Computational Modeling of Hip Joint Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
COMPUTATIONAL MODELING OF HIP JOINT MECHANICS by Andrew Edward Anderson A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Bioengineering The University of Utah April 2007 Copyright © Andrew Edward Anderson 2007 All Rights Reserved ABSTRACT The hip joint is one of the largest weight bearing structures in the human body. While its efficient structure may lend to a lifetime of mobility, abnormal, repetitive loading of the hip is thought to result in osteoarthritis (OA). The etiology of hip OA is unknown however, due to the high loads this joint supports, mechanics have been implicated as the primary factor. Quantifying the relevant mechanical parameters in the joint (i.e. cartilage and bone stresses) appears to be central to an enhanced understanding of this disease. Experimental studies have provided valuable insight into baseline hip joint biomechanics but they require a protocol that is inherently invasive. Numerical modeling techniques, such as the finite element method, open the possibility of predicting hip joint biomechanics noninvasively and could revolutionize the way pathological hips are diagnosed and treated. Unfortunately, hip finite element models to date have used simplified geometry and have not been validated. It can be credibly argued that prior computational models of the hip joint do not have the ability to predict cartilage and bone mechanics with sufficient accuracy for clinical application. The aim of this dissertation is to develop and validate methods that will facilitate patient-specific modeling of hip joint biomechanics. Toward this objective, subject- specific FE models of the pelvis and entire hip joint were developed. The accuracy of model geometry, i.e. cortical bone and cartilage thickness, was assessed using phantom based imaging studies. FE predictions were compared directly with experimental data for purposes of validation. The sensitivity of the models to errors in assumed and measured model inputs was quantified. Finally, recognizing that acetabular dysplasia may be the single most important contributor of hip joint OA, the validated modeling protocols were extended to analyze patient-specific models to demonstrate the general feasibility of the approach and to quantify differences in hip joint biomechanics between a normal and dysplastic hip joint. The developed modeling methodologies have a number of potential longer-term uses and benefits, including improved diagnosis of pathology, patient- specific approaches to treatment, and prediction of the success rate of corrective surgeries based on pre- and post-operative mechanics. v To my father: Richard E. Anderson “It matters not how long we live but how” Philip James Bailey TABLE OF CONTENTS ABSTRACT....................................................................................................................... iv LIST OF TABLES............................................................................................................. ix LIST OF FIGURES .............................................................................................................x ACKNOWLEDGEMENTS............................................................................................. xiii CHAPTER 1. INTRODUCTION ...................................................................................................1 Motivation................................................................................................................1 Research Goals.........................................................................................................4 Summary of Chapters ..............................................................................................5 References................................................................................................................8 2. BACKGROUND ...................................................................................................10 Forward..................................................................................................................10 Hip Joint Structure and Function ...........................................................................11 Pelvic and Femoral Bone...........................................................................11 Cartilage.....................................................................................................13 Labrum, Capsule, Ligaments, Muscles......................................................15 Hip Joint Pathology................................................................................................20 Osteoarthritis..............................................................................................20 Hip Dysplasia.............................................................................................22 Experimental Hip Joint Biomechanics...................................................................25 Bone Material Properties...........................................................................25 Cartilage Material Properties .....................................................................27 In-Vitro Studies of Hip Joints....................................................................29 In-Vivo Studies of Hip Joints ....................................................................32 Numerical Modeling of Hip Joint Biomechanics ..................................................35 Analytical Modeling of the Hip Joint ........................................................35 Computational Modeling of the Hip Joint .................................................36 References..............................................................................................................43 3. A SUBJECT-SPECIFIC FINITE ELEMENT MODEL OF THE PELVIS: DEVELOPMENT, VALIDATION AND SENSITIVITY STUDIES......................................................................................58 Abstract..................................................................................................................58 Introduction............................................................................................................60 Materials and Methods...........................................................................................63 Experimental Study....................................................................................63 Geometry Extraction and Mesh Generation ..............................................66 Position-Dependent Cortical Thickness.....................................................69 Assessment of Cortical Bone Thickness....................................................71 Material Properties and Boundary Conditions...........................................72 Sensitivity Studies......................................................................................73 Data Analysis.............................................................................................75 Results ....................................................................................................................76 Reconstructions of Pelvic Geometry .........................................................76 Cortical Bone Thickness............................................................................77 Trabecular Bone Elastic Modulus..............................................................80 FE Model Predictions................................................................................80 Discussion..............................................................................................................85 References..............................................................................................................92 4. FACTORS INFLUENCING CARTILAGE THICKNESS MEASUREMENTS WITH MULTI-DETECTOR CT A PHANTOM STUDY..........................................................................................97 Abstract..................................................................................................................97 Introduction............................................................................................................99 Materials and Methods.........................................................................................102 Phantom Description................................................................................102 CT Imaging Protocol................................................................................105 Image Segmentation, Surface Reconstruction, and Measurement of Thickness......................................................................106 Error Analysis..........................................................................................109 Results ..................................................................................................................110 Contrast Enhanced Scans.........................................................................110 Non-Enhanced Scans...............................................................................115 Discussion............................................................................................................117 Study Limitations.....................................................................................119 Practical Applications..............................................................................120 References............................................................................................................122