Slide 1 Manual Therapy for the Hip and Lower Quarter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blount, Anteversion and Torsion: What's It All About?
Blount, Anteversion and Torsion: What’s it all about? Arthur B. Meyers, MD Assistant Professor of Radiology Children’s Hospital of WisConsin/ MediCal College of WisConsin Disclosures • Author for Amirsys/Elsevier, reCeiving royalGes Lower Extremity Alignment in Children • Lower extremity rotaGon – Femoral version / Gbial torsion – Normal values & CliniCal indiCaGons – Imaging • Blount disease – Physiologic bowing – Blount disease Lower Extremity RotaGonal Alignment Primarily determined by: 1. Femoral version 2. Tibial torsion 3. PosiGon of the foot Rosenfeld SB. Approach to the Child with in-toeing. Up-to-date. 2/2014 Lower Extremity RotaGonal Alignment Primarily determined by: 1. Femoral version 2. Tibial torsion 3. PosiGon of the foot Rosenfeld SB. Approach to the Child with in-toeing. Up-to-date. 2/2014 Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long axis of the femur (posterior Condylar axis of the distal femur) Femoral Version The rotaGon of the femoral neCk in relaGon to the long -
Arthroscopic and Open Anatomy of the Hip 11
CHAPTER Arthroscopic and o'pen Anatomy of the Hip Michael B. Gerhardt, Kartik Logishetty, Morteza lV1eftah, and Anil S. Ranawat INTRODUCTION movements that they induce at the joint: 1) flexors; 2) extensors; 3) abductors; 4) adductors; 5) external rotators; and 6) interI12 I The hip joint is defined by the articulation between the head rotators. Although some muscles have dual roles, their primary of the femur and the aeetahulum of the pelvis. It is covered by functions define their group placem(:)nt, and they all have ullique :l large soft-tissue envelope and a complex array of neurovascu- neurovascular supplies (TIt ble 2-1). lar and musculotendinous structures. The joint's morphology The vascular supply of tbe hip stems from the external and anu orientation are complex, and there are wide anatomi c varia- internal iLiac ancries. An understanding of the course of these tions seen among individuals. The joint's deep location makes vessels is critical fo r ,lVo iding catasu"ophic vascular injury. fn both arthroscopic and open access challenging. To avoid iatro- addition, the blood supply to the fel11()ra l head is vulnerahle to genic injury while establishing functional and efficient access, both traumatic and iatrogenic injury; the disruption of this sup- the hip surgeon should possess a sound ana tomic knowledge of ply can result in avascular necrosis (Figure 2-2). the hip. T he human "hip" can be subdivided into three categories: I) the superficial surface anatomy; 2) the deep femoroacetabu- la r Joint and capsule; and 3) the associated structures, including the muscles, nerves, and vasculature, all of which directly affeet HIP MUSCULATURE its function. -
Discussion Concerning Deltoid Ligament and Antero-Medial Capsule Repair in the Surgical Management of Supination External Rotati
ISSN: 2643-4016 Wei et al. Int Arch Orthop Surg 2017, 1:001 Volume 1 | Issue 1 Open Access International Archives of Orthopaedic Surgery ORIGINAL ARTICLE Discussion Concerning Deltoid Ligament and Antero-Medial Cap- sule Repair in the Surgical Management of Supination External Rotation Ankle Fractures Wei REN1,3, Masumi MARUO HOLLEDGE1, Yong Cheng HU2,3 and Jike LU1* 1Department of Orthopedic Surgery, United Family Hospital, Beijing, China Check for 2Department of Foot and Ankle Surgery, Tianjin Hospital, Tianjin, China updates 3Tianjin Medical University, Tianjin, China *Corresponding author: Jike LU, Department of Orthopedic Surgery, United Family Hospital, 2 Jiangtai Lu, Chaoyang District, Beijing, China, Tel: +4008-9191-91, E-mail: [email protected] the Lauge-Hansen classification is frequently utilized. Abstract In the classification, Supination-External Rotation (SER) Objective: To evaluate the importance of ankle deltoid liga- injuries are the most common occurrences. In a clinical ment and anteromedial capsule repair in Lauge-Hansen Su- pination-External Rotation Stage IV (SER IV) ankle fractures. setting, SER stage IV (SER IV) can be seen as a fracture of the lateral malleolus (Weber B fibular fractures) on Methods: A total of 15 patients with SER IV ankle fractures radiographs, when there is no medial malleolus frac- without medial malleolus fractures, were studied. All patients were treated with lateral malleolus Open Reduction Internal ture. However, the classification indicates that SER IV Fixation (ORIF) and transsydesmotic screws with the deltoid injuries include the syndesmotic ligament rupture and ligament, as well as anteromedial capsule repair. The Lower the deltoid ligament injuries (bimalleolar equivalent). Extremity Function Scale (LEFS), Foot and Ankle Disabili- Obviously, SER IV injuries are unstable ankle fractures. -
The Zona Orbicularis of the Hip Joint: Anatomical Study and Review of the Literature
Original Article www.anatomy.org.tr Received: November 30, 2017; Accepted: December 7, 2017 doi:10.2399/ana.17.047 The zona orbicularis of the hip joint: anatomical study and review of the literature Alexandra Fayne1, Peter Collin2, Melissa Duran1, Helena Kennedy2, Kiran Matthews3, R. Shane Tubbs4,5, Anthony V. D’Antoni6 1SUNY Downstate College of Medicine, New York, USA 2New York University School of Medicine, New York, USA 3City University New York, New York, USA 4Seattle Science Foundation, Seattle, WA, USA 5Department of Anatomical Sciences, St. George’s University, Grenada, West Indies 6Division of Anatomy, Department of Radiology, Weill Cornell Medical College, New York, USA Abstract Objectives: Although it is used as a landmark during various orthopedic procedures of the hip, few studies have focused on the anatomy of the zona orbicularis. Therefore, the purpose of the present research was to study its morphology to improve our understanding of its structure and potential variation. Methods: Ten adult cadavers (four males and six females) underwent dissection of the left and right hip joints to observe the morphology and location of the zona orbicularis. A digital caliper was used to measure the length and width of the zona orbic- ularis. Results: We found a zona orbicularis on all sides and that when present anteriorly, many of the inferior fibers of the zona orbic- ularis were confluent with the fibers of the iliofemoral ligament. The mean length for right sides was 35.95 mm and the mean length for left sides was 43.93 mm. The mean width for right sides was 3.74 mm and the mean width for left sides was 4.4 mm. -
Femur Pelvis HIP JOINT Femoral Head in Acetabulum Acetabular
Anatomy of the Hip Joint Overview The hip joint is one of the largest weight-bearing HIP JOINT joints in the body. This ball-and-socket joint allows the leg to move and rotate while keeping the body Femoral head in stable and balanced. Let's take a closer look at the acetabulum main parts of the hip joint's anatomy. Pelvis Bones Two bones meet at the hip joint, the femur and the pelvis. The femur, commonly called the "thighbone," is the longest and heaviest bone of the body. At the top of the femur, positioned on the femoral neck, is the femoral head. This is the "ball" of the hip joint. The other part of the joint – the Femur "socket" – is found in the pelvis. The pelvis is a bone made of three sections: the ilium, the ischium and the pubis. The socket is located where these three sections fuse. The proper name of the socket is the "acetabulum." The head of the femur fits tightly into this cup-shaped cavity. Articular Cartilage The femoral head and the acetabulum are covered Acetabular with a layer of articular cartilage. This tough, smooth tissue protects the bones. It allows them to labrum glide smoothly against each other as the ball moves in the socket. Soft Tissues Several soft tissue structures work together to hold the femoral head securely in place. The acetabulum is surrounded by a ring of cartilage called the "acetabular labrum." This deepens the socket and helps keep the ball from slipping out of alignment. It also acts as a shock absorber. -
Ankle Ligament Injuries
ARTIGO DE REVISÃO Ankle ligament injuries Per A.F.H. Renström, M.D., Ph.D.1 and Scott A. Lynch, M.D.2 ABSTRACT ing and/or taping can alleviate instability problems in most patients. For cases of chronic instability that are refractory Acute ankle ligament sprains are common injuries. The to bracing and external support, surgical treatment can be majority of these occur during athletic participation in the explored. If the chronic instability is associated with subta- 15 to 35 year age range. Despite the frequency of the injury, lar instability that is refractory to conservative measures and diagnostic and treatment protocols have varied greatly. bracing as outlined above, surgical treatment must address Lateral ligament complex injuries are by far the most com- the subtalar joint as well. mon of the ankle sprains. Lateral ligament injuries typically Subtalar ligament injury and instability are probably more occur during plantar flexion and inversion, which is the po- common than appreciated. Definition and diagnosis of this sition of maximum stress on the anterotalofibular liagment entity are difficult, however. Fortunately, it appears that in (ATFL). For this reason, the ATFL is the most commonly the majority of the acute injuries healing occurs with the torn ligament during an inversion injury. In more severe in- same functional rehabilitation program as that for lateral ankle version injuries the calcaneofibular (CFL), posterotalofibu- ligament sprains. lar (PTFL) and subtalar ligament can also be injured. For chronic subtalar instability an intial attempt at func- Most acute lateral ankle ligament injuries recover quickly tional rehabilitation with ankle proprioceptive training and with nonoperative management. -
Netter's Anatomy Flash Cards – Section 7 – List 4Th Edition
Netter's Anatomy Flash Cards – Section 7 – List 4th Edition https://www.memrise.com/course/1577594/ Section 7 Lower Limb (72 cards) Plate 7-1 Hip (Coxal) Bone: Lateral View 1.1 Posterior superior iliac spine 1.2 Posterior inferior iliac spine 1.3 Greater sciatic notch 1.4 Body of ilium 1.5 Body of ischium 1.6 Ischial tuberosity 1.7 Pubic tubercle 1.8 Acetabulum 1.9 Iliac crest Plate 7-2 Hip (Coxal) Bone: Medial View 2.1 Wing (ala) of ilium (iliac fossa) 2.2 Pecten pubis (pectineal line) 2.3 Ramus of ischium 2.4 Lesser sciatic notch 2.5 Ischial spine 2.6 Articular surface (for sacrum) 2.7 Iliac tuberosity Plate 7-3 Hip Joint: Lateral View 3.1 Lunate (articular) surface of acetabulum 3.2 Articular cartilage 3.3 Head of femur 3.4 Ligament of head of femur (cut) 3.5 Obturator membrane 3.6 Acetabular labrum (fibrocartilaginous) Plate 7-4 Hip Joint: Anterior and Posterior Views 4.1 Iliofemoral ligament (Y ligament of Bigelow) 4.2 Pubofemoral ligament 4.3 Iliofemoral ligament 4.4 Ischiofemoral ligament Plate 7-5 Femur 5.1 Greater trochanter 5.2 Shaft (body) 5.3 Lateral epicondyle 5.4 Lateral condyle 5.5 Medial condyle 5.6 Medial epicondyle 5.7 Adductor tubercle 5.8 Linea aspera (Medial lip; Lateral lip) 5.9 Lesser trochanter 5.10 Intertrochanteric crest 5.11 Neck 5.12 Head Plate 7-6 Tibia and Fibula 6.1 Lateral condyle 6.2 Apex, Head, and Neck of fibula 6.3 Fibula 6.4 Lateral malleolus 6.5 Medial malleolus 6.6 Tibia 6.7 Tibial tuberosity 6.8 Medial condyle 6.9 Superior articular surfaces (medial and lateral facets) 6.10 Malleolar fossa of lateral -
The Ligament Anatomy of the Deltoid Complex of the Ankle: a Qualitative and Quantitative Anatomical Study
e62(1) COPYRIGHT Ó 2014 BY THE JOURNAL OF BONE AND JOINT SURGERY,INCORPORATED The Ligament Anatomy of the Deltoid Complex of the Ankle: A Qualitative and Quantitative Anatomical Study Kevin J. Campbell, BS, Max P. Michalski, MSc, Katharine J. Wilson, MSc, Mary T. Goldsmith, MS, Coen A. Wijdicks, PhD, Robert F. LaPrade, PhD, MD, and Thomas O. Clanton, MD Investigation performed at the Department of Biomedical Engineering, Steadman Philippon Research Institute, and the Steadman Clinic, Vail, Colorado Background: The deltoid ligament has both superficial and deep layers and consists of up to six ligamentous bands. The prevalence of the individual bands is variable, and no consensus as to which bands are constant or variable exists. Although other studies have looked at the variance in the deltoid anatomy, none have quantified the distance to relevant osseous landmarks. Methods: The deltoid ligaments from fourteen non-paired, fresh-frozen cadaveric specimens were isolated and the ligamentous bands were identified. The lengths, footprint areas, orientations, and distances from relevant osseous landmarks were measured with a three-dimensional coordinate measurement device. Results: In all specimens, the tibionavicular, tibiospring, and deep posterior tibiotalar ligaments were identified. Three additional bands were variable in our specimen cohort: the tibiocalcaneal, superficial posterior tibiotalar, and deep anterior tibiotalar ligaments. The deep posterior tibiotalar ligament was the largest band of the deltoid ligament. The origins from the distal center of the intercollicular groove were 16.1 mm (95% confidence interval, 14.7 to 17.5 mm) for the tibionavicular ligament, 13.1 mm (95% confidence interval, 11.1 to 15.1 mm) for the tibiospring ligament, and 7.6 mm (95% confidence interval, 6.7 to 8.5 mm) for the deep posterior tibiotalar ligament. -
Compiled for Lower Limb
Updated: December, 9th, 2020 MSI ANATOMY LAB: STRUCTURE LIST Lower Extremity Lower Extremity Osteology Hip bone Tibia • Greater sciatic notch • Medial condyle • Lesser sciatic notch • Lateral condyle • Obturator foramen • Tibial plateau • Acetabulum o Medial tibial plateau o Lunate surface o Lateral tibial plateau o Acetabular notch o Intercondylar eminence • Ischiopubic ramus o Anterior intercondylar area o Posterior intercondylar area Pubic bone (pubis) • Pectineal line • Tibial tuberosity • Pubic tubercle • Medial malleolus • Body • Superior pubic ramus Patella • Inferior pubic ramus Fibula Ischium • Head • Body • Neck • Ramus • Lateral malleolus • Ischial tuberosity • Ischial spine Foot • Calcaneus Ilium o Calcaneal tuberosity • Iliac fossa o Sustentaculum tali (talar shelf) • Anterior superior iliac spine • Anterior inferior iliac spine • Talus o Head • Posterior superior iliac spine o Neck • Posterior inferior iliac spine • Arcuate line • Navicular • Iliac crest • Cuboid • Body • Cuneiforms: medial, intermediate, and lateral Femur • Metatarsals 1-5 • Greater trochanter • Phalanges 1-5 • Lesser trochanter o Proximal • Head o Middle • Neck o Distal • Linea aspera • L • Lateral condyle • L • Intercondylar fossa (notch) • L • Medial condyle • L • Lateral epicondyle • L • Medial epicondyle • L • Adductor tubercle • L • L • L • L • 1 Updated: December, 9th, 2020 Lab 3: Anterior and Medial Thigh Anterior Thigh Medial thigh General Structures Muscles • Fascia lata • Adductor longus m. • Anterior compartment • Adductor brevis m. • Medial compartment • Adductor magnus m. • Great saphenous vein o Adductor hiatus • Femoral sheath o Compartments and contents • Pectineus m. o Femoral canal and ring • Gracilis m. Muscles & Associated Tendons Nerves • Tensor fasciae lata • Obturator nerve • Iliotibial tract (band) • Femoral triangle: Boundaries Vessels o Inguinal ligament • Obturator artery o Sartorius m. • Femoral artery o Adductor longus m. -
Medial Ankle Instability Instabilidade Medial Do Tornozelo
AR T IGO ES P ECI A L Medial ankle instability Instabilidade medial do tornozelo Beat Hintermann1, Alexej Barg2, Markus Knupp3 Abstract While much is known about the anatomy and biomechanics of lateral ankle ligaments, the medial ankle ligaments are still poorly understood. Analogously, very little objective data is available regarding the clinical presentation of medial ankle instability. The focus of this article is to elucidate the anatomy and function of the medial ligaments, and to present our experience for diagnosis and treatment of incompetent deltoid ligament. Keywords: Ankle joint/physiology; Ankle joint/surgery; Arthroscopy; Collateral ligaments/ physiology; Collateral ligaments/surgery; Joint instability/etiology; Joint instability/ physioology; Joint instability/surgery; Ligaments, articular/anatomy & histology Resumo Até quanto é conhecida a anatomia e a biomecânica do complexo ligamentar lateral, o li- gamento medial continua mal compreendido. Analogamente, poucos relatos objetivos são direcionados ao quadro clínico da instabilidade medial. O objetivo deste artigo é elucidar a anatomia e a biomecânica do ligamento medial e mostrar a experiência no diagnóstico e na conduta da incompetência do ligamento deltóide. Descritores: Articulação do tornozelo/fisiologia; Articulação do tornozelo/cirurgia; Artroscopia; Ligamentos colaterias/fisiologia; Ligamentos colaterais/cirurgia; Instabilidade articular/etiologia; Instabilidade articular/fisiologia; Instabilidade articular/cirurgia; Ligamentos articulares/anatomia & histologia Correspondência -
Morphological Characteristics of the Lateral Talocalcaneal Ligament: a Large-Scale Anatomical Study
Surgical and Radiologic Anatomy (2019) 41:25–28 https://doi.org/10.1007/s00276-018-2128-8 ANATOMIC VARIATIONS Morphological characteristics of the lateral talocalcaneal ligament: a large-scale anatomical study Mutsuaki Edama1,2 · Ikuo Kageyama2 · Takaniri Kikumoto1 · Tomoya Takabayashi1 · Takuma Inai1 · Ryo Hirabayashi1 · Wataru Ito1 · Emi Nakamura1 · Masahiro Ikezu1 · Fumiya Kaneko1 · Akira Kumazaki3 · Hiromi Inaba4 · Go Omori3 Received: 9 August 2018 / Accepted: 4 September 2018 / Published online: 30 October 2018 © Springer-Verlag France SAS, part of Springer Nature 2018 Abstract Purpose The purpose of this study is to clarify the morphological characteristics of the lateral talocalcaneal ligament (LTCL). Methods This study examined 100 legs from 54 Japanese cadavers. The LTCL was classified into three types: Type I, the LTCL branches from the calcaneofibular ligament (CFL); Type II, the LTCL is independent of the CFL and runs parallel to the calcaneus; and Type III, the LTCL is absent. The morphological features measured were fiber bundle length, fiber bundle width, and fiber bundle thickness. Results The LTCL was classified as Type I in 18 feet (18%), Type II in 24 feet (24%), and Type III in 58 feet (58%). All LTCLs were associated with the anterior talofibular ligament at the talus. There was no significant difference in morphologi- cal characteristics by Type for each ligament. Conclusions The LTCL was similar to the CFL in terms of fiber bundle width and fiber bundle thickness. Keywords Calcaneofibular · Ligament · Subtalar joint · Gross anatomy Introduction features, as well as complex three-dimensional mobility, making it a challenge to conduct quantitative evaluations. Of patients with chronic ankle instability, 42% [6] present Ligaments that are associated with the stability of the with mechanical instability of the talocrural joint, and 58% subtalar joint include the calcaneofibular ligament (CFL), have mechanical instability of the subtalar joint [3], each of the lateral talocalcaneal ligament (LTCL), the interosseous them at high percentages. -
The Attachment Sites and Attachment Areas of Deltoid Ligament Related to Clinical Implications: a Cadaveric Study
Int. J. Morphol., 38(4):1106-1111, 2020. The Attachment Sites and Attachment Areas of Deltoid Ligament Related to Clinical Implications: A Cadaveric Study Los Sitios y las Áreas de Inserción del Ligamento Deltoideo Relacionadas con las Implicaciones Clínicas: Un Estudio Cadavérico Chanatporn Inthasan1; Yasuhito Tanaka2; Tanawat Vaseenon3 & Pasuk Mahakkanukrauh4,5 INTHASAN, C.; TANAKA, Y.; VASEENON, T. & MAHAKKANUKRAUH, P. The attachment sites and attachment areas of deltoid ligament related to clinical implications: a cadaveric study. Int. J. Morphol 38(4):1106-1111, 2020. SUMMARY: Currently, the treatment for patients with deltoid ligament injuries who require surgical treatment are anatomical repair and reconstruction. The clinicians should understand the exact knowledge of attachment areas of individual bands of deltoid ligament for a successful treatment. We studied 46 ankles of fresh frozen cadavers. The individual bands of deltoid ligament were divided to small fibers. Afterwards, each small fiber of each band was cut and marked with acrylic color on the origin and insertion followed by photo taking. Lastly, the photos of individual origin and insertion were used to calculate the attachment areas. We found six bands of deltoid ligament in all ankles except tibionavicular ligament. Moreover, we discovered deep to tibiocalcaneal and posterior to sustentaculum tali ligaments in 3 cases. Regarding the attachment area, the deep posterior tibiotalar ligament had the largest proximal and distal attachment areas which were 87.36±23.15 mm2 and 88.88±24.24 mm2, respectively. The anterior tibiotalar ligament had the least proximal and distal attachment areas which were 23.12±8.25 mm2 and 33.16±14.63 mm2, respectively.