Methylation of ZNF331 Is an Independent Prognostic Marker of Colorectal Cancer and Promotes Colorectal Cancer Growth Yuzhu Wang1,2, Tao He1, James G

Total Page:16

File Type:pdf, Size:1020Kb

Methylation of ZNF331 Is an Independent Prognostic Marker of Colorectal Cancer and Promotes Colorectal Cancer Growth Yuzhu Wang1,2, Tao He1, James G Wang et al. Clinical Epigenetics (2017) 9:115 DOI 10.1186/s13148-017-0417-4 RESEARCH Open Access Methylation of ZNF331 is an independent prognostic marker of colorectal cancer and promotes colorectal cancer growth Yuzhu Wang1,2, Tao He1, James G. Herman3, Enqiang Linghu1, Yunsheng Yang1, François Fuks4, Fuyou Zhou5, Linjie Song6,7 and Mingzhou Guo1* Abstract Background: ZNF331 was reported to be a transcriptional repressor. Methylation of the promoter region of ZNF331 has been found frequently in human esophageal and gastric cancers. The function and methylation status of ZNF331 remain to be elucidated in human colorectal cancer (CRC). Methods: Six colorectal cancer cell lines, 146 cases of primary colorectal cancer samples, and 10 cases of noncancerous colorectal mucosa were analyzed in this study using the following techniques: methylation specific PCR (MSP), qRT-PCR, siRNA, flow cytometry, xenograft mice, MTT, colony formation, and transfection assays. Results: Loss of ZNF331 expression was found in DLD1 and SW48 cells, reduced expression was found in SW480, SW620, and HCT116 cells, and high level expression was detected in DKO cells. Complete methylation of the ZNF331 in the promoter region was found in DLD1 and SW48 cells, partial methylation was found in SW480, SW620, and HCT116 cells, and unmethylation was detected in DKO cells. Loss of/reduced expression of ZNF331 is correlated with promoter region methylation. Restoration of ZNF331 expression was induced by 5-aza-2′-deoxycytidine (DAC) in DLD1 and SW48 cells. These results suggest that ZNF331 expression is regulated by promoter region methylation in CRC cells. ZNF331 was methylated in 67.1% (98/146) of human primary colorectal cancer samples. Methylation of ZNF331 was significantly associated with tumor size, overall survival (OS), and disease-free survival (DFS) (p < 0.01, p < 0.01, p < 0.05). Methylation of ZNF331 was an independent poor prognostic marker for 5-year OS and 5-year DFS (both p < 0.05). ZNF331 suppressed cell proliferation and colony formation in CRC cells and suppressed human CRC cell xenograft growth in mice. Conclusions: ZNF331 is frequently methylated in human colorectal cancer, and the expression of ZNF331 is regulated by promoter region methylation. Methylation of ZNF331 is a poor prognostic marker of CRC. Keywords: ZNF331, Epigenetics, DNA methylation, Colorectal cancer Background Numerous prospective cohort epidemiology studies have Colorectal cancer (CRC) is the third most commonly di- identified specific dietary and lifestyle factors that either agnosed cancer in males and the second in females world- promote or protect against CRC [5–7]. Consumption of wide [1]. The incidence has sharply increased in the past red meat and animal fats increases CRC risk, whereas two decades in Eastern countries with changing environ- dietary fiber decreases risk [8, 9]. Other studies suggest mental factors, such as lifestyle and diet [2, 3]. Accumula- that the human gut microbiome is relatively stable in indi- tion of aberrant genetic and epigenetic changes plays an viduals over time except in the case of certain events such important role in CRC initiation and progression [4]. as food poisoning/infection or international travel. This likely reflects the hegemony of long-term dietary patterns on our gut microbiome [10, 11]. All these factors may * Correspondence: [email protected] 1Department of Gastroenterology & Hepatology, Chinese PLA General cause colorectal epithelial cell epigenetic changes and fur- Hospital, 28 Fuxing Road, Beijing 100853, China ther induces tumorigenesis. Thus, identification of new Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Wang et al. Clinical Epigenetics (2017) 9:115 Page 2 of 12 epigenetic biomarkers for diagnosis, prognosis, prediction, spectrophotometric analysis were used to check RNA and targeting therapy for CRC is necessary. quality and quantity. Total RNA (5 μg) was used to Zinc finger protein 331 (ZNF331) was first identified synthesize first-strand complementary DNA (cDNA) ac- from thyroid tumors [12]. It is also known as RITA cording to the manufacturer’s instructions (Invitrogen, (rearranged in thyroid adenoma), ZNF361, and ZNF463 Carlsbad, CA). The reaction mixture was diluted to [13]. The ZNF331 gene is located at chromosome 100 μl with water, and 2.5 μl of diluted cDNA mixture 19q13.42, a region in which loss of heterozygosity was added to each 25 μl PCR reaction. The ZNF331 (LOH) was detected in prostate cancer [14]. In our pre- PCR primer sequences were as follows: 5′-TAGGTCA vious study, we found that the ZNF331 gene is fre- GCTCTAGCCTCTC-3′ (forward) and 5′-AGCGTACC quently methylated in human esophageal squamous cell TTCACATATCCAG-3′ (reverse). Thermal cycling pa- cancer (ESCC) and it serves as a tumor suppressor in rameters were as follows: 95 °C 5 min; (95 °C 30 s, 58 °C ESCC [15]. The function of ZNF331 in human CRC re- 30 s, and 72 °C 30 s) 35 cycles; 72 °C 5 min. The primers mains unclear. In this study, we analyzed the epigenetic for GAPDH were as follows: 5′-GAGTCAACG regulation and the function of ZNF331 in human CRC. GATTTGGTCGT-3′ (forward), and 5′-GACAAGCTT CCCGTTCTCAG-3′ (reverse). Thermal cycling parame- Methods ters were as follows: 95 °C 5 min; (95 °C 30 s, 58 °C 30 s Human tissue samples and cell lines and 72 °C 40 s) 25 cycles; 72 °C 5 min. The amplified A total of 146 cases of primary CRC and 10 cases of non- PCR products were examined by 1.5% agarose gels. Each cancerous colorectal mucosa were collected from the cDNA sample was analyzed in triplicate with the Ap- Chinese PLA General Hospital in Beijing between May plied Biosystems StepOnePlus Real-Time PCR Systems 2009 and November 2013. All cancer samples were classi- using SYBR Green Realtime PCR Master Mix (Toyobo, fied according to WHO Classification of Digestive Tu- Shanghai, China) according to the manufacturer’s in- mors: the 4th Edition. All samples were collected under structions. The relative amount of ZNF331 mRNA was the guidelines approved by the institutional review board normalized to GAPDH using the ΔΔCt method. at the Chinese PLA General Hospital. Among the patient cases, 98 cases were male and 48 cases were female. The Bisulfite modification, methylation-specific PCR, bisulfite median age was 60 years old (range 33–86 years old). All sequencing, and KRAS and BRAF mutation detection cancer samples were classified according to the TNM sta- Genomic DNA was extracted by the proteinase K ging system (AJCC2010), which included tumor stage I (n method. Cultured cells and fresh tissue samples were = 17), stage II (n =58),stageIII(n = 52), and stage IV (n = digested by DNA digestion buffer (pH 8.0, 10 mM Tris- 19). Six CRC cell lines, DLD1, SW48, HCT116, SW480, Cl, 25 mM EDTA, 1% SDS, 100 μg/ml proteinase K) and SW620, and DKO (DNMT1 and DNMT3b double knock- extracted by phenol/chloroform. The bisulfite modifica- out from HCT116 cells, a generous gift from Stephen tion assay was performed as previously described [16]. Baylin), were examined in this study and maintained in MSP primers were designed according to genomic se- 90% Roswell Park Memorial Institute (RPMI) 1640 media quences around the transcription start sites (TSS) and supplemented with 10% fetal bovine serum, 100 U/ml synthesized (BGI, Beijing, China) to detect unmethylated penicillin and 100 mg/ml streptomycin. HEK-293T cells (U) and methylated (M) alleles. The MSP primers were were cultured in Dulbecco’s modified Eagle’smediumsup- as follows: 5′-TAAGGTAGGACGTTTTTAGGGTCGC- plemented with 10% fetal bovine serum. All cell lines were 3′ (MF) and 5′-AACTCTACACGACGCAAATAAAAC cultured in an atmosphere of 5% carbon dioxide at 37 °C. CG-3′ (MR); 5′-TTTTAAGGTAGGATGTTTTTAGGG TTGT-3′ (UF) and 5′-ACAACTCTACACAACACAAA 5-Aza-2′-deoxycytidine treatment TAAAACCA-3′ (UR). The thermal cycling parameters CRC cell lines (DLD1, SW48, HCT116, SW480, SW620, were as follows: 95 °C 5 min; (95 °C 30 s, 60 °C 30 s and and DKO) were split to a low density (30% confluence) 72 °C 40 s) 35 cycles; 72 °C 5 min. The expected sizes of 12 h before treatment with 2 μM 5-aza-2′-deoxycytidine unmethylated and methylated products were 147 and (DAC, Sigma, MO, USA). Growth medium conditioned 142 bp, respectively. Bisulfite-treated DNA was also with DAC at 2 μM was exchanged every 24 h for a total amplified using bisulfite sequencing (BSSQ) primers that of 96 h. At the end of the treatment course, RNA was included the MSP region. The sequencing primers were extracted from the cells as described below. as follows: 5′-GGTTATGAGTTATATTTTTTAGAAG- 3′ (forward) and 5′-CTCRCTCCTCATTAAACTATAC- RNA isolation, semi-quantitative RT-PCR, and real-time 3′ (reverse). The thermal cycling parameters were as quantitative RT-PCR analyses follows: 95 °C 5 min; (95 °C 30 s, 55 °C 30 s and 72 °C Total RNA was isolated by Trizol reagent (Life Tech- 40 s) 35 cycles; 72 °C 5 min. Methylation status was de- nologies, MD, USA). Agarose gel electrophoresis and tected by MSP in four genes (RUNX3, CACNA1G, IGF2, Wang et al. Clinical Epigenetics (2017) 9:115 Page 3 of 12 and MLH1) to represent CpG island methylator pheno- supernatant was collected and filtered after 48 h.
Recommended publications
  • Functional Analysis of Human Hematopoietic Stem Cell Gene Expression Using Zebrafish
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open access, freely available online PLoS BIOLOGY Functional Analysis of Human Hematopoietic Stem Cell Gene Expression Using Zebrafish Craig E. Eckfeldt1[, Eric M. Mendenhall1[, Catherine M. Flynn1, Tzu-Fei Wang1, Michael A. Pickart2, Suzanne M. Grindle3, Stephen C. Ekker2, Catherine M. Verfaillie1* 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America, 2 Genetics, Cell Biology, and Development and Arnold and Mabel Beckman Center for Transposon Research, University of Minnesota, Minneapolis, Minnesota, United States of America, 3 Cancer Center Bioinformatics Division, University of Minnesota, Minneapolis, Minnesota, United States of America Although several reports have characterized the hematopoietic stem cell (HSC) transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow CD34þCD33ÀCD38ÀRholoc-kitþ cells, enriched for hematopoietic stem/progenitor cells with CD34þCD33ÀCD38ÀRhohi cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO)-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23%) of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Zinc-Finger Protein 331, a Novel Putative Tumor Suppressor
    Oncogene (2013) 32, 307 --317 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer JYu1,4, QY Liang1,4, J Wang1,4, Y Cheng2, S Wang1, TCW Poon1,MYYGo1,QTao2, Z Chang3 and JJY Sung1 Zinc-finger protein 331 (ZNF331), a Kruppel-associated box zinc-finger protein gene, was identified as a putative tumor suppressor in our previous study. However, the role of ZNF331 in tumorigenesis remains elusive. We aimed to clarify its epigenetic regulation and biological functions in gastric cancer. ZNF331 was silenced or downregulated in 71% (12/17) gastric cancer cell lines. A significant downregulation was also detected in paired gastric tumors compared with adjacent non-cancer tissues. In contrast, ZNF331 was readily expressed in various normal adult tissues. The downregulation of ZNF331 was closely linked to the promoter hypermethylation as evidenced by methylation-specific PCR, bisulfite genomic sequencing and reexpression by demethylation agent treatment. DNA sequencing showed no genetic mutation/deletion of ZNF331 in gastric cancer cell lines. Ectopic expression of ZNF331 in the silenced cancer cell lines MKN28 and HCT116 significantly reduced colony formation and cell viability, induced cell cycle arrests and repressed cell migration and invasive ability. Concordantly, knockdown of ZNF331 increased cell viability and colony formation ability of gastric cancer cell line MKN45. Two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomic approach were applied to analyze the molecular basis of the biological functions of ZNF331. In all, 10 downstream targets of ZNF331 were identified to be associated with regulation of cell growth and metastasis.
    [Show full text]
  • Mining Novel Candidate Imprinted Genes Using Genome-Wide Methylation Screening and Literature Review
    epigenomes Article Mining Novel Candidate Imprinted Genes Using Genome-Wide Methylation Screening and Literature Review Adriano Bonaldi 1, André Kashiwabara 2, Érica S. de Araújo 3, Lygia V. Pereira 1, Alexandre R. Paschoal 2 ID , Mayra B. Andozia 1, Darine Villela 1, Maria P. Rivas 1 ID , Claudia K. Suemoto 4,5, Carlos A. Pasqualucci 5,6, Lea T. Grinberg 5,7, Helena Brentani 8 ID , Silvya S. Maria-Engler 9, Dirce M. Carraro 3, Angela M. Vianna-Morgante 1, Carla Rosenberg 1, Luciana R. Vasques 1,† and Ana Krepischi 1,*,† ID 1 Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090 São Paulo, SP, Brazil; [email protected] (A.B.); [email protected] (L.V.P.); [email protected] (M.B.A.); [email protected] (D.V.); [email protected] (M.P.R.); [email protected] (A.M.V.-M.); [email protected] (C.R.); [email protected] (L.R.V.) 2 Department of Computation, Federal University of Technology-Paraná, Avenida Alberto Carazzai, 1640, 86300-000 Cornélio Procópio, PR, Brazil; [email protected] (A.K.); [email protected] (A.R.P.) 3 International Center for Research, A. C. Camargo Cancer Center, Rua Taguá, 440, 01508-010 São Paulo, SP, Brazil; [email protected] (É.S.d.A.); [email protected] (D.M.C.) 4 Division of Geriatrics, University of São Paulo Medical School, Av. Dr. Arnaldo, 455, 01246-903 São Paulo, SP, Brazil; [email protected] 5 Brazilian Aging Brain Study Group-LIM22, Department of Pathology, University of São Paulo Medical School, Av.
    [Show full text]
  • Parent of Origin Gene Expression in a Founder Population Identifies Two New
    bioRxiv preprint doi: https://doi.org/10.1101/344457; this version posted June 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Imprinted genes in a founder population 4 5 Parent of origin gene expression in a founder population identifies two new 6 imprinted genes at known imprinted regions. 7 8 9 10 Sahar V. Mozaffari1,2*, Michelle M. Stein2, Kevin M. Magnaye 2, Dan L. Nicolae1,2,3, Carole 11 Ober1,2 12 13 1Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, 14 Illinois, United States of America 15 2Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of 16 America 17 3Department of Statistics, University of Chicago, Chicago, Illinois, United States of America 18 19 * Corresponding author 20 E-mail: [email protected] (SVM) 21 1 bioRxiv preprint doi: https://doi.org/10.1101/344457; this version posted June 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 Abstract 23 Genomic imprinting is the phenomena that leads to silencing of one copy of a gene 24 inherited from a specific parent. Mutations in imprinted regions have been involved in diseases 25 showing parent of origin effects.
    [Show full text]
  • Clinical Efficacy and Immune Regulation with Peanut Oral
    Clinical efficacy and immune regulation with peanut oral immunotherapy Stacie M. Jones, MD,a Laurent Pons, PhD,b Joseph L. Roberts, MD, PhD,b Amy M. Scurlock, MD,a Tamara T. Perry, MD,a Mike Kulis, PhD,b Wayne G. Shreffler, MD, PhD,c Pamela Steele, CPNP,b Karen A. Henry, RN,a Margaret Adair, MD,b James M. Francis, PhD,d Stephen Durham, MD,d Brian P. Vickery, MD,b Xiaoping Zhong, MD, PhD,b and A. Wesley Burks, MDb Little Rock, Ark, Durham, NC, New York, NY, and London, United Kingdom Background: Oral immunotherapy (OIT) has been thought to noted during OIT resolved spontaneously or with induce clinical desensitization to allergenic foods, but trials antihistamines. By 6 months, titrated skin prick tests and coupling the clinical response and immunologic effects of peanut activation of basophils significantly declined. Peanut-specific OIT have not been reported. IgE decreased by 12 to 18 months, whereas IgG4 increased Objective: The study objective was to investigate the clinical significantly. Serum factors inhibited IgE–peanut complex efficacy and immunologic changes associated with OIT. formation in an IgE-facilitated allergen binding assay. Secretion Methods: Children with peanut allergy underwent an OIT of IL-10, IL-5, IFN-g, and TNF-a from PBMCs increased over protocol including initial day escalation, buildup, and a period of 6 to 12 months. Peanut-specific forkhead box protein maintenance phases, and then oral food challenge. Clinical 3 T cells increased until 12 months and decreased thereafter. In response and immunologic changes were evaluated. addition, T-cell microarrays showed downregulation of genes in Results: Of 29 subjects who completed the protocol, 27 ingested apoptotic pathways.
    [Show full text]
  • Occupancy Maps of 208 Chromatin-Associated Proteins In
    Article Occupancy maps of 208 chromatin- associated proteins in one human cell type https://doi.org/10.1038/s41586-020-2023-4 E. Christopher Partridge1,10, Surya B. Chhetri1,2,9,10, Jeremy W. Prokop1,3, Ryne C. Ramaker1,4, Camden S. Jansen5, Say-Tar Goh6, Mark Mackiewicz1, Kimberly M. Newberry1, Received: 4 October 2017 Laurel A. Brandsmeier1, Sarah K. Meadows1, C. Luke Messer1, Andrew A. Hardigan1,4, Accepted: 9 January 2020 Candice J. Coppola2, Emma C. Dean1,7, Shan Jiang5, Daniel Savic8, Ali Mortazavi5, Barbara J. Wold6, Richard M. Myers1 ✉ & Eric M. Mendenhall1,2 ✉ Published online: 29 July 2020 Open access Transcription factors are DNA-binding proteins that have key roles in gene Check for updates regulation1,2. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its efects on diverse biological processes3–6. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–seq) experiments using the human HepG2 cell line for 208 chromatin- associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confrm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target.
    [Show full text]
  • A DNA Recognition Code for Probing the in Vivo Functions of Zinc Finger Transcription Factors at Domain Resolution
    bioRxiv preprint doi: https://doi.org/10.1101/630756; this version posted March 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A DNA recognition code for probing the in vivo functions of zinc finger transcription factors at domain resolution Berat Dogan1,2,4,¶, Senthilkumar Kailasam1,2,¶, Aldo Hernández Corchado1,2, Naghmeh Nikpoor3, Hamed S. Najafabadi1,2,* 1 McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada 2 Department of Human Genetics, McGill University, Montreal, QC, Canada 3 Rosell Institute for Microbiome and Probiotics, Montreal, QC, Canada 4 Current address: Department of Biomedical Engineering, Inonu University, Malatya, Turkey ¶ These authors contributed equally to this work. * Correspondence should be addressed to: H.S.N., [email protected] bioRxiv preprint doi: https://doi.org/10.1101/630756; this version posted March 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A DNA recognition code for probing the in vivo functions of zinc finger transcription factors at domain resolution Abstract Multi-zinc finger proteins are the largest class of human transcription factors, whose DNA-binding specificity is often encoded by a subset of their tandem Cys2His2 zinc finger (ZF) domains. However, the molecular code that underlies ZF-DNA interaction is incompletely understood, and in most cases the ZF subset that is responsible for in vivo DNA binding is unknown.
    [Show full text]
  • NIH Public Access Author Manuscript Chem Biol Interact
    NIH Public Access Author Manuscript Chem Biol Interact. Author manuscript; available in PMC 2011 March 19. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Chem Biol Interact. 2010 March 19; 184(1-2): 86±93. doi:10.1016/j.cbi.2009.12.011. Systems biology of human benzene exposure Luoping Zhanga,*, Cliona M. McHalea, Nathaniel Rothmanb, Guilan Lic, Zhiying Jia, Roel Vermeulend, Alan E. Hubbarda, Xuefeng Rena, Min Shenb, Stephen M. Rappaporta, Matthew Northe, Christine F. Skibolaa, Songnian Yinc, Christopher Vulpee, Stephen J. Chanockb, Martyn T. Smitha, and Qing Lanb a Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7356, USA b Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, 6120 Executive Boulevard, MSC 7242, Bethesda, MD 20892, USA c Chinese Center for Disease Control and Prevention, 27 Nan Wei Road, Beijing 100050, China d Environmental Epidemiology, Institute of Risk Assessment Sciences, Jenalaan 18d, 3584 CK, Utrecht, Netherlands e Department of Nutritional Science and Toxicology, University of California, Berkeley, 119 Morgan Hall #3104, Berkeley, CA 94720, USA Abstract Toxicogenomic studies, including genome-wide analyses of susceptibility genes (genomics), gene expression (transcriptomics), protein expression (proteomics), and epigenetic modifications (epigenomics), of human populations exposed to benzene are crucial to understanding gene- environment interactions, providing the ability to develop biomarkers of exposure, early effect and susceptibility. Comprehensive analysis of these toxicogenomic and epigenomic profiles by bioinformatics in the context of phenotypic endpoints, comprises systems biology, which has the potential to comprehensively define the mechanisms by which benzene causes leukemia.
    [Show full text]
  • Gene Expression Profiles in Peripheral Lymphocytes by Arsenic Exposure and Skin Lesion Status in a Bangladeshi Population
    1367 Gene Expression Profiles in Peripheral Lymphocytes by Arsenic Exposure and Skin Lesion Status in a Bangladeshi Population Maria Argos,1 Muhammad G. Kibriya,1 Faruque Parvez,2 Farzana Jasmine,1 Muhammad Rakibuz-Zaman,4 and Habibul Ahsan1,3 Departments of 1Epidemiology and 2Environmental Health Sciences, Mailman School of Public Health, and 3Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York and 4Columbia University Arsenic Project in Bangladesh, Bangladesh Abstract Millions of individuals worldwide are chronically exposed hundred sixty-eight genes were differentially expressed to arsenic through their drinking water. In this study, the between these two groups, from which 312 differentially effect of arsenic exposure and arsenical skin lesion status expressed genes were identified by restricting the analysis on genome-wide gene expression patterns was evaluated to female never-smokers. We also explored possible using RNA from peripheral blood lymphocytes of individ- differential gene expression by arsenic exposure levels uals selected from the Health Effects of Arsenic Longitudi- among individuals without manifest arsenical skin lesions; nal Study. Affymetrix HG-U133A GeneChip (Affymetrix, however, no differentially expressed genes could be Santa Clara, CA) arrays were used to measure the identified from this comparison. Our findings show that expression of f22,000 transcripts. Our primary statistical microarray-based gene expression analysis is a powerful analysis involved identifying differentially expressed genes method to characterize the molecular profile of arsenic between participants with and without arsenical skin exposure and arsenic-induced diseases. Genes identified lesions based on the significance analysis of microarrays from this analysis may provide insights into the underlying statistic with an a priori defined 1% false discovery rate to processes of arsenic-induced disease and represent potential minimize false positives.
    [Show full text]
  • Low Rates of Mutation in Clinical Grade Human Pluripotent Stem Cells Under Different Culture Conditions
    This is a repository copy of Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/159362/ Version: Published Version Article: Thompson, O., von Meyenn, F., Hewitt, Z. orcid.org/0000-0001-7519-7029 et al. (14 more authors) (2020) Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nature Communications, 11 (1). 1528. https://doi.org/10.1038/s41467-020-15271-3 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ ARTICLE https://doi.org/10.1038/s41467-020-15271-3 OPEN Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions Oliver Thompson1, Ferdinand von Meyenn 2,3,6, Zoe Hewitt 1, John Alexander 1,7, Andrew Wood 1, Richard Weightman 1, Sian Gregory 1, Felix Krueger 4, Simon Andrews4, Ivana Barbaric1, Paul J. Gokhale 1, Harry D. Moore1, Wolf Reik2,5, Marta Milo 1, Serena Nik-Zainal 5,8,9, ✉ ✉ Kosuke Yusa 5,10 & Peter W.
    [Show full text]