Contact Mechanics and Friction 1

Total Page:16

File Type:pdf, Size:1020Kb

Contact Mechanics and Friction 1 Contact Mechanics and Friction 1 fg Valentin L. Popov Contact Mechanics and Friction Physical Principles and Applications 123 Professor Dr. Valentin L. Popov Berlin University of Technology Institute of Mechanics Strasse des 17.Juni 135 10623 Berlin Germany [email protected] ISBN 978-3-642-10802-0 e-ISBN 978-3-642-10803-7 DOI 10.1007/978-3-642-10803-7 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010921669 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dr. Valentin L. Popov studied physics and obtained his doctorate from the Moscow State Lomonosow University. He worked at the Institute of Strength Physics and Materials Science of the Russian Academy of Sciences. After a guest-professorship in the field of theoretical physics at the University of Paderborn, he has headed the department of System Dynamics and Friction Physics in the Institute of Mechanics at the Ber- lin University of Technology since 2002. His areas of interest, among others, in- clude tribology, nanotribology, tribology at low temperatures, biotribology, the in- fluence of friction through ultrasound, numerical simulation of frictional processes, research regarding earthquakes, as well as themes relating to materials sciences such as the mechanics of elastoplastic media with microstructure, strength of metals and alloys, and shape memory alloys. He is the joint editor of international journals and regularly organizes international conferences and work- shops over diverse tribological themes. Preface to the English Edition The English edition of “Contact Mechanics and Friction” lying before you is, for the most part, the text of the 1st German edition (Springer Publishing, 2009). The book was expanded by the addition of a chapter on frictional problems in earth- quake research. Additionally, Chapter 15 was supplemented by a section on elasto-hydrodynamics. The problem sections of several chapters were enriched by the addition of new examples. This book would not have been possible without the active support of J. Gray, who translated it from the German edition. I would like to thank Prof. G. G. Ko- charyan and Prof. S. Sobolev for discussions and critical comments on the chapter over earthquake dynamics. Dr. R. Heise made significant contributions to the de- velopment and correction of new problems. I would like to convey my affection- ate thanks to Dr. J. Starcevic for her complete support during the composition of this book. I want to thank Ms. Ch. Koll for her patience in creating figures and Dr. R. Heise, M. Popov, M. Heß, S. Kürscher, and B. Grzemba for their help in proof- reading. Berlin, November 2009 V.L. Popov Preface to the German Edition He who wishes to better understand the subject of Contact Mechanics and the Physics of Friction would quickly discover that there is almost no other field that is so interdisciplinary, exciting, and fascinating. It combines knowledge from fields such as the theories of elasticity and plasticity, viscoelasticity, materials sci- ence, fluid mechanics (including both Newtonian and non-Newtonian fluids), thermodynamics, electrodynamics, system dynamics, and many others. Contact Mechanics and the Physics of Friction have numerous applications ranging from measurement and system technologies on a nanoscale to the understanding of earthquakes and including the sheer overwhelming subject of industrial tribology. One who has studied and understands Contact Mechanics and the Physics of Fric- tion will have acquired a complete overview of the different methods that are used in the engineering sciences. One goal of this book is to collect and clearly present, in one work, the most important aspects of this subject and how they relate to each other. Included in these aspects is, first, the entirety of traditional Contact Mechanics including ad- hesion and capillarity, then the theory of friction on a macro scale, lubrication, the foundations of modern nanotribology, system dynamical aspects of machines with friction (friction induced vibrations), friction related to elastomers, and wear. The interplay between these aspects can be very complicated in particular cases. In practical problems, different aspects are always presented in new ways. There is no simple recipe to solve tribological problems. The only universal recipe is that one must first understand the system from a tribological point of view. A goal of this book is to convey this understanding. It is the solid belief of the author that the essential aspects of mechanical con- tacts and friction are often much easier than they appear. If one limits oneself to qualitative estimations, it is then possible to achieve an extensive qualitative un- derstanding of the countless facets of mechanical contacts and friction. Therefore, qualitative estimations are highly valued in this book. In analytical calculations, we limit ourselves to a few classical examples which we can then take as building blocks and apply them to understand and solve a wealth of problems with real applications. A large number of concrete tribological questions, especially if they deal with meticulous optimization of tribological systems, are not solvable in analytical form. This book also offers an overview of methods of Numerical Simulation for Contact Mechanics and Friction. One such method is then explained in detail, which permits a synthesis of several processes related to contact mechanics from different spatial ranges within a single model. Even though this book is primarily a textbook, it can also serve as a reference for the foundations of this field. Many special cases are presented alongside the theoretical fundamentals with this goal in mind. These cases are presented as ex- ercises in their respective chapters. The solutions are provided for every exercise along with a short explanation and results. x Preface to the German Edition The basis of this textbook originates and is drafted from lectures that the author has conducted over Contact Mechanics and the Physics of Friction at the Berlin University of Technology, so that the material can be completed in its entirety in one or two semesters depending on the depth in which it is visited. Thanks This book would not have been possible without the active support of my col- leagues. Several in the department of “System Dynamics and Frictional Physics,” from the Institute for Mechanics, have contributed to the development of the prac- tice exercises. For this, I thank Dr. M. Schargott, Dr. T. Geike, Mr. M. Hess, and Dr. J. Starcevic. I would like to express a heartfelt thanks to Dr. J. Starcevic for her complete support during the writing of this book as well as to Mr. M. Hess, who checked all of the equations and corrected the many errors. I thank Ms. Ch. Koll for her patience constructing figures as well as M. Popov and Dr. G. Putzar for their help with proofreading. I thank the Dean of Faculty V, Transportation and Machine Systems, for granting me a research semester, during which this book was completed. Berlin, October 2008 V.L. Popov Table of Contents 1 Introduction ........................................................................................................1 1.1 Contact and Friction Phenomena and their Applications.............................1 1.2 History of Contact Mechanics and the Physics of Friction..........................3 1.3 Structure of the Book...................................................................................7 2 Qualitative Treatment of Contact Problems – Normal Contact without Adhesion ................................................................................................................9 2.1 Material Properties.....................................................................................10 2.2 Simple Contact Problems ..........................................................................13 2.3 Estimation Method for Contacts with a Three-Dimensional, Elastic Continuum .......................................................................................................16 Problems..........................................................................................................20 3 Qualitative Treatment of Adhesive Contacts.................................................25 3.1 Physical Background .................................................................................26 3.2 Calculation of the Adhesive Force between Curved Surfaces ...................30 3.3 Qualitative Estimation of the Adhesive Force between Elastic Bodies .....31 3.4 Influence of Roughness on Adhesion
Recommended publications
  • 10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
    EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch.
    [Show full text]
  • Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles
    Int. J. Mol. Sci. 2004, 5, 13-34 International Journal of Molecular Sciences ISSN 1422-0067 © 2004 by MDPI www.mdpi.org/ijms/ Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles Li Shenghua*, Yang He and Jin Yuansheng State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China Tel.: +86 (10) 62772509, Fax: +86 (10) 62784691, E-mail: [email protected] URL: http://www.pim.tsinghua.edu.cn/sklt/sklt.html *Author to whom correspondence should be addressed. Received: 16 April 2003 / Accepted: 16 October 2003 / Published: 26 December 2003 Abstract: Fundamental molecular issues in lubrication chemistry were reviewed under categories of solution chemistry, contact chemistry and tribochemistry. By introducing the Density Functional Theory(DFT)-derived chemical reactivity parameters (chemical potential, electronegativity, hardness, softness and Fukui function) and related electronic structural principles (electronegativity equalization principle, hard-soft acid-base principle, and maximum hardness principle), their relevancy to lubrication chemistry was explored. It was suggested that DFT, theoretical, conceptual and computational, represents a useful enabling tool to understand lubrication chemistry issues prior to experimentation and the approach may form a key step in the rational design of lubrication chemistry via computational methods. It can also be optimistically anticipated that these considerations will gestate unique DFT-based strategies to understand sophisticated tribology themes, such as origin of friction, essence of wear, adhesion in MEMS/NEMS, chemical mechanical polishing in wafer manufacturing, stress corrosion, chemical control of friction and wear, and construction of designer tribochemical systems. Keywords: Lubrication chemistry, DFT, chemical reactivity indices, electronic structural principle, tribochemistry, mechanochemistry.
    [Show full text]
  • Unit 10 Lubricating Systems
    unit 10 FUEL TANK lubricating systems An engine needs oil between its moving parts. The oil keeps the parts from rubbing on each other. When the parts do not rub on each other they do not wear out as quickly. The parts also move more easily, because the oil prevents friction. The oil also helps cool the engine by carrying heat away from hot engine parts, and oil is used to clean or flush dirt off engine parts. Oil on the cylinders helps seal the rings to prevent com• pressed air from leaking. Getting the oil to the engine parts is called lubrication. There are sev• eral types of lubricating systems used on small engines. In this unit we will study how these sys• tems work. LET'S FIND OUT: When you finish reading and studying this unit, you should be able to: 1. Describe the purpose of lubrication. 2. Describe the properties of oil. 3. Explain how a two-cycle engine is lubricated. 4. Describe the operation of a splash lubrication system. 5. Explain the operation of a pressure lubrication system. REDUCING FRICTION table. As the amount of pressure between two objects increases, their friction increases. The If you push a book along a table top you will type of material from which the two objects are notice resistance. This is due to the friction made also affects the friction. If the table is made between the book and table. The rougher the of glass, the book slides across it easily. If it is table and book surfaces, the more friction there is, made of rubber, it is very difficult to push the because the two surfaces tend to lock together.
    [Show full text]
  • Crack Tip Elements and the J Integral
    EN234: Computational methods in Structural and Solid Mechanics Homework 3: Crack tip elements and the J-integral Due Wed Oct 7, 2015 School of Engineering Brown University The purpose of this homework is to help understand how to handle element interpolation functions and integration schemes in more detail, as well as to explore some applications of FEA to fracture mechanics. In this homework you will solve a simple linear elastic fracture mechanics problem. You might find it helpful to review some of the basic ideas and terminology associated with linear elastic fracture mechanics here (in particular, recall the definitions of stress intensity factor and the nature of crack-tip fields in elastic solids). Also check the relations between energy release rate and stress intensities, and the background on the J integral here. 1. One of the challenges in using finite elements to solve a problem with cracks is that the stress field at a crack tip is singular. Standard finite element interpolation functions are designed so that stresses remain finite a everywhere in the element. Various types of special b c ‘crack tip’ elements have been designed that 3L/4 incorporate the singularity. One way to produce a L/4 singularity (the method used in ABAQUS) is to mesh L the region just near the crack tip with 8 noded elements, with a special arrangement of nodal points: (i) Three of the nodes (nodes 1,4 and 8 in the figure) are connected together, and (ii) the mid-side nodes 2 and 7 are moved to the quarter-point location on the element side.
    [Show full text]
  • The Use of Artificial Intelligence in Tribology—A Perspective
    lubricants Perspective The Use of Artificial Intelligence in Tribology—A Perspective Andreas Rosenkranz 1,*, Max Marian 2,* , Francisco J. Profito 3, Nathan Aragon 4 and Raj Shah 4 1 Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago 7820436, Chile 2 Engineering Design, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany 3 Department of Mechanical Engineering, Polytechnic School, University of São Paulo, São Paulo 17033360, Brazil; fprofi[email protected] 4 Koehler Instrument Company, Holtsville, NY 11742, USA; [email protected] (N.A.); [email protected] (R.S.) * Correspondence: [email protected] (A.R.); [email protected] (M.M.) Abstract: Artificial intelligence and, in particular, machine learning methods have gained notable attention in the tribological community due to their ability to predict tribologically relevant pa- rameters such as, for instance, the coefficient of friction or the oil film thickness. This perspective aims at highlighting some of the recent advances achieved by implementing artificial intelligence, specifically artificial neutral networks, towards tribological research. The presentation and discussion of successful case studies using these approaches in a tribological context clearly demonstrates their ability to accurately and efficiently predict these tribological characteristics. Regarding future research directions and trends, we emphasis on the extended use of artificial intelligence and machine learning concepts in the field of tribology including the characterization of the resulting surface topography and the design of lubricated systems. Keywords: artificial intelligence; machine learning; artificial neural networks; tribology 1. Introduction and Background Citation: Rosenkranz, A.; Marian, M.; There have been very recent advances in applying methods of deep or machine Profito, F.J.; Aragon, N.; Shah, R.
    [Show full text]
  • Contact Mechanics in Gears a Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’S Thesis in Product Development
    Two Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2013 MASTER’S THESIS IN PRODUCT DEVELOPMENT Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Marcus Slogén Department of Product and Production Development Division of Product Development CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2013 Contact Mechanics in Gear A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears MARCUS SLOGÉN © MARCUS SLOGÉN 2013 Department of Product and Production Development Division of Product Development Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: The picture on the cover page shows the contact stress distribution over a crowned spur gear tooth. Department of Product and Production Development Göteborg, Sweden 2013 Contact Mechanics in Gears A Computer-Aided Approach for Analyzing Contacts in Spur and Helical Gears Master’s Thesis in Product Development MARCUS SLOGÉN Department of Product and Production Development Division of Product Development Chalmers University of Technology ABSTRACT Computer Aided Engineering, CAE, is becoming more and more vital in today's product development. By using reliable and efficient computer based tools it is possible to replace initial physical testing. This will result in cost savings, but it will also reduce the development time and material waste, since the demand of physical prototypes decreases. This thesis shows how a computer program for analyzing contact mechanics in spur and helical gears has been developed at the request of Vicura AB.
    [Show full text]
  • TRIBOLOGY Lecture 3: FRICTION
    Video Course on Tribology Prof. Dr Harish Hirani Department of Mechanical Engineering Indian institute of Technology, Delhi Lecture No. # 03 Friction Welcome to the third lecture of video course on Tribology. Topic of this lecture is friction. It is interesting. We experience friction in day to day life when you walk we experience friction, when we cycle we experience friction, when we drive we experience friction. This is very common mode which we experience every day. TRIBOLOGY Lecture 3: FRICTION And often when you go to mall, we find this kind of signal or warning that slippery when the floor is wet. So, you need to be careful when you walk resending the water place as lubricant layer. Some Typical Values of Coefficient of Friction for Metals sliding on themselves Metals Sliding on themselves µ Aluminum 1.5 Copper 1.5 Copper((oxide film not penetrated) 0.5 Gold 2.5 Iron 1.2 Platinum 3 Silver 1.5 Steel(mild steel) 0.8 Steel(tool steel) 0.4 Observations: 1. μ > 1.0 2. Mild steel vs Tool steel 3. μ depends on environment. And it reduces the friction. So, we need to walk with more force. So, the overall the friction force turn out to be same. I have gone through number of books and found number of variation in coefficient of friction. So, I am just showing on the first slide of this course that typical value of coefficient friction which is often quoted in books. We say these values are static coefficient of friction or this value belongs to static coefficient of friction.
    [Show full text]
  • AC Fischer-Cripps
    A.C. Fischer-Cripps Introduction to Contact Mechanics Series: Mechanical Engineering Series ▶ Includes a detailed description of indentation stress fields for both elastic and elastic-plastic contact ▶ Discusses practical methods of indentation testing ▶ Supported by the results of indentation experiments under controlled conditions Introduction to Contact Mechanics, Second Edition is a gentle introduction to the mechanics of solid bodies in contact for graduate students, post doctoral individuals, and the beginning researcher. This second edition maintains the introductory character of the first with a focus on materials science as distinct from straight solid mechanics theory. Every chapter has been 2nd ed. 2007, XXII, 226 p. updated to make the book easier to read and more informative. A new chapter on depth sensing indentation has been added, and the contents of the other chapters have been completely overhauled with added figures, formulae and explanations. Printed book Hardcover ▶ 159,99 € | £139.99 | $199.99 The author begins with an introduction to the mechanical properties of materials, ▶ *171,19 € (D) | 175,99 € (A) | CHF 189.00 general fracture mechanics and the fracture of brittle solids. This is followed by a detailed description of indentation stress fields for both elastic and elastic-plastic contact. The discussion then turns to the formation of Hertzian cone cracks in brittle materials, eBook subsurface damage in ductile materials, and the meaning of hardness. The author Available from your bookstore or concludes with an overview of practical methods of indentation. ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected].
    [Show full text]
  • Static Friction at Fractal Interfaces
    Dorian Hanaor, Yixiang Gan and Itai Einav (2016). Static friction at fractal interfaces. Tribology International, 93, 229-238. DOI: 10.1016/j.triboint.2015.09.016 Static friction at fractal interfaces Dorian A. H. Hanaor, Yixiang Gan, Itai Einav School of Civil Engineering, University of Sydney, NSW 2006, Australia https://doi.org/10.1016/j.triboint.2015.09.016 Abstract: Tribological phenomena are governed by combined effects of material properties, topology and surface- chemistry. We study the interplay of multiscale-surface-structures with molecular-scale interactions towards interpreting static frictional interactions at fractal interfaces. By spline-assisted-discretization we analyse asperity interactions in pairs of contacting fractal surface profiles. For elastically deforming asperities, force analysis reveals greater friction at surfaces exhibiting higher fractality, with increasing molecular-scale friction amplifying this trend. Increasing adhesive strength yields higher overall friction at surfaces of lower fractality owing to greater true-contact-area. In systems where adhesive-type interactions play an important role, such as those where cold-welded junctions form, friction is minimised at an intermediate value of surface profile fractality found here to be in the regime 1.3-1.5. Our results have implications for systems exhibiting evolving surface structures. Keywords: Contact mechanics, friction, fractal, surface structures 1 Dorian Hanaor, Yixiang Gan and Itai Einav (2016). Static friction at fractal interfaces. Tribology
    [Show full text]
  • Water-Based Lubricants: Development, Properties, and Performances
    lubricants Review Water-Based Lubricants: Development, Properties, and Performances Md Hafizur Rahman 1, Haley Warneke 1, Haley Webbert 1, Joaquin Rodriguez 1, Ethan Austin 1, Keli Tokunaga 1, Dipen Kumar Rajak 2 and Pradeep L. Menezes 1,* 1 Department of Mechanical Engineering, University of Nevada-Reno, Reno, NV 89557, USA; mdhafi[email protected] (M.H.R.); [email protected] (H.W.); [email protected] (H.W.); [email protected] (J.R.); [email protected] (E.A.); [email protected] (K.T.) 2 Department of Mechanical Engineering, Sandip Institute of Technology & Research Centre, Nashik 422213, India; [email protected] * Correspondence: [email protected] Abstract: Water-based lubricants (WBLs) have been at the forefront of recent research, due to the abundant availability of water at a low cost. However, in metallic tribo-systems, WBLs often exhibit poor performance compared to petroleum-based lubricants. Research and development indicate that nano-additives improve the lubrication performance of water. Some of these additives could be categorized as solid nanoparticles, ionic liquids, and bio-based oils. These additives improve the tribological properties and help to reduce friction, wear, and corrosion. This review explored different water-based lubricant additives and summarized their properties and performances. Viscosity, density, wettability, and solubility are discussed to determine the viability of using water-based nano-lubricants compared to petroleum-based lubricants for reducing friction and wear in machining. Water-based liquid lubricants also have environmental benefits over petroleum-based lubricants. Further research is needed to understand and optimize water-based lubrication for tribological systems completely.
    [Show full text]
  • Calculation of the Hydrodynamic Lubrication of Piston and Piston Rings in Refrigeration Compressors H
    Purdue University Purdue e-Pubs International Compressor Engineering Conference School of Mechanical Engineering 1974 Calculation of the Hydrodynamic Lubrication of Piston and Piston Rings in Refrigeration Compressors H. Kruse Technical University Hannover Follow this and additional works at: https://docs.lib.purdue.edu/icec Kruse, H., "Calculation of the Hydrodynamic Lubrication of Piston and Piston Rings in Refrigeration Compressors" (1974). International Compressor Engineering Conference. Paper 101. https://docs.lib.purdue.edu/icec/101 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html CALCULATION OF THE HYDRODYNAMIC LUBRICATION OF PISTON AND PISTON RINGS IN REFRIGERATION COMPRESSORS Dr. H. Kruse, Professor of Refrigeration Engineering Technical University Hannover I Germany 1. INTRODUCTION The calculation of the lubricating condi­ refrigeration compressors,the pistons of tions of a piston is, compared with a slid­ which'can be more lubricated in comparison ing bearing,much more difficult,because the to internal cqmbustion engines, because configuration of the oil film and the operat­ at least with oil soluble refrigerants the ing conditions are much more complicated. lubricating oil is not lost, but is circu­ Whereas the profile of the oil film in jour­ lated back'into the compressor, In spite of nal bearings can be described by eccentric the assumption of fluid friction, the com­ circles, that of a piston is essentially of plexity of the problem has led to the situ­ a more complicated form (Fig.1), ation where h¥drodynamic calculations for oistons (4) lS), and piston rings (6),(7), {a),(9),(1oJ,have been made almost exclu­ sive~y separately.
    [Show full text]
  • Tribology of Polymer Blends PBT + PTFE
    materials Article Tribology of Polymer Blends PBT + PTFE Constantin Georgescu 1,* , Lorena Deleanu 1,*, Larisa Chiper Titire 1 and Alina Cantaragiu Ceoromila 2 1 Department of Mechanical Engineering, Faculty of Engineering, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; [email protected] 2 Department of Applied Sciences, Cross-Border Faculty, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; [email protected] * Correspondence: [email protected] (C.G.); [email protected] (L.D.); Tel.: +40-743-105-835 (L.D.) Abstract: This paper presents results on tribological characteristics for polymer blends made of polybutylene terephthalate (PBT) and polytetrafluoroethylene (PTFE). This blend is relatively new in research as PBT has restricted processability because of its processing temperature near the degradation one. Tests were done block-on-ring tribotester, in dry regime, the variables being the PTFE concentration (0%, 5%, 10% and 15% wt) and the sliding regime parameters (load: 1, 2.5 and 5 N, the sliding speed: 0.25, 0.5 and 0.75 m/s, and the sliding distance: 2500, 5000 and 7500 m). Results are encouraging as PBT as neat polymer has very good tribological characteristics in terms of friction coefficient and wear rate. SEM investigation reveals a quite uniform dispersion of PTFE drops in the PBT matrix. Either considered a composite or a blend, the mixture PBT + 15% PTFE exhibits a very good tribological behavior, the resulting material gathering both stable and low friction coefficient and a linear wear rate lower than each component when tested under the same conditions. Keywords: polybutylene terephthalate (PBT); polytetrafluoroethylene (PTFE); blend PBT + PTFE; block-on-ring test; linear wear rate; friction coefficient Citation: Georgescu, C.; Deleanu, L.; Chiper Titire, L.; Ceoromila, A.C.
    [Show full text]