from fundamental technology development to high-impact applications relevant to health, medicine, food, forensics and the environment. The meeting is structured with short courses, plenary and parallel oral sessions, poster sessions and pitches, Science Cafe semi- nars, and a panel discussion.
    [Show full text]
  • Electromembrane Extraction—Looking Into the Future
    Analytical and Bioanalytical Chemistry https://doi.org/10.1007/s00216-018-1512-x TRENDS Electromembrane extraction—looking into the future Stig Pedersen-Bjergaard1,2 Received: 22 September 2018 /Revised: 7 November 2018 /Accepted: 22 November 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Analytical microextraction techniques, including solid-phase microextraction (SPME) Arthur & Pawliszyn (Anal Chem 62:2145–2148, 1990), stir bar sorptive extraction (SBSE), Baltussen et al. (J Microcol 11:737–747, 1999), single-drop microextraction (SDME) Jeannot & Cantwell (Anal Chem 68:2236–2240, 1996), hollow-fiber liquid-phase microextraction (HF-LPME) Pedersen-Bjergaard & Rasmussen (Anal Chem 71:2650–2656, 1999), dispersive liquid-liquid microextraction (DLLME) Berijani et al (J Chromatogr A. 1123:1–9, 2006), and electromembrane extraction (EME) Pedersen-Bjergaard & Rasmussen (J Chromatogr A 1109:183–190, 2006) have gained considerable interest in recent years. The latter technique, EME, differs from the others by the fact that mass transfer and extraction is facilitated by electrokinetic migration. Thus, basic or acidic analytes are extracted in their ionized form from aqueous sample, through an organic supported liquid membrane (SLM) and into an aqueous acceptor solution under the influence of an electrical potential. EME provides pre-concentration and sample clean-up, and can be performed in 96-well format using only a few microliter organic solvent per sample (green chemistry). Extraction selectivity is controlled by the direction and magnitude of the electrical field, by the chemical composition of the SLM, and by pH in the acceptor solution and sample. This trends article discusses briefly the principle, performance, and current status of EME, and from this future directions and perspectives are identified.
    [Show full text]
  • WO 2014/105944 Al 3 July 2014 (03.07.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/105944 Al 3 July 2014 (03.07.2014) P O P C T (51) International Patent Classification: (74) Agent: SHARP, Jeffrey, A.; 2040 Avenue C, Bethlehem, C21B 11/00 (2006.01) C22B 11/10 (2006.01) Pennsylvania 18017 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 13/077790 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 26 December 2013 (26. 12.2013) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/746,7 10 28 December 201 2 (28. 12.20 12) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (71) Applicant: FLSMIDTH A S [DK/DK]; 77 Vigerslev Alle, ZW. DK-2500 Valby (DK). (84) Designated States (unless otherwise indicated, for every (72) Inventor; and kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for US only): ROCKS, Sara S.
    [Show full text]
  • Electrodeposition Research
    NAT'L INST OF STANDARDS & TECH R.I.C. All 101 888778 /National Bureau of Standards circular QC100 .U555 V529;1953 C.1 NBS-PUB-R 1947 •'>1 A 1 .. _ 1- • .. yil Ur U . ^ 4 1 'U tt mm, Co mm ere ureat) ;o UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Electrodeposition Research Proceedings of the NBS Semicentennial Symposium on Electrodeposition Research Held at the NBS on December 4-6, 1951 National Bureau of Standards Circular 529 Issued May 22, 1953 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 31-50 Buckram National Bureau of Standards AUG 2 8 1953 Sli5£ QC 100 0555 Foreword Electrodeposition processes have become an integral and important part of many industries—for example, the printing, metal refining, extractive metallurgy, hardware, automobile, and electronic indus- tries. This has come about largely as a result of extensive research in the field of electrodeposition, especially during the past 25 years. To encourage further research in this field, to present current re- search results and problems, and to facilitate the exchange of informa- tion, the National Bureau of Standards held the Symposium on Electrodeposition Research as the last of a series of twelve symposia conducted during the Bureau’s semicentennial in 1951. The papers presented at the Symposium are published in this volume. These papers represent a cross section of research currently being conducted in electrodeposition by industrial, university, and government labora- tories in Europe and the United States.
    [Show full text]
  • Enzyme-Assisted Method for Phycobiliproteins Extraction from Porphyra and Evaluation of Their Bioactivity
    processes Article Enzyme-Assisted Method for Phycobiliproteins Extraction from Porphyra and Evaluation of Their Bioactivity Chung-Hsiung Huang * , Wei-Chen Chen, Yu-Huei Gao, Guan-Wen Chen , Hong-Ting Victor Lin and Chorng-Liang Pan * Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; [email protected] (W.-C.C.); [email protected] (Y.-H.G.); [email protected] (G.-W.C.); [email protected] (H.-T.V.L.) * Correspondence: [email protected] (C.-H.H.); [email protected] (C.-L.P.); Tel.: +886-2-2462-2192 (ext. 5115) (C.-H.H.); +886-2-2462-2192 (ext. 5116) (C.-L.P.) Abstract: Due to the poor protein availability of algae in their unprocessed form, development of extraction methods for phycobiliproteins is of great significance. This study aimed to extract phycoerythrin (PE) and phycocyanin (PC) from Porphyra via bacterial enzymatic hydrolysis and to evaluate their bioactivity. To induce enzyme production, Porphyra powder was added into the culture medium of two marine bacterial strains. The pH and enzyme activity of the cultured supernatant, namely crude enzyme solution, were significantly raised. For PE and PC extraction, Porphyra were incubated within crude enzyme solution with homogenization and ultrasonication followed by ultrafiltration process. After distinguishing by fast performance liquid chromatography (FPLC), three major fractions were observed and identified as R-PE, R-PC and small molecular PE by high- performance liquid chromatography (HPLC) and polyacrylamide gel electrophoresis (PAGE) analysis. With respect to bioactivity, these three fractions exhibited free radical scavenging and antioxidant Citation: Huang, C.-H.; Chen, W.-C.; activities in a various degree.
    [Show full text]
  • On-Line Concentration Techniques in Capillary Electrophoresis and the Experimental Investigation of Electroextraction
    ON-LINE CONCENTRATION TECHNIQUES IN CAPILLARY ELECTROPHORESIS AND THE EXPERIMENTAL INVESTIGATION OF ELECTROEXTRACTION Riikka-Mari Haara Master's thesis 4.8.2016 University of Helsinki Laboratory of Analytical Chemistry Tiedekunta/Osasto Fakultet/Sektion – Faculty Laitos/Institution– Department Faculty of science Chemistry Tekijä/Författare – Author Riikka-Mari Haara Työn nimi / Arbetets titel – Title On-line concentration techniques in capillary electrophoresis and the experimental investigation of electroextraction Oppiaine /Läroämne – Subject Analytical chemistry Työn laji/Arbetets art – Level Aika/Datum – Month and year Sivumäärä/ Sidoantal – Number of pages Master's thesis 08/2016 94 Tiivistelmä/Referat – Abstract Capillary electrophoresis is a great option for analyzing metabolomics compounds since the analytes are often charged. The technique is simple and cost-efficient but it is not the most popular equipment because it lacks high concentration sensitivity. Therefore, on-line concentration techniques have been developed for capillary electrophoresis. The aim of this thesis is to give an introduction to the most common on-line concentration methods in capillary electrophoresis, and to demonstrate a novel on-line concentration technique termed electroextraction. Until now, the research of on-line concentration techniques in capillary electrophoresis is mainly focused on methods based on field amplification, transient isotachophoresis, titration incorporated methods or sweeping, which are presented in the literature section. In a two-phase electroextraction, the electrodes are placed in an aqueous acceptor phase and in an organic donor phase, in which the analytes are dissolved. When the voltage is applied, the conductivity difference in the two phases cause high local field strength on organic phase leading to fast migration of the cationic analytes towards the cathode.
    [Show full text]
  • Integration of Three-Phase Microelectroextraction Sample Preparation Into Capillary Electrophoresis
    Journal of Chromatography A 1610 (2020) 460570 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Integration of three-phase microelectroextraction sample preparation into capillary electrophoresis ∗ Amar Oedit a, Bastiaan Duivelshof a, Peter W. Lindenburg a,b, , Thomas Hankemeier a a Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2300 RA Leiden, the Netherlands b University of Applied Sciences Leiden, Faculty Science & Technology, Research Group Metabolomics, Mailbox 382, 2300 AJ, Leiden, the Netherlands a r t i c l e i n f o a b s t r a c t Article history: A major strength of capillary electrophoresis (CE) is its ability to inject small sample volumes. However, Received 11 July 2019 there is a great mismatch between injection volume (typically < 100 nL) and sample volumes (typically Revised 25 September 2019 20–1500 μL). Electromigration-based sample preparation methods are based on similar principles as CE. Accepted 25 September 2019 The combination of these methods with capillary electrophoresis could tackle obstacles in the analysis of Available online 26 September 2019 dilute samples. Keywords: This study demonstrates coupling of three-phase microelectroextraction (3PEE) to CE for sample Electromembrane extraction preparation and preconcentration of large volume samples while requiring minimal adaptation of CE Electroextraction equipment. In this set-up, electroextraction takes place from an aqueous phase, through an organic filter Sample preparation phase, into an aqueous droplet that is hanging at the capillary inlet. The first visual proof-of-concept for Capillary electrophoresis this set-up showed successful extraction using the cationic dye crystal violet (CV).
    [Show full text]