Chiranjib Kumar Gupta Chemical Metallurgy

Total Page:16

File Type:pdf, Size:1020Kb

Chiranjib Kumar Gupta Chemical Metallurgy Chiranjib Kumar Gupta Chemical Metallurgy Chemical Metallurgy: Principles and Practice. Chiranjib Kumar Gupta Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30376-6 Chiranjib Kumar Gupta Chemical Metallurgy Principles and Practice Author This book was carefully produced. Nevertheless, author and publisher do not warrant the information Dr. Chiranjib Kumar Gupta contained therein to be free of errors. Readers are Bhabha Atomic Research Centre advised to keep in mind that statements, data, Materials Group illustrations, procedural details or other items may Mumbai 400085 inadvertently be inaccurate. India Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by Die Deutsche Biblothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnd.ddb.de>. © 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Printed in the Federal Republic of Germany Printed on acid-free and low chlorine paper Cover Design Grafik-Design Schulz, Fußgönheim Typesetting Manuela Treindl, Laaber Printing betz-druck GmbH, Darmstadt Binding Großbuchbinderei J. Schäffer GmbH & Co. KG, Grünstadt ISBN 3-527-30376-6 V Foreword Dr. C. K. Gupta is a very distinguished colleague of mine. I have been familiar with his pro- fessional career over a long period. A very large number of research papers, reviews, and several books authored by him bear ample testimony to the diverse and wide-ranging con- tributions he has made to date to the field of chemical metallurgy. I was indeed very happy to accept the invitation from him to write a foreword for the present volume entitled, “Chemi- cal Metallurgy – Principles and Practice”, being published by Wiley-VCH Verlag, Germany. This volume provides in one place a self-contained and adequately detailed coverage of the chemical metallurgy of the major metals, common as well as less common. It has been brought into being as an exceedingly well-structured treatise. The presentation has been organised in seven chapters. The first chapter gives a general appraisal of the whole field of chemical metallurgy. The coverage also includes a brief account of resources. The next two chapters are devoted to thermodynamics and kinetics and to processing of minerals. The remaining three chapters deal, respectively, with pyrometallurgy, hydrometallurgy, and electrometallurgy. The last chapter attends to energy and environmental considerations. Physicochemical principles provided for the various unit operations and description of the key details of the processes deserve special mention as being among the attractive features of this volume. One must also additionally note the emphasis laid on the less common metals in the presentation. This is decidedly an additional special feature of the book. Chemi- cal metallurgy of the less common metals described with pertinent principles involved has not been done earlier in one place as has been accomplished in this publication. The abun- dance of illustrations and the comprehensive collection of carefully selected references ap- pended to each chapter add to the value and enhance considerably the overall strength of the book. On the whole, the presentation displays an imaginative and competent handling of the subject matter and really reaches out to the readers. The volume deals with a very wide technical field and will be of interest and relevance to many disciplines, particularly metallurgy, chemical engineering, and chemistry. It will un- doubtedly be a valuable addition to the list of available books dealing with chemical metal- lurgy. At the same time, this volume will be very useful to professionals working in the area of extractive and process metallurgy. The present book has had the benefit of Dr. Gupta’s wide and long-standing experience in the field in full measure and will certainly be greatly valued by those to whom it is addressed. I wish this publication all success and hope it will be as useful as the other books which Dr. Gupta has authored. India, May 2003 B. Bhattacharjee Director of Bhabha Atomic Research Centre and Member of Atomic Energy Commission Chemical Metallurgy: Principles and Practice. Chiranjib Kumar Gupta Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30376-6 VII Preface As the title, “Chemical Metallurgy: Principles and Practice” implies, this text blends theory with practice covering, of course, a good deal of descriptive items on hows and whys of extraction and processing of metals and materials. While the processes for the extraction of the common metals have been provided in sufficient detail, I have tried to go in equal depth, if not more, to provide focus on the less common metals. I have, however, avoided lengthy descriptions of current commercial practices as these change rapidly. Rather, selected examples have been presented to illustrate the various principles dealt with in the text. It is expected the readers will supplement this text with appropriate examples of cur- rent practices. All along I have made an effort to lead the treatment to a point where the readers will find the transition to more advanced and specialized metallurgical engineering textbooks, texts, and monographs with emphasis on chemical metallurgy quite easy. This book altogether contains seven chapters. In Chapter 1, I have endeavored to organ- ize the text with a view to acquainting the readers with a miscellany of relevant information and preparing them for going into the contents of the subsequent chapters. Chapter 2 deals with mineral processing, which usually takes the position as the principal front-end opera- tion in the overall process flowsheet for metal extraction. Chapter 3 pertains to thermo- dynamics and kinetics which provide unequivocally a sound basis for the understanding of the processes. The next three chapters delve into pyro-, hydro-, and electro-metallurgy, in that order. Chapter 7 addresses certain representative issues concerning energy consump- tion and environmental pollution aspects especially pertinent to chemical metallurgy operations. It is difficult for an author to praise the virtues of his own book. However, just to say a few words, I may add that, as pointed out, I have systematized the organization of the text in the chapters by presenting the process principles first and then following up with process prac- tice. I have in my opinion adopted a lucid style – readable, interesting, intelligible, and informative – for a wide and varied audience. It has on the whole been a delightful experi- ence for me to produce and place this book for the readership it will fetch. May I end by saying that I earnestly believe the book will provide an interesting reading and knowledge, and will certainly be highly successful in putting the readers into the fascinating world of preparative metallurgy, into the arduous journeys through which different metals and materials traverse to come into their useful beings and finally make themselves available in the service of man. A carefully selected reference list and a good number of clear illustra- tions may be treated as additional features which should not be lost sight of. All these presentations have not been carried out without incorporating the backing of the principles involved and this very element should go to provide additional attractions and spice, so to say, for the book. Chemical Metallurgy: Principles and Practice. Chiranjib Kumar Gupta Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30376-6 VIII Acknowledgements For kind permission to use matter of which they hold the copyright, in the preparation of diagrams and tables, the author is most grateful to the following: Academic Press American Institute of Mining, Metallurgical and Petroleum Engrs., Inc. CRC Press Elsevier Science Publishers Errol G. Kelly and David G. Spottiswood Freund Publishing House Ltd. Gordon and Breach Publishers, Inc. Hayes Publishing Co. John Wiley & Sons, Inc. Macmillan Publishing Co. Maxwell Macmillan Canada, Inc. McGraw Hill Publishing Co. Pergamon Press Ltd. Blackwell Science Ltd. Butterworths The Society of Chemical Industry Longmans McGraw-Hill International Book Company Chemical Metallurgy: Principles and Practice. Chiranjib Kumar Gupta Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30376-6 IX Appreciation No reader of this book can fail to recognise how much I owe to others who have written earlier in this field. To the authors and the editors of the references cited in this volume I express my heartfelt thanks. A book is very much a team project. I am truly indebted to my colleagues, Tapan Kumar Mukherjee, Ashok Kumar Suri, N. Krishnamurthy, and Pradip Mukhopadhyay, whose counsels I sought and whose opinions and advice, so generously given, have largely determined the scope and character of what I have written. All have greatly brought life to the project in the form of unique insights in chemical metallurgy. Prof. Kenneth N. Han of South Dakota School of Mines and Prof. Paul Duby of Henry Krumb School of Mines have had occasions to review this work. They provided knowledge, insight, and plain common sense to guide me during the process of development of this work. I wish to record my deepest gratitude to them. In the same breath, my deepest appre- ciation goes to Pradeep Mukhopadhyay, who has patiently gone through the writing and spared me in no way to keep mistakes at bay. Despite all the thorough inputs from many quarters, if errors have still remained they are all my own responsibility, of course, and I hope readers who find them will communicate them to me or the publisher.
Recommended publications
  • Chemical Metallurgy Second Edition
    Chemical Metallurgy Second Edition J.J. MOORE, PhD, BSc, CEng, MIM Professor and Head, Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado, USA Co-authors E.A. Boyce, CChem, FRSC MJ. Brooks, BSc B. Perry, PhD, BSc, CEng, MIM P.J. Sheridan, PhD, BSc, CChem, MRSC Lecturing staff in the Materials Technology Division at Sandwell College of Further and Higher Education FachbereicM^aiBriaivvisssnschaft derTechn.KochschuieD3mstaol Inv.-Nr.: Butterworths London Boston Singapore Sydney Toronto Wellington Contents Preface v Units and symbols xv 1 BONDING AND PERIODICITY 1 (E.A. Boyce) 1.1 The Atomic Structure of Elements 1 1.1.1 The Nucleus 1 1.1.2 Atomic Spectra 2 1.1.2.1 Bohr theory 2 1.1.2.2 Quantum numbers 3 1.1.2.3 Electronic configuration of the elements 4 1.2 The Periodic Table of the Elements 7 1.3 Chemical Bonds 7 1.3.1 The Ionic Bond (Electrovalency) 9 1.3.1.1 Size of atoms 9 1.3.1.2 Ionisation energy 10 1.3.1.3 Electron affinity 11 1.3.1.4 Electronegativity value 12 1.3.1.5 Structures of ionic solids 13 1.3.1.6 Applications of ionic compounds 15 1.3.2 The Covalent Bond 15 1.3.2.1 Shapes of covalent molecules 16 1.3.2.2 Multiple bonds 18 1.3.2.3 Intermolecular forces 18 1.3.2.4 Covalent giant structures of industrial importance 18 1.3.3 The Metallic Bond 20 1.4 A More Detailed Study of the Periodic Table of the Elements 22 1.4.1 The s-Block elements 22 1.4.1.1 Oxides 22 1.4.1.2 Chlorides 22 1.4.2 Transition Elements (d-Block) 22 1.4.2.1 Magnetic properties 25 1.4.2.2 Colour 26 1.4.2.3 Catalytic properties 26 1.4.2.4 Interstitial compound formation 26 1.4.2.5 Variable oxidation states 26 1.4.2.6 Complexes 26 1.4.2.7 The first transition series (Sc to Zn) 27 1.4.3 The p-Block Elements 29 s I viii Contents .
    [Show full text]
  • Organocatalytic Asymmetric N-Sulfonyl Amide C-N Bond Activation to Access Axially Chiral Biaryl Amino Acids
    ARTICLE https://doi.org/10.1038/s41467-020-14799-8 OPEN Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids Guanjie Wang1, Qianqian Shi2, Wanyao Hu1, Tao Chen1, Yingying Guo1, Zhouli Hu1, Minghua Gong1, ✉ ✉ ✉ Jingcheng Guo1, Donghui Wei 2 , Zhenqian Fu 1,3 & Wei Huang1,3 1234567890():,; Amides are among the most fundamental functional groups and essential structural units, widely used in chemistry, biochemistry and material science. Amide synthesis and trans- formations is a topic of continuous interest in organic chemistry. However, direct catalytic asymmetric activation of amide C-N bonds still remains a long-standing challenge due to high stability of amide linkages. Herein, we describe an organocatalytic asymmetric amide C-N bonds cleavage of N-sulfonyl biaryl lactams under mild conditions, developing a general and practical method for atroposelective construction of axially chiral biaryl amino acids. A structurally diverse set of axially chiral biaryl amino acids are obtained in high yields with excellent enantioselectivities. Moreover, a variety of axially chiral unsymmetrical biaryl organocatalysts are efficiently constructed from the resulting axially chiral biaryl amino acids by our present strategy, and show competitive outcomes in asymmetric reactions. 1 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China. 2 College
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Mineral Engineering & Fuel Technology
    MINERAL ENGINEERING & FUEL TECHNOLOGY (MME-203) 4th Semester B. Tech Dept. of Metallurgical and Materials Engineering V.S.S.university of Technology , Burla Sambalpur , odisha Person Name Designation Department involved And Email .id Course Gautam Assistant MME coordinator Behera professor [email protected] Course Co- Dinesh Assistant MME coordinator ku professor mishra , [email protected] Course Co- Avala Assistant MME coordinator Lava professor kumar [email protected] Goals of the subject 1-To impart knowledge about Mineral Processing [fundamental knowledge] 2-To teach you to “think” rather than “cook” 3-To encourage you to consider a career path in Mineral Processing Content Introduction to mineral processing(Engineering) Crushing and grinding Size separation methods Concentration methods Agglomeration techniques Fuel technology MODULE -I Introduction to mineral and mineral Engineering Mineral- a substance from which we get metal non metals or any valuables. Mineral Engineering ( branch of mme which deals with study of minerals and its processing )where the minerals is being processed to get a concentrate from which metals are extracted . Flow chat to show the relationship of mineral engineering with mining and extractive metallurgy engineering Subject covers Minerals definition MINERAL : Natural occur inorganic aggregate of metals and non metals . Or Inorganic compound having a definite chemical composition and crystal structure (atomic structure). Or minerals are the forms in which metals are found in the earth crust and as sea bed deposit depend on their reactivity with their environment, particular with oxygen , sulphur, and co2. Anything of economical value which is extracted from the earth. Characteristic of mineral 1-Minerals are homogeneous in physical and chemical composition.
    [Show full text]
  • Hyphenating Chromatographic, Electrophoretic and On-Line Immobilized Enzymatic Strategies for Improved Oligonucleotide Analysis
    Hyphenating chromatographic, electrophoretic and on-line immobilized enzymatic strategies for improved oligonucleotide analysis Thesis submitted to the Faculty of Science in fulfilment of the requirements for the degree of Doctor in Science (Chemistry) PIOTR WIKTOR ALVAREZ POREBSKI Promotor Prof. Dr. Frederic Lynen 2016 Table of contents Table of Contents TABLE OF CONTENTS…………………………………………….………………………………………….……………………………… I I GENERAL INTRODUCTION AND SCOPE ............................................................................................. 1 INTRODUCTION .................................................................................................................................. 1 SCOPE .............................................................................................................................................. 3 REFERENCES ...................................................................................................................................... 4 II PRINCIPLES OF THE SEPARATION TECHNIQUES USED IN OLIGONUCLEOTIDE ANALYSIS ................ 7 SUMMARY ............................................................................................................................................. 7 PRINCIPLES OF HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ...................................................... 8 Ion exchange chromatography ........................................................................................... 10 Ion pair chromatography ...................................................................................................
    [Show full text]
  • Reliable Determination of Amidicity in Acyclic Amides and Lactams Stephen A
    Article pubs.acs.org/joc Reliable Determination of Amidicity in Acyclic Amides and Lactams Stephen A. Glover* and Adam A. Rosser Department of Chemistry, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia *S Supporting Information ABSTRACT: Two independent computational methods have been used for determination of amide resonance stabilization and amidicities relative to N,N-dimethylacetamide for a wide range of acyclic and cyclic amides. The first method utilizes carbonyl substitution nitrogen atom replacement (COSNAR). The second, new approach involves determination of the difference in amide resonance between N,N-dimethylacetamide and the target amide using an isodesmic trans-amidation process and is calibrated relative to 1-aza-2-adamantanone with zero amidicity and N,N-dimethylace- tamide with 100% amidicity. Results indicate excellent coherence between the methods, which must be regarded as more reliable than a recently reported approach to amidicities based upon enthalpies of hydrogenation. Data for acyclic planar and twisted amides are predictable on the basis of the degrees of pyramidalization at nitrogen and twisting about the C−N bonds. Monocyclic lactams are predicted to have amidicities at least as high as N,N-dimethylacetamide, and the β-lactam system is planar with greater amide resonance than that of N,N- dimethylacetamide. Bicyclic penam/em and cepham/em scaffolds lose some amidicity in line with the degree of strain-induced pyramidalization at the bridgehead nitrogen and twist about the amide bond, but the most puckered penem system still retains substantial amidicity equivalent to 73% that of N,N-dimethylacetamide. ■ INTRODUCTION completed by a third resonance form, III, with no C−N pi Amide linkages are ubiquitous in proteins, peptides, and natural character and on account of positive polarity at carbon and the or synthetic molecules and in most of these they possess, electronegativity of nitrogen, must be destabilizing.
    [Show full text]
  • Identification and Description of Mineral Processing Sectors And
    V. SUMMARY OF FINDINGS As shown in Exhibit 5-1, EPA determined that 48 commodity sectors generated a total of 527 waste streams that could be classified as either extraction/beneficiation or mineral processing wastes. After careful review, EPA determined that 41 com modity sectors generated a total of 354 waste streams that could be designated as mineral processing wastes. Exhibit 5-2 presents the 354 mineral processing wastes by commodity sector. Of these 354 waste streams, EPA has sufficient information (based on either analytical test data or engineering judgment) to determine that 148 waste streams are potentially RCRA hazardous wastes because they may exhibit one or more of the RCRA hazardous characteristics: toxicity, ignitability, corro sivity, or reactivity. Exhibit 5-3 presents the 148 RCRA hazardous mineral processing wastes that will be subject to the Land Disposal Restrictions. Exhibit 5-4 identifies the mineral processing commodity sectors that generate RCRA hazardous mineral processing wastes that are likely to be subject to the Land D isposal Restrictions. Exhibit 5-4 also summarizes the total number of hazardous waste streams by sector and the estimated total volume of hazardous wastes generated annually. At this time, however, EPA has insufficient information to determine whether the following nine sectors also generate wastes that could be classified as mineral processing wastes: Bromine, Gemstones, Iodine, Lithium, Lithium Carbonate, Soda Ash, Sodium Sulfate, and Strontium.
    [Show full text]
  • Extractive Metallurgy & the Smelting of Bronze
    Extractive Metallurgy & the Smelting of Bronze INTRODUCTION: Seven metals were in use before the invention of writing: gold, silver, copper, iron, mercury, tin & lead. Many of these are so scarce they couldn’t be used practically (like gold). Others are rarely found in their elemental form, instead found as minerals of carbonates, oxides, or sulfides. It is the elemental form of metals that we are familiar with when we speak of their shiny, malleable and conducting properties. As minerals or ores, metals exist in combination with other elements, often as brittle, non-conducting substances (image rocks, salts & crystals). To produce a metal in its elemental form from an ore requires a chemical transformation, a process of extractive metallurgy called smelting. The fundamental problem of smelting involves the chemical reduction of metallic compounds to elemental metals, with different compounds requiring different treatment conditions. Oxide or carbonate ores are heated with charcoal, which combines with the oxygen in the ore, to release carbon dioxide and produce the elemental metal. 2 Cu3(CO3)2(OH)2 + 3 C → 6 Cu + 7 CO2 + 2 H2O (1) SnO2 + C → Sn + CO2 (2) Copper was the earliest metal to come into common usage because its ores are fairly common, like that of malachite (Cu2CO3(OH)2), and because it can be smelted at moderate temperatures (see equation 2 above). It is a soft metal, however, which makes it of marginal value for tools and weapons. Tin forms an alloy with copper, called bronze, which is harder than either metal alone. By 3,000 BC bronze had become the dominant metal, so much so that its use defines the Bronze Age.
    [Show full text]
  • Report on the Reserve Estimate & Feasibility Study
    REPORT ON THE RESERVE ESTIMATE & FEASIBILITY STUDY FOR THE ISABELLA PEARL PROJECT, NEVADA REPORT ON THE ESTIMATE OF RESERVES and the FEASIBILITY STUDY for the ISABELLA PEARL PROJECT MINERAL COUNTY, NEVADA for WALKER LANE MINERALS CORP. Signed by: FRED H. BROWN, PGeo Senior Resource Geologist, GRC Nevada Inc. J. RICARDO GARCIA, PEng Corporate Chief Engineer, Gold Resource Corp. BARRY D. DEVLIN, PGeo Vice President, Exploration, Gold Resource Corp. JOY L. LESTER, SME-RM Chief Geologist, Gold Resource Corp. and Gold Resource Corp. and GRC Nevada Inc. Technical Staff Effective Date: December 31, 2017 REPORT ON THE RESERVE ESTIMATE & FEASIBILITY STUDY FOR THE ISABELLA PEARL PROJECT, NEVADA TABLE OF CONTENTS 1 SUMMARY …………………………………………………………………………………………………………………………14 1.1 Introduction and Purpose ...…………………………………………………………………………………14 1.2 Property Description and Ownership .………………………………………………………………………14 1.3 Geology and Mineralization …………………………………………………………………………...........15 1.4 Exploration and Mining History .…………………………………………………………………………………..15 1.5 Metallurgical Testing and Process Design Criteria .…………………………………………..…16 1.6 Economic Mineralized Material .…………………………………………………………………………………..18 1.7 Mineral Reserve Estimate .…………………………………………………………………………………..19 1.8 Mining Methods ………………………………………………………………………………………………..20 1.9 Mineral Processing and Recovery Methods …………………………………………………………..22 1.10 Project Infrastructure ………………………………………………………………………………………………..23 1.11 Environmental Studies and Permitting ……………………………………………………………………….25 1.12 Capital and Operating
    [Show full text]
  • The Birth of Modern Chemistry
    The Birth of Modern Chemistry 3rd semester project, Fall 2008 NIB Group nr.5, House 13.2 Thomas Allan Rayner & Aiga Mackevica Supervisor: Torben Brauner Abstract Alchemy was a science practiced for more than two millennia up till the end of 18th century when it was replaced by modern chemistry, which is practiced up till this very day. The purpose of this report is to look into this shift and investigate whether this shift can be classified as a paradigm shift according to the famous philosopher Thomas Kuhn, who came up with a theory on the structure of scientific revolutions. In order to come to draw any kind of conclusions, the report summarizes and defines the criteria for what constitutes a paradigm, crisis and paradigm shift, which are all important in order to investigate the manner in which a paradigm shift occurs. The criteria are applied to the historical development of modern chemistry and alchemy as well as the transition between the two sciences. As a result, alchemy and modern chemistry satisfy the requirements and can be viewed as two different paradigms in a Kuhnian sense. However, it is debatable whether the shift from alchemy to modern chemistry can be called a paradigm shift. 2 Acknowledgments We would like to thank Torben Brauner for his guidance throughout the project period as our supervisor. We would also like to thank our opposing group – Paula Melo Paulon Hansen, Stine Hesselholt Sloth and their supervisor Ole Andersen for their advice and critique for our project. 3 Table of Contents 1. Introduction ................................................................................................................................ 5 2.
    [Show full text]
  • Copper Recovery Using Leach/Solvent Extraction/Electrowinning Technology
    Copper recovery using leach/solvent extraction/electrowinning technology: Forty years of innovation, 2.2 million tonnes of copper annually by G.A. Kordosky* small scale in analytical chemistry3 and on a large scale for the recovery of uranium from Synopsis sulphuric acid leach solutions4. Generally Mills had already developed and commercialized The concept of selectively extracting copper from a low-grade dump Alamine® 336 as an SX reagent for the leach solution followed by stripping the copper into an acid recovery of uranium from sulphuric acid leach solution from which electrowon copper cathodes could be produced liquors5 and believed that a similar technology occurred to the Minerals Group of General Mills in the early 1960s. for copper recovery would be welcome. This simple, elegant idea has resulted in a technology by which However, an extensive market survey showed about 2.2 million tonnes of high quality copper cathode was produced in year 2000. The growth of this technology is traced over that the industry reception for copper recovery time with a discussion of the key plants, the key people and the by L/SX/EW technology was almost hostile. important advances in leaching, plant design, reagents and The R&D director of a large copper producer electrowinning that have contributed to the growth of this predicted at an AIME annual meeting that technology. Some thoughts on potential further advances in the there would never be a pound of copper technology are also given. recovered using solvent extraction and his comment prompted
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,685,240 B2 Malik Et Al
    USOO8685240B2 (12) United States Patent (10) Patent No.: US 8,685,240 B2 Malik et al. (45) Date of Patent: Apr. 1, 2014 (54) HIGH EFFICIENCY SOL-GEL GAS (56) References Cited CHROMATOGRAPHY COLUMN (75) Inventors: Abdul Malik, Tampa, FL (US); Abuzar U.S. PATENT DOCUMENTS Kabir, Tampa, FL (US); Chetan 3,722,181 A 3/1973 Kirkland et al. Shende, Vernon, CT (US) 3,954,651 A 5, 1976 Donike (73) Assignee: University of South Florida, Tampa, FL (Continued) (US) (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP O315633 B1 10, 1991 U.S.C. 154(b) by 1875 days. EP O537851. B1 3/1996 (21) Appl. No.: 11/599,497 (Continued) (22) Filed: Nov. 13, 2006 OTHER PUBLICATIONS (65) Prior Publication Data Aichholz, R., “Preparation of Glass Capillary Columns Coated with US 2007/OO62874 A1 Mar. 22, 2007 OH-Terminated (3,3,3-Trifluoropropyl) Methyl Polysiloxane (PS Related U.S. Application Data 184.5), Journal of High Resolution Chromatography, 13, 71-73 1990). (63) Continuation of application No. 10/471.388, filed as ( ) application No. PCT/US02/07163 on Mar. 8, 2002, (Continued) now abandoned. (60) Provisional application No. 60/274,886, filed on Mar. Primary Examiner — Ernest G. Therkorn 9, 2001. (74) Attorney, Agent, or Firm — Saliwanchik, Lloyd & (51) Int. Cl. Eisenschenk BOI 20/285 (2006.01) BOI 20/28 (2006.01) (57) ABSTRACT BOLD 5/26 (2006.01) A capillary column (10)includes a tube structure having inner GOIN3/56 (2006.01) walls (14) and a sol-gel Substrate (16) coated on a portion of GOIN3O/60 (2006.01) inner walls (14) to form a stationary phase coating (18) on (52) U.S.
    [Show full text]