Low Rates of Mutation in Clinical Grade Human Pluripotent Stem Cells Under Different Culture Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Low Rates of Mutation in Clinical Grade Human Pluripotent Stem Cells Under Different Culture Conditions This is a repository copy of Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/159362/ Version: Published Version Article: Thompson, O., von Meyenn, F., Hewitt, Z. orcid.org/0000-0001-7519-7029 et al. (14 more authors) (2020) Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nature Communications, 11 (1). 1528. https://doi.org/10.1038/s41467-020-15271-3 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ ARTICLE https://doi.org/10.1038/s41467-020-15271-3 OPEN Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions Oliver Thompson1, Ferdinand von Meyenn 2,3,6, Zoe Hewitt 1, John Alexander 1,7, Andrew Wood 1, Richard Weightman 1, Sian Gregory 1, Felix Krueger 4, Simon Andrews4, Ivana Barbaric1, Paul J. Gokhale 1, Harry D. Moore1, Wolf Reik2,5, Marta Milo 1, Serena Nik-Zainal 5,8,9, ✉ ✉ Kosuke Yusa 5,10 & Peter W. Andrews 1 1234567890():,; The occurrence of repetitive genomic changes that provide a selective growth advantage in pluripotent stem cells is of concern for their clinical application. However, the effect of different culture conditions on the underlying mutation rate is unknown. Here we show that the mutation rate in two human embryonic stem cell lines derived and banked for clinical application is low and not substantially affected by culture with Rho Kinase inhibitor, com- monly used in their routine maintenance. However, the mutation rate is reduced by >50% in cells cultured under 5% oxygen, when we also found alterations in imprint methylation and reversible DNA hypomethylation. Mutations are evenly distributed across the chromosomes, except for a slight increase on the X-chromosome, and an elevation in intergenic regions suggesting that chromatin structure may affect mutation rate. Overall the results suggest that pluripotent stem cells are not subject to unusually high rates of genetic or epigenetic alterations. 1 The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK. 2 Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. 3 Department of Medical & Molecular Genetics, King’s College London, London SE1 9RT, UK. 4 Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK. 5 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. 6Present address: Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland. 7Present address: Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK. 8Present address: Academic Laboratory of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Box 238, Lv6 Addenbrooke’ Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK. 9Present address: MRC Cancer Unit, University of Cambridge, Hutchinson/MRC Research Centre, Box 1297, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK. 10Present address: Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, ✉ Japan. email: [email protected]; p.w.andrews@sheffield.ac.uk NATURE COMMUNICATIONS | (2020) 11:1528 | https://doi.org/10.1038/s41467-020-15271-3 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15271-3 he presence of mutations in human pluripotent stem cells rearrangements or other mutations cannot be excluded. PSC are (PSC), whether embryonic stem (ES) cells or induced one of the few ‘normal’ diploid cell types that do not undergo T fi pluripotent stem (iPS) cells, is a concern for their safe use senescence and can be maintained inde nitely in vitro. Other in therapeutic applications. Indeed, in one case, a potential trial of diploid somatic cells undergo senescence, whereas other easily retinal pigment cells from an autologous iPS cell line was aban- accessible cells that can be grown indefinitely are likely to be doned because the cells carried a mutation of unknown sig- transformed cancer cells. Further, cell cycle control in PSC nificance1. Certainly some such variants are likely to have been differs with respect to the lack of key checkpoints, notably the present in the embryos or somatic cells from which particular G1/S checkpoint19, or the CHK1 checkpoint in S-Phase DNA PSC were derived and can be classed as ‘variants of origin’2,3. replication resulting in apoptosis of PSC in response to DNA However, the propensity of PSC to acquire genetic variants on replication stress, in contrast to somatic cells20.Thismight prolonged passage poses additional concerns, not only because of reflect the relation of PSC to the rapidly dividing pluripotent the difficulty for their early detection4, but also their selective cells of the early embryo for which there may be a survival growth advantages might presage malignant potential5. advantage if cells suffering DNA damage undergo apoptosis Acquired genetic variants of human ES cells were first noticed rather than repair the damage. as non-random gains of particular chromosomes or fragments of Most studies in human PSC to date have been concerned with chromosomes detected by G-banding karyotypes6,7. Over suc- mutations providing a selective advantage, as these are the most ceeding years these observations were repeated in many labora- frequently and easily detected when screening cell lines. However, tories as it became clear that certain chromosomal regions of estimating the underlying mutation rate is more difficult and can human PSC, whether ES or iPS cells, were particularly subject to be confounded by the emergence of an advantageous or cell-lethal gains, notably chromosomes 1q, 12p, 17q and 20q, and the X mutation, both of which could bias the mutational load of the chromosome, or losses, notably 10p, 18q and 22p2. At the same population. To de-couple mutation from selection it is necessary time, other chromosomes, notably chromosome 4, appeared to distinguish acquired de novo mutations, occurring during impervious to any gains or losses. More refined analyses, for prolonged cell culture, from variants-of-origin mutations (i.e. example using SNV arrays2,8, also began to reveal small structural those already present in the parental cells) and to estimate the variants not readily detectable by G-banding cytogenetics. For frequency of their appearance before the selective overgrowth of example, a small variable length CNV was found in the proximal any advantageous mutations. region of chromosome 20q in 20 human ES cell lines that were In this study, to determine the rate and types of mutation that otherwise scored as normal, diploid cells by G-banding2,9,10. occur during culture of human PSC, we have used a cloning More recently, single base-pair mutations have been reported in strategy coupled with whole-genome-, whole-genome bisulfite- the TP53 gene of several human ES cell lines11,12. and RNA-sequencing to compare two well characterised, clinical It seems likely that the repetitive, non-random nature of many, grade human ES cell lines, as well as the effects of culture in the if not all, acquired mutations observed in human PSC results presence of a Rho-kinase inhibitor, now commonly used in from their conferring a selective growth advantage. Certainly, routine culture of human PSC, and of culture under low oxygen chromosomal variants when initially observed in a small pro- (5% O2) conditions. We have tested whether the mutations are portion of cells in a culture commonly come to predominate randomly distributed throughout the genome or clustered in within very few passages, while experiments in which small regions related to chromatin structure and gene expression. Our numbers of variant cells have been mixed with their normal results indicate that the mutation rate is low compared to esti- counterparts confirm the strong selective growth advantage of the mates in somatic or cancer cells and can be further reduced by variants13. Time lapse imaging of the growth patterns of variant culture under low oxygen conditions. Furthermore, the muta- and normal cells also indicates marked effects on the ability of the tional signature of human PSC is similar to that of other cultured cells to form viable long-term colonies after passaging by over- human cells, but low oxygen culture does alter the frequency of coming multiple bottlenecks that restrict the ability of normal some types of base-pair change associated with oxidative damage. cells to proliferate14. Further, in the minimal amplicon of the chromosome 20 CNV, it has been possible to identify the Results likely driver gene, BCL2L1, overexpression of which inhibits Experimental design. For these experiments, we chose two male apoptosis and increases survival of the variant cells15,16. Likewise, human ES cell lines, MShef4 and MShef11 that we had derived the mutations in TP53 are likely to provide a growth advantage by under GMP-like conditions suitable for their potential clinical use suppressing apoptosis11,12. in regenerative medicine. During their initial derivation, banking There have been many estimates of mutation rate in the and characterisation, no karyotypic variants of MShef4 had been germline and soma, although finding consensus in the reported observed, and it was designated, a priori, as a genetically more rates is confounded by the variety of experimental and analytical stable line.
Recommended publications
  • Analyses of Allele-Specific Gene Expression in Highly Divergent
    ARTICLES Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance James J Crowley1,10, Vasyl Zhabotynsky1,10, Wei Sun1,2,10, Shunping Huang3, Isa Kemal Pakatci3, Yunjung Kim1, Jeremy R Wang3, Andrew P Morgan1,4,5, John D Calaway1,4,5, David L Aylor1,9, Zaining Yun1, Timothy A Bell1,4,5, Ryan J Buus1,4,5, Mark E Calaway1,4,5, John P Didion1,4,5, Terry J Gooch1,4,5, Stephanie D Hansen1,4,5, Nashiya N Robinson1,4,5, Ginger D Shaw1,4,5, Jason S Spence1, Corey R Quackenbush1, Cordelia J Barrick1, Randal J Nonneman1, Kyungsu Kim2, James Xenakis2, Yuying Xie1, William Valdar1,4, Alan B Lenarcic1, Wei Wang3,9, Catherine E Welsh3, Chen-Ping Fu3, Zhaojun Zhang3, James Holt3, Zhishan Guo3, David W Threadgill6, Lisa M Tarantino7, Darla R Miller1,4,5, Fei Zou2,11, Leonard McMillan3,11, Patrick F Sullivan1,5,7,8,11 & Fernando Pardo-Manuel de Villena1,4,5,11 Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect.
    [Show full text]
  • Functional Analysis of Human Hematopoietic Stem Cell Gene Expression Using Zebrafish
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open access, freely available online PLoS BIOLOGY Functional Analysis of Human Hematopoietic Stem Cell Gene Expression Using Zebrafish Craig E. Eckfeldt1[, Eric M. Mendenhall1[, Catherine M. Flynn1, Tzu-Fei Wang1, Michael A. Pickart2, Suzanne M. Grindle3, Stephen C. Ekker2, Catherine M. Verfaillie1* 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America, 2 Genetics, Cell Biology, and Development and Arnold and Mabel Beckman Center for Transposon Research, University of Minnesota, Minneapolis, Minnesota, United States of America, 3 Cancer Center Bioinformatics Division, University of Minnesota, Minneapolis, Minnesota, United States of America Although several reports have characterized the hematopoietic stem cell (HSC) transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow CD34þCD33ÀCD38ÀRholoc-kitþ cells, enriched for hematopoietic stem/progenitor cells with CD34þCD33ÀCD38ÀRhohi cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO)-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23%) of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts.
    [Show full text]
  • Allele-Specific Demethylation at an Imprinted Mammalian Promoter Andrew J
    Published online 16 October 2007 Nucleic Acids Research, 2007, Vol. 35, No. 20 7031–7039 doi:10.1093/nar/gkm742 Allele-specific demethylation at an imprinted mammalian promoter Andrew J. Wood1,De´ borah Bourc’his2, Timothy H. Bestor3 and Rebecca J. Oakey1,* 1Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London, SE1 9RT, UK, 2INSERM U741, Institut Jacques Monod, 2 Place Jussieu, 75251 Paris, CEDEX 05, France and 3Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY10032, USA Received July 4, 2007; Revised August 24, 2007; Accepted September 6, 2007 ABSTRACT Mutations in members of the de novo methyltransferase gene family lead to disruptions in imprinted gene A screen for imprinted genes on mouse expression and to retrotransposon animation (3,4), Chromosome 7 recently identified Inpp5f_v2, suggesting that the two processes are controlled by a a paternally expressed retrogene lying within an common mechanism (5). Dnmt3l encodes a regulatory intron of Inpp5f. Here, we identify a novel paternally protein that stimulates de novo methylation by Dnmt3a expressed variant of the Inpp5f gene (Inpp5f_v3) that and Dnmt3b, but lacks the catalytic motifs necessary for shows a number of unusual features. Inpp5f_v3 methyltransferase activity. Male mice lacking functional initiates from a CpG-rich repeat region adjoining copies of the Dnmt3l gene are sterile due to meiotic arrest, two B1 elements, despite previous reports that which is associated with the upregulation of endogenous SINEs are generally excluded from imprinted pro- retrotransposons (3). Females carrying null mutations in moters. Accordingly, we find that the Inpp5f_v3 the Dnmt3l gene fail to establish imprinted methylation promoter acquires methylation around the time of marks during oogenesis, but show no obvious effects on implantation, when many repeat families undergo de retrotransposon activity (6).
    [Show full text]
  • Genetic Variant in 3' Untranslated Region of the Mouse Pycard Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Title: 4 Genetic Variant in 3’ Untranslated Region of the Mouse Pycard Gene Regulates Inflammasome 5 Activity 6 Running Title: 7 3’UTR SNP in Pycard regulates inflammasome activity 8 Authors: 9 Brian Ritchey1*, Qimin Hai1*, Juying Han1, John Barnard2, Jonathan D. Smith1,3 10 1Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 11 Cleveland, OH 44195 12 2Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 13 44195 14 3Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western 15 Reserve University, Cleveland, OH 44195 16 *, These authors contributed equally to this study. 17 Address correspondence to Jonathan D. Smith: email [email protected]; ORCID ID 0000-0002-0415-386X; 18 mailing address: Cleveland Clinic, Box NC-10, 9500 Euclid Avenue, Cleveland, OH 44195, USA. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 Quantitative trait locus mapping for interleukin-1 release after inflammasome priming and activation 22 was performed on bone marrow-derived macrophages (BMDM) from an AKRxDBA/2 strain intercross.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • The Abundance of Cis-Acting Loci Leading to Differential Allele
    Yeo et al. BMC Genomics (2016) 17:620 DOI 10.1186/s12864-016-2922-9 RESEARCH ARTICLE Open Access The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits Seungeun Yeo1, Colin A. Hodgkinson1, Zhifeng Zhou1, Jeesun Jung2, Ming Leung1, Qiaoping Yuan1 and David Goldman1* Abstract Background: Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL’s for complex phenotypes. Results: We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/ 129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE.
    [Show full text]
  • Methylation of ZNF331 Is an Independent Prognostic Marker of Colorectal Cancer and Promotes Colorectal Cancer Growth Yuzhu Wang1,2, Tao He1, James G
    Wang et al. Clinical Epigenetics (2017) 9:115 DOI 10.1186/s13148-017-0417-4 RESEARCH Open Access Methylation of ZNF331 is an independent prognostic marker of colorectal cancer and promotes colorectal cancer growth Yuzhu Wang1,2, Tao He1, James G. Herman3, Enqiang Linghu1, Yunsheng Yang1, François Fuks4, Fuyou Zhou5, Linjie Song6,7 and Mingzhou Guo1* Abstract Background: ZNF331 was reported to be a transcriptional repressor. Methylation of the promoter region of ZNF331 has been found frequently in human esophageal and gastric cancers. The function and methylation status of ZNF331 remain to be elucidated in human colorectal cancer (CRC). Methods: Six colorectal cancer cell lines, 146 cases of primary colorectal cancer samples, and 10 cases of noncancerous colorectal mucosa were analyzed in this study using the following techniques: methylation specific PCR (MSP), qRT-PCR, siRNA, flow cytometry, xenograft mice, MTT, colony formation, and transfection assays. Results: Loss of ZNF331 expression was found in DLD1 and SW48 cells, reduced expression was found in SW480, SW620, and HCT116 cells, and high level expression was detected in DKO cells. Complete methylation of the ZNF331 in the promoter region was found in DLD1 and SW48 cells, partial methylation was found in SW480, SW620, and HCT116 cells, and unmethylation was detected in DKO cells. Loss of/reduced expression of ZNF331 is correlated with promoter region methylation. Restoration of ZNF331 expression was induced by 5-aza-2′-deoxycytidine (DAC) in DLD1 and SW48 cells. These results suggest that ZNF331 expression is regulated by promoter region methylation in CRC cells. ZNF331 was methylated in 67.1% (98/146) of human primary colorectal cancer samples.
    [Show full text]
  • Using Next-Generation RNA Sequencing to Identify Imprinted Genes
    Heredity (2014) 113, 156–166 & 2014 Macmillan Publishers Limited All rights reserved 0018-067X/14 www.nature.com/hdy ORIGINAL ARTICLE Using next-generation RNA sequencing to identify imprinted genes X Wang1,2 and AG Clark1,2 Genomic imprinting is manifested as differential allelic expression (DAE) depending on the parent-of-origin. The most direct way to identify imprinted genes is to directly score the DAE in a context where one can identify which parent transmitted each allele. Because many genes display DAE, simply scoring DAE in an individual is not sufficient to identify imprinted genes. In this paper, we outline many technical aspects of a scheme for identification of imprinted genes that makes use of RNA sequencing (RNA-seq) from tissues isolated from F1 offspring derived from the pair of reciprocal crosses. Ideally, the parental lines are from two inbred strains that are not closely related to each other. Aspects of tissue purity, RNA extraction, library preparation and bioinformatic inference of imprinting are all covered. These methods have already been applied in a number of organisms, and one of the most striking results is the evolutionary fluidity with which novel imprinted genes are gained and lost within genomes. The general methodology is also applicable to a wide range of other biological problems that require quantification of allele-specific expression using RNA-seq, such as cis-regulation of gene expression, X chromosome inactivation and random monoallelic expression. Heredity (2014) 113, 156–166; doi:10.1038/hdy.2014.18; published online 12 March 2014 INTRODUCTION et al.,2003;Kuzminet al., 2008; Sritanaudomchai et al.,2010)and In diploid organisms, a subset of genes are expressed exclusively or uniparental disomic mice (Choi et al., 2001, 2005; Schulz et al.,2006), preferentially from one of the two parental alleles, resulting in allelic expression profiling using allele-specific single-nucleotide polymorph- imbalance (AI) in gene expression (Pastinen and Hudson, 2004).
    [Show full text]
  • Zinc-Finger Protein 331, a Novel Putative Tumor Suppressor
    Oncogene (2013) 32, 307 --317 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer JYu1,4, QY Liang1,4, J Wang1,4, Y Cheng2, S Wang1, TCW Poon1,MYYGo1,QTao2, Z Chang3 and JJY Sung1 Zinc-finger protein 331 (ZNF331), a Kruppel-associated box zinc-finger protein gene, was identified as a putative tumor suppressor in our previous study. However, the role of ZNF331 in tumorigenesis remains elusive. We aimed to clarify its epigenetic regulation and biological functions in gastric cancer. ZNF331 was silenced or downregulated in 71% (12/17) gastric cancer cell lines. A significant downregulation was also detected in paired gastric tumors compared with adjacent non-cancer tissues. In contrast, ZNF331 was readily expressed in various normal adult tissues. The downregulation of ZNF331 was closely linked to the promoter hypermethylation as evidenced by methylation-specific PCR, bisulfite genomic sequencing and reexpression by demethylation agent treatment. DNA sequencing showed no genetic mutation/deletion of ZNF331 in gastric cancer cell lines. Ectopic expression of ZNF331 in the silenced cancer cell lines MKN28 and HCT116 significantly reduced colony formation and cell viability, induced cell cycle arrests and repressed cell migration and invasive ability. Concordantly, knockdown of ZNF331 increased cell viability and colony formation ability of gastric cancer cell line MKN45. Two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomic approach were applied to analyze the molecular basis of the biological functions of ZNF331. In all, 10 downstream targets of ZNF331 were identified to be associated with regulation of cell growth and metastasis.
    [Show full text]
  • Mining Novel Candidate Imprinted Genes Using Genome-Wide Methylation Screening and Literature Review
    epigenomes Article Mining Novel Candidate Imprinted Genes Using Genome-Wide Methylation Screening and Literature Review Adriano Bonaldi 1, André Kashiwabara 2, Érica S. de Araújo 3, Lygia V. Pereira 1, Alexandre R. Paschoal 2 ID , Mayra B. Andozia 1, Darine Villela 1, Maria P. Rivas 1 ID , Claudia K. Suemoto 4,5, Carlos A. Pasqualucci 5,6, Lea T. Grinberg 5,7, Helena Brentani 8 ID , Silvya S. Maria-Engler 9, Dirce M. Carraro 3, Angela M. Vianna-Morgante 1, Carla Rosenberg 1, Luciana R. Vasques 1,† and Ana Krepischi 1,*,† ID 1 Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090 São Paulo, SP, Brazil; [email protected] (A.B.); [email protected] (L.V.P.); [email protected] (M.B.A.); [email protected] (D.V.); [email protected] (M.P.R.); [email protected] (A.M.V.-M.); [email protected] (C.R.); [email protected] (L.R.V.) 2 Department of Computation, Federal University of Technology-Paraná, Avenida Alberto Carazzai, 1640, 86300-000 Cornélio Procópio, PR, Brazil; [email protected] (A.K.); [email protected] (A.R.P.) 3 International Center for Research, A. C. Camargo Cancer Center, Rua Taguá, 440, 01508-010 São Paulo, SP, Brazil; [email protected] (É.S.d.A.); [email protected] (D.M.C.) 4 Division of Geriatrics, University of São Paulo Medical School, Av. Dr. Arnaldo, 455, 01246-903 São Paulo, SP, Brazil; [email protected] 5 Brazilian Aging Brain Study Group-LIM22, Department of Pathology, University of São Paulo Medical School, Av.
    [Show full text]
  • Parent of Origin Gene Expression in a Founder Population Identifies Two New
    bioRxiv preprint doi: https://doi.org/10.1101/344457; this version posted June 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Imprinted genes in a founder population 4 5 Parent of origin gene expression in a founder population identifies two new 6 imprinted genes at known imprinted regions. 7 8 9 10 Sahar V. Mozaffari1,2*, Michelle M. Stein2, Kevin M. Magnaye 2, Dan L. Nicolae1,2,3, Carole 11 Ober1,2 12 13 1Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, 14 Illinois, United States of America 15 2Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of 16 America 17 3Department of Statistics, University of Chicago, Chicago, Illinois, United States of America 18 19 * Corresponding author 20 E-mail: [email protected] (SVM) 21 1 bioRxiv preprint doi: https://doi.org/10.1101/344457; this version posted June 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 Abstract 23 Genomic imprinting is the phenomena that leads to silencing of one copy of a gene 24 inherited from a specific parent. Mutations in imprinted regions have been involved in diseases 25 showing parent of origin effects.
    [Show full text]