Mammary Gland Development Methods and Protocols M ETHODS in MOLECULAR BIOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

Mammary Gland Development Methods and Protocols M ETHODS in MOLECULAR BIOLOGY Methods in Molecular Biology 1501 Finian Martin Torsten Stein Jillian Howlin Editors Mammary Gland Development Methods and Protocols M ETHODS IN MOLECULAR BIOLOGY Series Editor John M. Walker School of Life and Medical Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB , UK For further volumes: http://www.springer.com/series/7651 Mammary Gland Development Methods and Protocols Edited by Finian Martin School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland Torsten Stein Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, UK Jillian Howlin Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Lund, Sweden Editors Finian Martin Torsten Stein School of Biomolecular and Biomedical Science Institute of Cancer Sciences University College Dublin College of MVLS Belfield , Dublin , Ireland University of Glasgow Glasgow , UK Jillian Howlin Division of Oncology-Pathology Lund University Cancer Center/Medicon Village Lund , Sweden ISSN 1064-3745 ISSN 1940-6029 (electronic) Methods in Molecular Biology ISBN 978-1-4939-6473-4 ISBN 978-1-4939-6475-8 (eBook) DOI 10.1007/978-1-4939-6475-8 Library of Congress Control Number: 2016945163 © Springer Science+Business Media New York 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover Illustration: Growing Mammary Ducts of a Pubertal Mouse - The image depicts the growing front of a pubertal mouse mammary ductal epithelium with its bulbous terminal end buds surrounded by the mammary fat pad. Printed on acid-free paper This Humana Press imprint is published by Springer Nature The registered company is Springer Science+Business Media LLC New York Pref ace It is timely and exciting to compile some of the key molecular biological protocols and experimental strategies currently employed to study the various stages of mammary gland development. To this end we have invited leaders in the fi eld to contribute detailed descrip- tions of their methodologies. We begin with a comprehensive overview of mouse mammary gland development drawing particular attention to comparative human biology and then present our selection of core methodologies in four parts. Owing to the importance of transgenic and knock-out mouse models to the fi eld, we begin Part I with two reviews of genetically modifi ed mouse models that exhibit prenatal and pubertal mammary gland phenotypes. We discuss these phenotypes in the context of embryonic and postnatal gland development while emphasizing the study of the terminal end bud and the process of branching morphogenesis. We then present detailed descrip- tions of transplantation techniques, isolation and transcriptome analysis of the mammary terminal end bud during ductal morphogenesis, as well as transcriptome analysis of mam- mary fi broblasts isolated from sections taken at puberty. We fi nally describe how the post- lactational involuting gland can be used as a model to study epithelial cell death. In Part II we present a selection of 2D and 3D-model culture systems that have been employed to investigate a variety of mammary epithelial cell behaviors in vitro. We begin with a contrac- tile assay for the study of myoepithelial cells and then present methods for in vitro recapitu- lation of mammary epithelial cell organization in the now infamous 3D acinus formation assay. In particular, we focus on the intrinsic molecular requirements for acini formation such as the role of MAP kinases and transient EMT, but also that of the microenvironment, examining the role of other cell types and how mechanical forces affect aggregated epithe- lial cells. Part III deals with stem cells and the mammary gland and we present methodolo- gies for mammary stem cell isolation, reprogramming of progenitor populations, and a description of some strategies and methods for cell lineage tracing. Lastly, Part IV high- lights some translational applications that provide a bridge between experimental studies of mammary gland development and the study of human breast cancer, with tissue microar- rays for biomarker discovery and the increasingly popular practice of generating patient- derived xenographs for the study of cancer progression. Our hope is that this volume will have a wide readership: researchers whose primary inter- est is in mammary gland development; developmental biologists interested in related inter- nally branched epithelial organs, for instance the lung, kidney, and salivary gland; epithelial cell biologists and those with an interest in molecular mechanisms underlying breast cancer. Belfield, Dublin, Ireland Finian Martin Glasgow, UK Torsten Stein Lund, Sweden Jillian Howlin v Contents Preface. v Contributors . ix 1 Overview of Mammary Gland Development: A Comparison of Mouse and Human . 1 Sara McNally and Torsten Stein PART I IN VIVO MODELS 2 Prenatal Mammary Gland Development in the Mouse: Research Models and Techniques for Its Study from Past to Present. 21 Jacqueline M. Veltmaat 3 Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models . 77 Jean McBryan and Jillian Howlin 4 Analysis of Mammary Gland Phenotypes by Transplantation of the Genetically Marked Mammary Epithelium. 115 Duje Buric and Cathrin Brisken 5 Pubertal Ductal Morphogenesis: Isolation and Transcriptome Analysis of the Terminal End Bud . 131 Joanna S. Morris and Torsten Stein 6 RNA Profiling of Non-cultured Fibroblasts Isolated from Pubertal Mouse Mammary Gland Sections . 149 Ayman M. Ibrahim , Claire Cairney , Joanna S. Morris , and Torsten Stein 7 Analysis of the Involuting Mouse Mammary Gland: An In Vivo Model for Cell Death. 165 Bethan Lloyd-Lewis , Timothy J. Sargeant , Peter A. Kreuzaler , Henrike K. Resemann , Sara Pensa , and Christine J. Watson PART II IN VITRO 2D & 3D-MODELS 8 Contractility Assay for Established Myoepithelial Cell Lines. 189 Stéphanie Cagnet , Marina A. Glukhova , and Karine Raymond 9 Using 3D Culture of Primary Mammary Epithelial Cells to Define Molecular Entities Required for Acinus Formation: Analyzing MAP Kinase Phosphatases. 199 Malgorzata Gajewska and Sara McNally 10 A 3D Fibroblast-Epithelium Co-culture Model for Understanding Microenvironmental Role in Branching Morphogenesis of the Mammary Gland. 217 Zuzana Koledova and Pengfei Lu vii viii Contents 11 Next Generation RNA Sequencing Analysis Reveals Expression of a Transient EMT Profile During Early Organization of MCF10A Cells in 3D . 233 Benedikt Minke , Drieke Vandamme , Thomas Schwarzl , Walter Kolch , and Finian Martin 12 A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells . 245 Alexandra S. Piotrowski-Daspit , Allison K. Simi , Mei-Fong Pang , Joe Tien , and Celeste M. Nelson PART III MAMMARY STEM CELLS 13 Purification of Distinct Subsets of Epithelial Cells from Normal Human Breast Tissue . 261 Mona Shehata and John Stingl 14 Techniques for the Reprogramming of Exogenous Stem/Progenitor Cell Populations Towards a Mammary Epithelial Cell Fate . 277 Gilbert H. Smith and Corinne A. Boulanger 15 Lineage Tracing of Mammary Stem and Progenitor Cells . 291 Anoeska A. A. van de Moosdijk , Nai Yang Fu , Anne C. Rios , Jane E. Visvader , and Renée van Amerongen PART IV TRANSLATIONAL APPLICATIONS 16 Assessment of Significance of Novel Proteins in Breast Cancer Using Tissue Microarray Technology . 311 Laoighse Mulrane , William M. Gallagher , and Darran P. O’Connor 17 Patient-Derived Xenografts of Breast Cancer . 327 Damir Varešlija , Sinead Cocchiglia , Christopher Byrne , and Leonie Young Conclusion . 337 Index . 347 Contributors RENÉE VAN AMERONGEN • Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences , University of Amsterdam , Amsterdam , The Netherlands CORINNE A. BOULANGER • Mammary Stem Cell Section, Basic Research Laboratory, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA CATHRIN BRISKEN • The Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL) , Lausanne , Switzerland DUJE BURIC • The Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL) , Lausanne , Switzerland CHRISTOPHER BYRNE • Endocrine Oncology Research Group, Department of Surgery , Royal College of Surgeons in Ireland , Dublin , Ireland STÉPHANIE CAGNET • Institut Curie, Centre de Recherche, Paris, France; CNRS, UMR144, Paris,
Recommended publications
  • Polythelia -Six Nipples in Amiddle Varun Arunagiri in the Accessory Nipples
    Stanley Medical Journal CASE REPORT - GENERAL SURGERY Polythelia - Six Nipples in a middle aged woman Varun Arunagiri(1), Kothai Anbalagan(1) Abstract Vol 3 | Issue 2 | April - June | 2016 - June 2 | April 3 | Issue Vol Supernumerary nipples are more than two nipples which normally exist in humans. Polythelia or supernumerary nipple is a rare condition with higher prevalence in males than in females with the ratio of 1.7:1. The maximum reported number of nipples in a person with Polythelia is seven in a male. The usual presentation of Polythelia is with three nipples. Here is an image of Polythelia in a 40 year old female presenting with six nipples without lactation from the supernumer- ary nipples and any other anomalies. She has breast fed her two children. Key-words: Polythelia; Supernumerary Nipples; Mammary ridge; Kajava Classification; Clear cells of Toker. Key Messages: 1. Polythelia is a benign condition with chances of malignancy in the accessory nipples. 2. Constant follow-up is needed when the patient says lump in the region of accessory nipple. 3. Lactation during the pregnancy is common. INTRODUCTION: reported number of nipples in a person with Polythelia is seven in a male. The usual presentation of polythelia is with Polythelia is a congenital anomaly of the breast three nipples where in there are accessory nipples along the milk line Mammals have six to seven nipples, which are apart from the normal two nipples. Amazia, polymazia, common among canines and felines. It is rare to see humans Polythelia, athelia are few congenital anomalies of the nip- with more than three nipples.
    [Show full text]
  • A Study of Evaluation and Management of Rare Congenital Breast Diseases Surgery Section
    Original Article DOI: 10.7860/JCDR/2016/21077.8648 A Study of Evaluation and Management of Rare Congenital Breast Diseases Surgery Section RIKKI SINGAL1, SUDHIR KUMAR MEHTA2, JYOTI BALA3, MUZZAFAR ZAMAN4, AMIT MITTAL5, GUARAV GUPTA6, SAMER RUDRA7, SAMITA SINGAL8 ABSTRACT Results: Out of 32 cases: 1(3.125%) male patient had Introduction: Polymastia and polythelia may be asymptomatic unilateral and 1(3.125%) male had bilateral accessory nipple, or cause pain, restriction of arm movement, milk discharge, 7 (21.87%) females had unilateral and 1(3.125%) had bilateral cosmetic problems or anxiety. Cosmesis is the main indication accessory nipple, 1 (3.125%) diagnosed as accessory axillary for surgical excision of accessory breasts in axilla. In addition fibroadenoma in female, 16(50%) presented as unilateral and 5 it also confirms the diagnosis and allays the patient’s fear of (15.62%) had bilateral swelling in the axilla as accessory breast. harbouring a malignancy. Patients underwent surgical excision and in 8(25%) cases z- shaped incision was made in view of better cosmesis. Patients Aim: To evaluate the presentation of symptoms, investigations were followed up upto 6 months postoperatively. There were no required for diagnosis and the management to improve the residual swelling and movements of the arm over the shoulder treatment protocols in patients with breast diseases. joint were normal. In 3(9.37%) cases, wound dehiscence Materials and Methods: This retrospective study on breast occurred; in 2 (6.25%) cases lymphoedema formation was diseases presenting as supernumerary breasts and nipples seen. These were successfully managed conservatively. was conducted in the Department of Surgery between January Conclusion: As breast swellings either fibroadenoma or 2013 and January 2016 at MMIMS Research and hospital, carcinoma are common entities to come across everywhere Mullana, Ambala.
    [Show full text]
  • Diagnosis and Treatment of Accessory Breast Cancer in 11 Patients
    ONCOLOGY LETTERS 10: 1783-1788, 2015 Diagnosis and treatment of accessory breast cancer in 11 patients SHUO ZHANG1,2*, YONG-HUA YU2, WEI QU2, YONG ZHANG2* and JIA LI2 1School of Medical and Life Sciences, Shandong Academy of Medical Sciences, Jinan University, Jinan, Shandong 250200; 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China Received August 21, 2014; Accepted May 8, 2015 DOI: 10.3892/ol.2015.3388 Abstract. The present study aimed to investigate the clinical from the ectodermal ridges, also known as the milk lines, on characteristics, diagnosis and treatment of accessory breast the ventral surface of the body, which extend from the axillae cancer, and contribute valuable information regarding this to the inguinal regions and end on the medial aspect of the rare tumour to the current literature, ultimately facilitating thighs on each side of the body (4). Embryologically, ectopic the development of improved treatment strategies. The present breast tissue develops as a result of failed resolution of the study reported the cases of 11 patients with accessory breast mammary ridge, an ectodermal thickening that extends from cancer. The patients with accessory breast cancer were the axilla to the groin (5). Ectopic breast tissue may appear at admitted between January 2002 and June 2014, and the patient any site along the milk line, but it occurs most commonly in records were retrospectively analysed. All patients presented the axill; less commonly, it may appear in locations outside with a tumour that was localised in the axilla. Out of these of the mammary ridge, including the face, middle back, patients, there were 8 patients with invasive ductal carcinoma buttock, posterior neck, chest, vulva, hip, posterior, flank and 3 patients with invasive lobular carcinoma.
    [Show full text]
  • Anatomy of the Breast Doctors Notes Notes/Extra Explanation Please View Our Editing File Before Studying This Lecture to Check for Any Changes
    Color Code Important Anatomy of the Breast Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives By the end of the lecture, the student should be able to: ✓ Describe the shape and position of the female breast. ✓ Describe the structure of the mammary gland. ✓ List the blood supply of the female breast. ✓ Describe the lymphatic drainage of the female breast. ✓ Describe the applied anatomy in the female breast. Highly recommended Introduction 06:26 Overview of the breast: • The breast (consists of mammary glands + associated skin & Extra connective tissue) is a gland made up of lobes arranged radially .around the nipple (شعاعيا) • Each lobe is further divided into lobules. Between the lobes and lobules we have fat & ligaments called ligaments of cooper • These ligaments attach the skin to the muscle (beneath the breast) to give support to the breast. in shape (مخروطي) *o Shape: it is conical o Position: It lies in superficial fascia of the front of chest. * o Parts: It has a: 1. Base lies on muscles, (حلمة الثدي) Apex nipple .2 3. Tail extend into axilla Extra Position of Female Breast (حلقة ملونة) Base Nipple Areola o Extends from 2nd to 6th ribs. o It extends from the lateral margin of sternum medially to the midaxillary line laterally. o It has no capsule. o It lies on 3 muscles: • 2/3 of its base on (1) pectoralis major* Extra muscle, • inferolateral 1/3 on (2) Serratus anterior & (3) External oblique muscles (muscle of anterior abdominal wall). o Its superolateral part sends a process into the axilla called the axillary tail or axillary process.
    [Show full text]
  • Anatomy of the Human Mammary Gland: Current Status of Knowledge
    Clinical Anatomy 00:000–000 (2012) REVIEW Anatomy of the Human Mammary Gland: Current Status of Knowledge 1,2 1 FOTEINI HASSIOTOU AND DONNA GEDDES * 1Hartmann Human Lactation Research Group, School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia 2School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia Mammary glands are unique to mammals, with the specific function of synthe- sizing, secreting, and delivering milk to the newborn. Given this function, it is only during a pregnancy/lactation cycle that the gland reaches a mature devel- opmental state via hormonal influences at the cellular level that effect drastic modifications in the micro- and macro-anatomy of the gland, resulting in remodeling of the gland into a milk-secretory organ. Pubertal and post-puber- tal development of the breast in females aids in preparing it to assume a func- tional state during pregnancy and lactation. Remarkably, this organ has the capacity to regress to a resting state upon cessation of lactation, and then undergo the same cycle of expansion and regression again in subsequent pregnancies during reproductive life. This plasticity suggests tight hormonal regulation, which is paramount for the normal function of the gland. This review presents the current status of knowledge of the normal macro- and micro-anatomy of the human mammary gland and the distinct changes it undergoes during the key developmental stages that characterize it, from em- bryonic life through to post-menopausal age. In addition, it discusses recent advances in our understanding of the normal function of the breast during lac- tation, with special reference to breastmilk, its composition, and how it can be utilized as a tool to advance knowledge on normal and aberrant breast devel- opment and function.
    [Show full text]
  • 12. Development of Axial Skeleton and Extremities. Muscles and Skin
    Z. Tonar, M. Králíčková: Outlines of lectures on embryology for 2 nd year students of General medicine and Dentistry License Creative Commons - http://creativecommons.org/licenses/by-nc-nd/3.0/ 12. Development of axial skeleton and extremities. Muscles and skin. Timeline − 19 days: somites emerge in the gastrula − 4 weeks: sclerotome cells migrate along the neural tube − 5 weeks: mesenchymal blastema of the axial skeleton − 6 weeks: mesenchymal blastema of limbs − 8 weeks: rotation of the limbs − 8 weeks: individual muscles differentiate − 10 weeks: primary ossification centres in diaphyses − 3 months: bones of the skull develop − 9 months: diaphyses ossified; secondary ossification centres emerge In general, bone tissue originates from: − the of the somitic paraxial mesoderm, namely from the ventromedial part, the sclerotome − the head non-segmented mesoderm − the somatopleuric lateral plate mesoderm skeleton of limbs − the neural crest, which differentiates into the head ectomesenchyme − mesenchyme o its cells migrate and differentiate into fibroblasts, the source of the desmogenous (intramembranous) ossification o its cells imgrate and differentiate into chondroblasts, the source of the chondrogenous ossification of the hyaline cartilage models Limbs − week 4: limb buds o somatopleuric mesenchyme differentiates into bones and connective tissues o myogenic cells, angioblasts and nerves grow in o surface ectoderm thickens into the apical ectodermal ridge − week 6: each limb is divided proximodistally into three components: o autopod
    [Show full text]
  • Embryology and Anatomy of Breast
    Embryology and Anatomy of breast ‐B.Shivraj Gen Surg 1st unit The mammary gland • Modified apocrine sweat gland. • Present in both males and females. • Female ‐> serves for lactation; secondary sexual character. • About 4% women have amazia. Embryology • Develops from the integument. • Arises from the ventral surface of the embryo.(milk line‐> thickened line of ectoderm). • Ducts and acini from ectoderm • Supporting tissue from mesenchyme. Milk line *Milk line / mammary ridge‐> Develops from base of fore limb i.e. Axilla to hind limb i.e groin. *Except @ the level of nipple, rest of It gets atrophied. *Polythelia‐> m/c site 7‐10cm Below and medial to the nipple. • Dev @ 6th week of IU life. ‐>mammary ridge • @nipple‐>ectoderm grows inward 15‐20 solid rods (rudimentary gland)‐>bulbous dilation at ends‐>alveoli • @5th month IU life‐>cords develop • @7/8th month‐>hollowing of ducts; diff as milk ducts; depression at site of nipple. • @9th month‐> alveoli become canalised • @birth‐>mesenchyme proliferation‐> nipple everts; areola becomes pigmented. • @puberty‐> 15‐20 lact ducts have 15‐20 lobules each. • Witch’s milk‐> creamy white fluid cos of circulating maternal estrogens • Colostrum‐> intial milk secreted. Rich in antibodies cos of lymphocytes and plasma cells in the duct lining. • Later stage replaced by milk high in lipid content. Location • Situated in the anterior chest wall : 2‐6rib; sternum to mid‐axillary line; surrounded by the superficial fascia; resting on the deep fascia. overlying the pectoral fascia Breast: Fatty Tissue Nipple and areola complex • Nipple‐> 4th ICS. – Smooth muscles; circular and longitudinal – Erection‐>serves milk • Areola‐>sebaceous/areolar glands – Pigmented – Has hypertrophied sweat glands‐> glands of Montomery‐>serves for protective lubrication during lactation.
    [Show full text]
  • Case Report Fibroadenoma in Ectopic Breast Tissue Mohammed EH Azoz Mass for One Year
    Case Report Fibroadenoma in ectopic breast tissue: a case report Mohammed EH Azoz ,MD*,Abdalla E Abdalla, MSc**, Mutaz M Elhassan, MD*** Department of Surgery*, Department of Anatomy**, Department of Pathology*** Kosti Teaching Hospital, Faculty of Medicine, University of El Imam El Mahdi-Kosti, Sudan. ورم ﻏﺪي ﻟﻴﻔﻲ ﻓﻲ ﻧﺴﻴﺞ ﺛﺪﻳﻲ إﺿﺎﻓﻲ ، دراﺳﺔ ﺣﺎﻟﺔ ﻣﺤﻤﺪ اﻟﺘﻮم ﺣﺎﻣﺪ ﻋﺰوز: اﺳﺘﺸﺎري اﻟﺠﺮاﺣﺔ اﻟﻌﺎﻣﺔ. ﻋﺒﺪاﷲ اﻷﻣﻴﻦ ﻋﺒﺪاﷲ : ﻣﺤﺎﺿﺮ ﻋﻠﻢ اﻟﺘﺸﺮﻳﺢ. ﻣﻌﺘﺰ ﻣﺤﻤﺪ اﻟﺤﺴﻦ : اﺧﺘﺼﺎﺻﻲ ﻋﻠﻢ اﻷﻣﺮاض. اﻟﻤﻠﺨﺺ: آﺜﺮة اﻷﺛﺪاء ، وﻳﺴﻤﻰ أﻳﻀﺎً زﻳﺎدة ﻋﺪد اﻷﺛﺪاء أو اﻟﻨﺴﻴﺞ اﻟﺜﺪﻳﻲ اﻹﺿﺎﻓﻲ، وﻳﻌﺮف ﺑﺄﻧﻪ وﺟﻮد أآﺜﺮ ﻣﻦ ﺛﺪﻳﻴﻦ ﻣﻊ أو ﺑﺪون اﻟﺤﻠﻤﺔ واﻟﻬﺎﻟﺔ ﻓﻲ اﻟﺒﺸﺮ. هﺬا اﻟﺘﻘﺮﻳﺮ ﻋﻦ ﺣﺎﻟﺔ ﻓﺘﺎة ﻋﻤﺮهﺎ 24 ﺳﻨﺔ، ﺣﻀﺮت وهﻲ ﺗﺸﻜﻮ ﻣﻦ ورم ﺗﺤﺖ ﺟﻠﺪ اﻹﺑﻂ اﻷﻳﻤﻦ و ورم ﻓﻲ اﻟﺜﺪي اﻷﻳﺴﺮ ﻟﻤﺪة ﺳﻨﺔ. أُﺧﺬت ﺧﺰﻋﺔ وأﻇﻬﺮت ﻣﻼﻣﺢ ورم ﻏﺪي ﻟﻴﻔﻲ ﺗﺤﺖ ﺟﻠﺪ اﻹﺑﻂ اﻷﻳﻤﻦ واﻟﺜﺪي اﻷﻳﺴﺮ. ﺧﻀﻌﺖ اﻟﻤﺮﻳﻀﺔ ﻟﺠﺮاﺣﺔ اﺳﺘﺌﺼﺎﻟﻴﺔ ﻟﻠﻮرﻣﻴﻦ. وأﻇﻬﺮ اﻟﻔﺤﺺ اﻟﻨﺴﻴﺠﻲ ﻟﻠﻌﻴﻨﺘﻴﻦ اﻟﻤﺴﺘﺄﺻﻠﺘﻴﻦ ورم ﻏﺪي ﻟﻴﻔﻲ ﻓﻲ آﻠﺘﻴﻬﻤﺎ. Abstract along the primitive embryonic milk lines, Polymastia, also known as supernumerary or which extends from the axilla to the groin, and accessory breast, is defined as the presence of may occur unilaterally or bilaterally(1). more than two breasts with or without a nipple Axillary breast tissue is a common variant of and areola in human beings. We report a case EBT, with a reported incidence of 2 to 6% in of a 24-year-old female presented with right women(2). It is twice as common in females as axillary subcutaneous swelling and left breast in males(3). It can be seen during or before swelling for one year.
    [Show full text]
  • Carcinoma of the Axillary Tail of Spence: a Case Series
    ANTICANCER RESEARCH 32: 4057-4060 (2012) Carcinoma of the Axillary Tail of Spence: A Case Series FEDERICO AMPIL, GLORIA CALDITO, BENJAMIN HENDERSON, BENJAMIN LI, ROGER H. KIM, GARY BURTON and QUYEN CHU Louisiana State University Health and Feist-Weiller Cancer Center, Shreveport, LA, U.S.A. Abstract. There is sparse information about cancer in the reports. This audit of cases is an Institutional Review Board- axillary tail of Spence (CATS). Eight hundred and thirty-nine approved outcome study. For the purpose of this report, CATS patients with breast cancer were retrospectively studied for represented tumors situated in the axillary tail of Spence (SEER the occurrence of CATS. Ten patients were identified based code 50.6) and were reported as Breast Imaging Reported and Data System (2) /BI-RADS 4 or 5 abnormalities on mammographic on detection by imaging studies. A tendency towards stage II (Figure 1) and/or ultrasonographic imaging. or III disease, and estrogen and progesterone receptor- Patient follow-up time was measured from the date of breast negative neoplasms in the older age (>45 years) group was cancer diagnosis until death or last contact. Survival was estimated observed. Management by conservative or radical surgery, according to the product-limit method of Kaplan Meier. with or without postoperative radiotherapy and chemotherapy, effected an estimated five-year disease-free Results survival rate of 67%, and rates of local failure, regional recurrence as well as distant metastasis of 0%, 10% and The mean age was 55.2 years (range 44-79 years) and the 30%, respectively. The treatment of CATS in accordance with majority (7/10) of patients were over 45 years old.
    [Show full text]
  • An Organotypic Assay for the Quantification and Characterization of Regenerative Primary Human Mammary Epithelial Cells
    Aus dem Helmholtz Zentrum München Institut für Stammzellforschung Direktorin: Prof. Dr. Magdalena Götz An organotypic assay for the quantification and characterization of regenerative primary human mammary epithelial cells Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Jelena Linnemann aus Bielefeld 2017 Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Betreuerin: Prof. Dr. Magdalena Götz Zweitgutachter: Prof. Andreas Ladurner, Ph.D. Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 19.12.2017 Within the scope of the present PhD thesis, the following original article has been published in an international peer reviewed journal: Linnemann, J.R., Miura, H., Meixner, L.K., Irmler, M., Kloos, U.J., Hirschi, B., Bartsch, H.S., Sass, S., Beckers, J., Theis, F.J., Gabka C., Sotlar K. and Scheel C.H. (2015). Quantification of regenerative potential in primary human mammary epithelial cells. Development, DOI:10.1242/dev.123554. Abstract Breast cancer is a heterogeneous disease with a high degree of intra- and intertumoral diversity, which impedes accurate patient stratification, prognosis and optimal treatment. The mammary gland consists of a complex network of epithelial ducts which end in clusters of alveoli, called terminal ductal lobular units (TDLUs) which are the functional units of the mammary gland. Postnatal mammary gland development and homeostasis require an enormous regenerative output, suggesting the existence of tissue stem/progenitor cells and a high degree of cellular plasticity to ensure functional robustness, i.e. the production and secretion of milk during lactation. Therefore, the observed heterogeneity in breast cancer is likely the result of normal mammary gland architecture and functionality.
    [Show full text]
  • Bilateral Accessory Breast S Sahu, M Husain, P Sachan
    The Internet Journal of Surgery ISPUB.COM Volume 17 Number 2 Bilateral Accessory Breast S Sahu, M Husain, P Sachan Citation S Sahu, M Husain, P Sachan. Bilateral Accessory Breast. The Internet Journal of Surgery. 2007 Volume 17 Number 2. Abstract Accessory breasts or polymastia occur in 0.4-6 per cent of women and 1-3% of males. They can consist of any or all components of the breast and may be functional or non-functional. Approximately 67% of accessory breast tissue occurs in the thoracic or abdominal portions of the milk line, often just below the inframammary crease and more often on the left side of the body. Another 20% occur in the axilla. We report a case of bilateral axillary accessory breast. Excision was done under general anesthesia. INTRODUCTION Figure 1 The mammary glands are a distinguishing feature of Figure 1: Bilateral Axillary Accessory Breast mammals beginning their development early in the embryologic life. At 5 weeks of embryologic development, ectodermal mammary streaks extend bilaterally from axilla to groin. Two weeks later, a mammary ridge or milk line develops in the thoracic portion of the primitive streaks and begins to proliferate as a primary mammary bud. This primary bud subsequently begins growth downward as a solid diverticulum into the underlying dermis during the seventh week. By the 10th week, the primary bud begins to branch, yielding secondary buds by the 12th week, which eventually develop into the mammary lobules of the adult breast. Further differentiation into complete breast parenchyma occurs during the remainder of gestation. The remainder of the mammary streak usually regresses; however, incomplete involution can result in foci of accessory breast tissue anywhere along the line that extends from axilla to groin.
    [Show full text]
  • Implications of Breastfeeding in Triple Negative Breast Cancer THESIS
    Implications of Breastfeeding in Triple Negative Breast Cancer THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Mustafa M. Basree Graduate Program in Anatomy The Ohio State University 2017 Thesis Committee: Bhuvaneswari Ramaswamy, MD MRCP, Research Advisor Gustavo Leone, PhD, Research Advisor Eileen Kalmar, PhD, Academic Advisor Sarmila Majumder, PhD Kirk McHugh, PhD Copyright by Mustafa M. Basree 2017 Abstract Due to high mortality associated with triple negative breast cancer (TNBC), a prevention program has the potential to protect many women against this disease. Recent epidemiological and meta-analysis studies revealed a possible correlation between a lack of breastfeeding and development of TNBC. African-American (AA) women have a disproportionate burden of developing aggressive TNBC, a sub-population with higher parity rates and lower prevalence of breastfeeding. The reasons for why parity and breastfeeding affect breast cancer risk are unclear, but recent studies revealed that the pregnancy-lactation cycle (which leads to remodeling of the mammary glands) alters breast morphology and microenvironment, thereby modifying breast cancer risk. Natural weaning (NW), the gradual cessation of breastfeeding, results in a measured reduction of the ductal structures, termed involution. Conversely, the decision not to breastfeed results in a hastened involution, or abrupt involution (AW). We modeled NW and AW in wild- type mice by restricting breastfeeding to 28 and 7 days respectively. Striking differences in the distribution of cell populations were observed in the mammary glands of AW mice compared to NW mice. Fluorescence activated cell sorting analysis revealed an expansion of the luminal progenitor cells with a concomitant decrease in mammary stem- cell enriched/basal compartment in the glands of the AW cohort.
    [Show full text]