Emissions of Greenhouse Gases from Personal Travel in Britain Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Emissions of Greenhouse Gases from Personal Travel in Britain Thesis Open Research Online The Open University’s repository of research publications and other research outputs A Strategy For Reducing Emissions Of Greenhouse Gases From Personal Travel In Britain Thesis How to cite: Hughes, Peter Samuel (1992). A Strategy For Reducing Emissions Of Greenhouse Gases From Personal Travel In Britain. PhD thesis The Open University. For guidance on citations see FAQs. c 1992 The Author Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.00004d83 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk , .(.. ~C,y. j 3 ,') +~,.> Energy and Environment Research Unit Faculty of Technology A Strategy for Reducing Emissions of Greenhouse Gases from Personal Travel in Britain A thesis submitted to the Open University in candidacy for the degree of Doctor of Philosophy by Peter Samuel Hughes BSc August 1992 Abstract The presence of ‘greenhouse gases’ in the atmosphere has a warming effect on the biosphere, making the world habitable for life. Human activities, particularly energy use and deforestation, are increasing the concentration of these gases, and in particular carbon dioxide (CO;?). Many climatologists believe that the global temperature is beginning to rise as a result. The intergovernmental Panel on Climate Change (IPCC) has recommended that emissions of CO2 be cut by 60 per cent in order to stabilise the atmospheric concenaation of this gas and to minimise the resulting disruption to the world’s climate. Transport is currently Britain’s fastest growing source of carbon dioxide, the principal anthropogenic greenhouse gas. An assessment is made of the relative contributions to CO2 emissions of different forms of travel, and trends in energy use are surveyed. Emissions of CO2 from ‘secondary’ sources, such as vehicle production, are also examined. A computer model called SPACE is described, which was developed in order to assess CO2 emissions under different policy scenarios up to the year 2025. A ‘business as usual’ scenario predicts that emissions will rise substantially, mainly as a result of an ongoing rise in road traffic. This contrasts with the Government’s stated aim of stabilising emissions of CO2 at the 1990 level by 2000. A modification of this scenario, in which technological improvements to vehicles are vigorously applied, shows a reduced growth in emissions. A third scenario then examines the effect of a combination of technological and demand management policies, and demonstrates a significant reduction in emissions. Scenario 3 adopts what are seen as fairly modest policy measures, making use of their synergistic effect. The main justification for this ‘non-radical’ approach is public and political acceptability. It is, however, recognised that most of the policy measures could be applied more vigorously if required if it is assumed that transport is allotted a less stringent target than other energy-consuming sectors, the reduction in emissions projected in Scenario 3 is consistent with the IPCC goal of atmospheric CO;? stabilisation. Data sets compiled as part of the SPACE model can be made available on request. ... 111 CONTENTS Page Introduction 1 Chapter One Global warming and climatic change 5 1.1 The issue of global warming 7 1.2 The greenhouse theory 7 1.3 Greenhouse gases 8 1.4 Historical trends in greenhouse gas concentrations 12 1.5 Climatic change 12 1.6 Effects of global warming 14 1.7 Future greenhouse emissions 17 1.8 summary 22 Chapter Two The nature of greenhouse emissions from personal travel 23 2.1 Defining a uansport system 25 2.2 Transport’s share of COZ emissions 28 2.3 The growth of energy use in transport 30 2.4 The wider view: non-operational energy demand tranSp0rt 41 2.5 Energy use and greenhouse emissions 45 Y Chapter Three Aspects of fuel consumption in motorised travel 51 3.1 The influence of fuel consumption on greenhouse emissions 53 3.2 Fuel economy in private cars 54 3.3 Fuel economy in buses and coaches 68 3.4 Fuel economy in rail vehicles 73 3.5 Fuel economy in aircraft 78 3.6 summary 81 Chapter Four ‘Business as usual’ carbon dioxide emissions from personal travel 83 4.1 The need for a model 85 4.2 The scenario approach: SPACE 85 4.3 Establishing a baseline: ‘Business as Usual’ 89 4.4 Population and car ownership 89 4.5 Transpon demand 92 4.6 Energy consumption 100 4.7 Results of Scenario 1 105 Chapter Five Measures for reducing carbon dioxide emissions 107 5.1 The need for policy changes 109 5.2 Approaches to controlling greenhouse emissions &om transport 110 5.3 Measures to promote fuel economy 116 5.4 Measures to promote alternative fuels 126 5.5 Measures to promote modified travel patterns 144 vi 5.6 Timescales of policy measures 162 5.7 Public acceptance of policy measures 163 5.8 Deployment of policy measures 164 Chapter Six Scenario 2: Business as usual plus ‘technical fixes’ 169 6.1 The use of ‘technical fixes’ 171 6.2 The effect on the car stock 176 6.3 Results of Scenario 2 182 Chapter Seven Scenario 3: Atmospheric stabilisation 185 7.1 The need for a more sningent target 187 7.2 Policy measures for atmospheric stabilisation 189 7.3 Assessment of policy measures 190 7.4 Constructing a stabilisation scenario 205 Chapter Eight Conclusions 207 8.1 Principal findings 209 8.2 implications for an overall COZ reduction strategy 210 8.3 Comparison with the Netherlands National Transport Plan 211 8.4 Non-operational emissions of CO2 212 8.5 Beyond 2025 213 8.6 Which way now? 213 8.7 A ‘do nothing’ world? 215 References 217 Appendices 229 viii LIST OF TABLES 1.1 Summary of key greenhouse gases produced by human activities 10 1.2 The 20 largest contributors to greenhouse forcing in 1988 11 1.3 National responses to global warming 19 1.4 Cuts in emissions needed for a stabilisation of greenhouse gases at present atmospheric levels 20 2.1 Total energy use from UK transport demand 26 2.2 Energy losses in the production of transport fuels 28 2.3 Bus and coach population, 1986 32 2.4 Journeys and travel distance per person, 1965 and 1985 34 2.5 Energy intensity measures for various manufacturing indusnies in 1979 42 2.6 Energy use for different purposes according to travel mode 42 2.7 Energy consumption for constructing and maintaining road and rail infrastructure 44 2.8 Transport’s emission of regulated pollutants in 1989 47 2.9 EC limit values for regulated pollutants 48 3.1 Average fuel economy of different engine sizes, 1986 60 3.2 Materials used in the Austin Metro 61 3.3 Public service vehicle fuel consumption 68 3.4 Specific energy consumption of buses and coaches (1986) 69 3.5 Primary energy consumption of rail stock in Britain 74 4.1 Government forecast of Great Britain’s population up to 2025 (million) 90 4.2 Distribution of population according to household car ownership in Scenario 1. 91 4.3 Population trends projected in Scenario 1 92 ix 4.4 Summary of the 1989 Road Traffic Forecasts 93 4.5 Assumed car occupancies for Scenario 1 up to 2025 (persons per car) 94 4.6 Bus and coach travel forecasts in Scenario 1 95 4.1 British Rail forecasts of passenger traffic to 1994/95 96 4.8 Rail traffic growth assumed in Scenario 1 96 4.9 Average rail occupancies, 1979-89 (persons per train) 97 4.10 Average rail occupancies in Scenario 1 (persons per train) 98 4.11 Growth in domestic air traffic projected in Scenario 1 98 4.12 Growth in motorcycle traffic in Scen'uio 1 99 4.13 Walking and cycling projections in Scenario 1 1O0 4.14 Fuel economy values assumed in Scenario 1 (ü1oOkm) 102 4.15 Fuel economy projections for buses and coaches in Scenario 1 103 4.16 Traffic disaibution and power supply for the rail sector in Scenario 1 104 4.17 Projected energy consumption for air travel in Scenario 1 104 4.18 Projected StNcture of the electricity supply industry 105 5.1 Taxation of passenger vehicles under the Ontario programme 123 5.2 Property tax payable on cars in Italy 124 5.3 Annual licence fees for cars in the Isle of Man 124 5.4 Relative greenhouse emissions per kilometre of different energy sources relative to petrol engines in the USA 140 5.5 Cost estimates for alternative fuel options in 2010 141 5.6 Policy measures for use in controlling COZ emissions 165 5.7 Areas of influence for each of the policy measures 166 X 6.1 illustrative example of a rebate/surcharge system for company car taxation 173 6.2 Illustrative example of a feebate scheme for car sales in Britain 174 6.3 Average and ‘benchmark’ fuel economy, 1986 (UlOOh) 178 6.4 Fuel economy improvements assumed in Scenario 2 (VlOOh) 179 7.1 Elasticity of public transport demand with respect to fares 198 7.2 Travel modes of commuters in southern California 200 xi LIST OF FIGURES 1.1 The carbon cycle 8 1.2 Atmospheric concentration of greenhouse gases since 1750 13 1.3 Global average temperature. since 900 AD 14 1.4 Impact on atmospheric CO2 concentrations of various reduction strategies 18 2.1 UK CO2 emissions by end-use in 1989 29 2.2 COZemissions by different trmSp0rt modes, 1990 29 2.3 Energy consumption by final user in the UK, 1960 and 1990 (heat supplied basis) 31 2.4 Rail passenger traffic in Britain, 1990 33 2.5 Passenger transport by mode, 1952 to 1990 35 2.6 Energy consumption in UK transport in 1970 and 1987 36 2.7 Primary energy requirements of different travel modes in Britain 38 2.8 The influences acting upon transport energy demand 39 2.9 Travel by residents of different settlement sizes, 1972 40 2.10 Energy consumption in the VTE subsector by fuel 43 2.11 Energy consumption in the production of a cu 43 3.1 Energy losses in a typical car journey 54 3.2 ‘Official’ and ‘empirical’ estimates of average car fuel economy 57 3.3 Contributions to overall drag coefficient in a typical car 63 3.4 The effect of speed on fuel economy (average speeds) 65 3.5 The effect of speed on fuel economy (constant speeds) 66 3.6 Use of energy in the operation of an urban bus 70 4.1 Sample spreadsheet (blank) from SPACE 87 ..
Recommended publications
  • Computational Aerodynamic Analysis of Blended Wing Body Mav Design
    IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 COMPUTATIONAL AERODYNAMIC ANALYSIS OF BLENDED WING BODY MAV DESIGN Md. Akhtar khan1, Arjun Jagini2 1Assistant Professor, Department of Aerospace Engineering, GITAM University, Hyderabad 2Analyst, emug technologies Limited, Hyderabad Abstract The Blended Wing Body (BWB) configuration has the potential to change the way subsonic transport airplanes are designed. In the past ten years, fuel efficiency and noise reduction have become the two biggest challenges for aircraft manufacturers. This paper deals with the computational aerodynamic analysis of a BWB airplane at subsonic speeds using Ansys CFD as a simulation tool and ICEM CFD as a modeling tool. The study will focus on the aerodynamic characteristics such as the pressure, velocity variation over the body at different angle of attack. We are also calculating the aerodynamic efficiency (lift force to drag force ratio) so that we can compare the performance of a BWB aircraft with a conventional aircraft. Keywords: Blended Wing Body (BWB), Hybrid Wing, Tetra Mesh, Square Cube Law, ICEM CFD ---------------------------------------------------------------------***-------------------------------------------------------------------- 1. INTRODUCTION important advantage is the increased useful passenger space. By far the greatest of these advantages is the relatively large The current design of transport aircraft has not changed increase in payload per unit span. However, the BWB significantly in the past few decades; rather incremental design also introduces a number of challenges such as the design optimization has taken place on each new generation vastly increased sensitivity to center of gravity position, of aircraft. Growing environmental concerns and fuel prices static stability issues and the manufacturing difficulty.
    [Show full text]
  • Boeing Environment Report 2017
    THE BOEING COMPANY 2017 ENVIRONMENT REPORT BUILD SOMETHING CLEANER 1 ABOUT US Boeing begins its second century of business with a firm commitment to lead the aerospace industry into an environmentally progressive and sustainable future. Our centennial in 2016 marked 100 years of Meeting climate change and other challenges innovation in products and services that helped head-on requires a global approach. Boeing transform aviation and the world. The same works closely with government agencies, dedication is bringing ongoing innovation in more customers, stakeholders and research facilities efficient, cleaner products and operations for worldwide to develop solutions that help protect our employees, customers and communities the environment. around the globe. Our commitment to a cleaner, more sustainable Our strategy and actions reflect goals and future drives action at every level of the company. priorities that address the most critical environ- Every day, thousands of Boeing employees lead mental challenges facing our company, activities and projects that advance progress in customers and industry. Innovations that reducing emissions and conserving water and improve efficiency across our product lines resources. and throughout our operations drive reductions This report outlines the progress Boeing made in emissions and mitigate impacts on climate and challenges we encountered in 2016 toward change. our environmental goals and strategy. We’re reducing waste and water use in our In the face of rapidly changing business and facilities, even as we see our business growing. environmental landscapes, Boeing will pursue In addition, we’re finding alternatives to the innovation and leadership that will build a chemicals and hazardous materials in our brighter, more sustainable future for our products and operations, and we’re leading the employees, customers, communities and global development of sustainable aviation fuels.
    [Show full text]
  • We All Fly. More and More. Making Global Air Traffic Sustainable Is a Shared Responsibility
    1 ALOFTAN INFLIGHT REVIEW WE ALL FLY. MORE AND MORE. MAKING GLOBAL AIR TRAFFIC SUSTAINABLE IS A SHARED RESPONSIBILITY. 2 LOREM IPSUM DOLOR IMPRINT ALOFT AN INFLIGHT REVIEW is jointly published by the Heinrich Böll Foundation and the Airbus Group German edition: OBEN IHR FLUGBEGLEITER Managing editor, author (unless otherwise specied): Dietmar Bartz Art director: Ellen Stockmar Translator: Maureen Polaszek Proofreader: Maria Lanman Editorial responsibility (V.i.S.d.P): Annette Maennel, Heinrich Böll Foundation 1st edition, May 2016 For further inquiries please contact: Ute Brümmer, Heinrich Böll Foundation, Schumannstraße 8, 10117 Berlin, bruemmer boell.de Florian Keisinger, Airbus Group, Rahel-Hirsch-Straße 10, 10557 Berlin, orian.keisinger airbus.com Print: Druckerei Conrad GmbH, Berlin climate neutrally printed on 100% recycled paper Order and download address: Heinrich-Böll-Stiftung, Schumannstraße 8, 10117 Berlin, Germany, www.boell.de/aloft 2 ALOFT AN INFLIGHT REVIEW 3 EDITORIAL DEAR READERS! ir trac is a key component of our modern, globally Despite all the improvements in noise and emission protec- connected world. This applies to both our profes- tion that have been made in recent years, a great deal must be sional and our private lives. Aviation has created a done from a political and technical point of view. global neork connecting people and goods. It is An ongoing controversy is how to regulate the aviation in- A hard for anyone who wants to become familiar with the world dustry and what constraints are eective. At best, they should and participate in global exchange to refrain from flying. take place at an international level, establish a uniform com- We currently record about 3.3 billion air trips per year.
    [Show full text]
  • 67269.Pdf (1.502Mb)
    İSTATİSTİKSEL ÖNERİ SİSTEMİ VE MAKİNE ÖĞRENİMİ TEMELLİ TAHMİNLEME MODELİYLE GELİŞTİRİLMİŞ HAVA TAŞIMACILIĞI SİMÜLASYONU TASARIMI (IMPROVED AIR TRANSPORTATION SIMULATION DESIGN WITH STATISTICAL RECOMMENDATION SYSTEM AND MACHINE LEARNING BASED FORECASTING MODEL) Muhammet Emin TAŞCIOĞULLARI Danışman Prof. Dr. Oğuz BORAT YÜKSEK LİSANS TEZİ ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI İSTANBUL - 2016 KABUL VE ONAY SAYFASI Onay Tarihi: ../../2016 Prof. Dr. Doğan KAYA Enstitü Müdürü AKADEMİK VE ETİK KURALLARA UYGUNLUK BEYANI İÇİNDEKİLER Sayfa İÇİNDEKİLER .................................................................... i ÖZET ............................................................................... ii ABSTRACT ....................................................................... iii TEŞEKKÜR ....................................................................... iv ŞEKİLLER DİZİNİ .............................................................. v ÇİZELGELER DİZİNİ .......................................................... vi SİMGELER VE KISALTMALAR DİZİNİ .................................... vii 1. GİRİŞ .......................................................................... 1 2. LİTERATÜR ÖZETİ ......................................................... 5 3. HAVA TAŞIMACILIĞI ...................................................... 7 3.1. Genel Yapı ve Operasyonel Metrikler ........................ 8 3.2. Strateji ................................................................ 11 3.3. Filo .....................................................................
    [Show full text]
  • Boeing CLEEN II Briefing
    Boeing CLEEN II program update Consortium Public Session Craig Wilsey, Jennifer Kolden May 5, 2021 Copyright © 2021 Boeing. All rights reserved. 1 CLEEN II Technology Demonstrations Agenda Boeing Overview, Sustainability Recap of Boeing’s CLEEN program transitions Boeing CLEEN II Technologies Aft Fan Acoustics Project Copyright © 2021 Boeing. All rights reserved. 2 3 Copyright © 2021 Boeing. All rights reserved. 4 Copyright © 2021 Boeing. All rights reserved. Copyright © 2021 Boeing. All rights reserved. 5 Sustainability Sustainability Strategy CLEEN and ecoDemonstrator programs are Key Elements in Boeing’s Sustainability Portfolio 6 Copyright © 2021 Boeing. All rights reserved. CLEEN II Technology Demonstrations Agenda Boeing Overview, Sustainability Recap of Boeing’s CLEEN program transitions Boeing CLEEN II Technologies Aft Fan Acoustics Project 7 Copyright © 2021 Boeing. All rights reserved. Boeing’s CLEEN Key Demonstrations ATE CMC Nozzle Short Inlet (RR Contract) Flight Test Flight Test Ground Test Support to Short Inlet Flight Test 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Alt Fuels CMC Nozzle SEW SEW Fan Duct Test Report* Ground Test NIAR Rig Large Acoustics Test Notch Flight Test Test * Supported 2012 ASTM D7566 Specification for “drop-in” blends up to 50% 8 Copyright © 2021 Boeing. All rights reserved. CLEEN I - Adaptive Trailing Edge (ATE) Key Transitions Tested on 2012 ecoDemonstrator Boeing developed and demonstrated a prototype Wing Adaptive Trailing Edge (ATE) system capable of tailoring SMA System Design 777X Baseline Adv Manufacturing and Supply Chain Architecture Smart Shims and wing performance to reduce noise and fuel burn at Standard design Static Trailing Edge related design different flight regimes.
    [Show full text]
  • Demonstrating New Technologies to Advance the Sustainable Growth of Air Transport by Boeing
    CHAPTER FOUR Climate Change Mitigation: Technology and Operations 122 Demonstrating New Technologies to Advance the Sustainable Growth of Air Transport By Boeing The Boeing Company ecoDemonstrator program which Technologies tested in 2016 included: began in 2011, accelerates development of promising new • Ice-phobic paint for ice release and reduced washing. technologies that have the potential to enhance the safety, • Slat noise cove fillers that reduce unsteady air flows design, evaluation, production, maintenance, in-service and community noise. performance, comfort, environmental efficiency, and • Light Detection and Ranging (LIDAR) optical air economics of commercial airplanes. Access to flight-test data system that measures air data parameters to airplanes off the critical path of a certification program improve airplane performance. enables engineers to “learn by doing” and make viability • Boundary Layer Data System (BLDS) that measures assessments faster. All ecoDemonstrator programs have air flow on laminar surfaces and improves data evaluated different types of sustainable aviation fuels. acquisition to reduce fuel use and emissions. • Sustainable aviation fuels made from waste In 2016, Boeing and Embraer jointly flight tested new Brazilian sugar cane. technologies onboard an E170 regional jet, aimed at improving airplane safety and environmental performance. In 2018, Boeing worked with FedEx Express to gather The collaboration was part of a cooperation agreement to information for nearly 40 technologies on a Boeing 777 create value for both companies and their customers. The Freighter. This program marked the first time a commercial combined technical expertise of the two manufacturers airliner was powered with 100 per cent biofuel to reduce accelerated the developing of improved technologies more emissions.
    [Show full text]
  • VTI Rapport 907 Utgivningsår 2016
    VTI rapport 907 Utgivningsår 2016 www.vti.se/publikationer Luftfartens marginalkostnader En delrapport inom Samkost 2 Johannes Österström VTI rapport 907 VTI rapport | Luftfartens marginalkostnader. En delrapport inom Samkost 2 inom Samkost En delrapport Luftfartens marginalkostnader. VTI rapport 907 Luftfartens marginalkostnader En delrapport inom Samkost 2 Johannes Österström Diarienummer: 2015/0526-7.4 Omslagsbilder: Hejdlösa Bilder AB, Thinkstock Tryck: LiU-Tryck, Linköping 2016 Referat Medan ett stort antal studier har försökt bedöma marginalkostnaderna för att använda vägar och järnvägar är motsvarande kunskapsläge sämre för svensk luftfart. Bland annat saknas en samsyn kring centrala begrepp och frågeställningar, exempelvis gällande hur infrastrukturbegreppet ska avgränsas och hur internationella flygningar ska hanteras. En annan brist är att tidigare studier utgått från exempelflygningar för beräkningar av marginal- kostnader. Dessa exempel har sedan representerat hela den variation av flygplanstyper och destina- tioner som finns i Sverige. I denna studie har ett första steg tagits mot en tydligare bild av de genom- snittliga marginalkostnaderna genom att kostnadsposterna för klimat, hälsopåverkan och buller har beräknats. Resultaten på klimatområdet pekar på att inrikesflygets kostnader är små i förhållande till EU-flygningarnas kostnader, som i sin tur är små i förhållande till kostnaderna för flygningarna utanför EU. Variationen mellan dessa kategorier visar dels att beräkningar som bygger på enskilda exempel kan ge en snedvriden bild, och dels att hänsyn bör tas till skillnaden mellan ovanstående kategorier av flygningar vid eventuell policyutformning. Beräkningen av luftfartens hälsopåverkan bygger på en enklare metodik vilket påverkar tillförlitligheten i skattningarna av dessa kostnader. Resultaten i denna del av studien ska därför ses som räkneexempel. Dessa kostnadsposter kan dock vara väsentliga vilket motiverar vidare forskning.
    [Show full text]
  • Airplane • Trajectory Based Ops
    Perspectives on CNS and Contingency Operations A Briefing for: FAA ECTL TIM on UAS and UAM November 10, 2020 Chip Meserole 1 Aviation Networked Ecosystem Airspace • Airspace & Procedure Design • Regulations and Policy • Enroute Optimization ANSP • Infrastructure • Air traffic control Airplane • Trajectory based ops • Avionics and Connectivity • Air-Ground Control Integration Airline • Data Management and Analytics • Flight & Fleet Operations • Maintenance & Engineering • Data & Information Management Airport • Surface Movement Control • Gate & Equipment Infrastructure • Arrival & Departure Optimization 2 3 4 2019 ecoDemonstrator 777-200 Automated Weather Rerouting • Automated weather re-routing for flight path planning and execution via the airplane’s Electronic Flight Bag • Integrates the airplane flight plan and NOAA weather for visual display and routing around inclement weather Innovation and Sustainable Future • Improved fuel efficiency • Reduced emissions • Enhanced safety 5 2019 ecoDemonstrator 777-200 Trajectory Based Operations • Transatlantic Economic Flight that optimizes departure, en-route, and arrival with digital communication and navigation technology • Ground Station Communications that enable enhanced data connectivity from airline to air navigation service provider • Futures Air Navigation Services (FANS) and Airline Operation Center (AOC) messaging over Internet Protocol Suite (IPS) for large data connectivity Innovation and Sustainable Future • Reduced fuel consumption and emissions during departure, en-route and
    [Show full text]
  • Valuation of Norwegian Air Shuttle ASA
    Copenhagen Business School Master THESIS Valuation of Norwegian Air Shuttle ASA Author: Charlotte PAUL 124639 Oda Elise ERIKSSON 124672 Supervisor: Poul KJÆR Programme: MSc Applied Economics and Finance May 15, 2020 Number of standard pages: 89 Number of characters: 162 554 1 Executive Summary The purpose of this paper is to conduct a valuation of Norwegian Air Shuttle ASA to find a fair value of the company. The Norwegian airline is based in Oslo and provided flights for over 36 million passengers in 2019. To date, the company has undergone significant changes in its management and moved its core focus from growth to profitability. Many years of growth and development has increased the size of the company and subsequently led to an increase in debt levels. Moreover, in the last two years, the company has faced numerous challenges related to the grounding of the new Boeing MAX8 aircraft, troubles with Rolls Royce engines on the Dreamliner aircraft, and the global Covid-19 crises. Strategic analysis, consisting of macro, industry and company-level analysis, revealed that consumer demand and the oil price pose a significant threat to the business performance of Norwegian. Moreover, industry analyses revealed that the nature of the aviation industry is highly competitive with a large number of airlines competing for the same customers making it increasingly difficult for Norwegian to turn a profit with a low contribution margin. Rules and regulations from the government also possess a significant impact on Norwegian, this is specifically related to the flight-seat-fine affecting customer demand through increased flight ticket prices.
    [Show full text]
  • Aerodynamic Versus Ballistic Flight
    Open Journal of Fluid Dynamics, 2019, 9, 346-400 http://www.scirp.org/journal/ojfd ISSN Online: 2165-3860 ISSN Print: 2165-3852 Aerodynamic versus Ballistic Flight Jack Denur Electric & Gas Technology, Inc., Rowlett, TX, USA How to cite this paper: Denur, J. (2019) Abstract Aerodynamic versus Ballistic Flight. Open Journal of Fluid Dynamics, 9, 346-400. We consider, compare, and contrast various aspects of aerodynamic and bal- https://doi.org/10.4236/ojfd.2019.94023 listic flight. We compare the energy efficiency of aerodynamic level flight at a given altitude versus that of ballistic flight beginning and ending at this same Received: January 17, 2017 altitude. We show that for flights short compared to Earth’s radius, aerody- Accepted: December 15, 2019 Published: December 18, 2019 namic level flight with lift-to-drag ratio LD> 2 is more energy-efficient than ballistic flight, neglecting air resistance or drag in the latter. Smaller Copyright © 2019 by author(s) and LD suffices if air resistance in ballistic flight is not neglected. For a single Scientific Research Publishing Inc. This work is licensed under the Creative circumnavigation of Earth, we show that aerodynamic flight with LD> 4π Commons Attribution International is more energy-efficient than minimum-altitude circular-orbit ballistic space- License (CC BY 4.0). flight. We introduce the concept of gravitational scale height, which may in http://creativecommons.org/licenses/by/4.0/ an auxiliary way be helpful in understanding this result. For flights traversing Open Access N circumnavigations of Earth, if N 1 then even minimum-altitude circu- lar-orbit ballistic spaceflight is much more energy-efficient than aerodynamic flight because even at minimum circular-orbit spaceflight altitude air resis- tance is very small.
    [Show full text]
  • BCA Perspective on Fuel Cell Apus
    Joe Breit BCA Perspective on Associate Technical Fellow Fuel Cell APUs Boeing Commercial Airplanes September 30, 2010 DOD-DOE Fuel Cell APU Workshop The following technical data is under the US Export Administration Regulations ECCN: EAR 99 No Export License Required . In-flight SFC* saving is ≈≈≈0.7% 40-45% Efficient = Jet-A (Jet-A to electrical during cruise) 40% less 1 litre fuel used ≈75% Efficient (Overall system at cruise) = Jet-A Future 2015 SOFC APU Page 2 Sept 2005 FCAPU_H2EXPO.ppt * Specific Fuel Consumption 0.6 litre Fuel saving opportunity on the ground is very attractive Typical Turbine- powered APU 15% Efficient = Jet-A (over average operating cycle) 1 litre 75% less fuel used = Jet-A Future 2015 SOFC APU 0.25 litre 60% Efficient (at std. sea-level conditions) Page 3 Sept 2005 FCAPU_H2EXPO.ppt Fuel cell APU can cut airplane NOx emissions at the airport Airplane NOx Emissions at Airport Fuel Cell APU Engine Page 4 Sept 2005 FCAPU_H2EXPO.ppt More Electric Airplane (MEA) Background �Efficiency changes in 787 due to: � Composite airframe � Efficient no-bleed engines �Transition in power sources in the MEA � Increase in electric power to ~1.5 MW Efficient No-Bleed Engines Proposed Path to Fuel Cell Technology for Aviation Horizon 3 Horizon 2 Horizon 1 Environmentally All Electric Progressive New Airplane Airplane ize/Rating Increasing S Retrofits Implementation: In-Flight Entertainment Load Power Leveler Generator GRID Power Fuel Cell Replacement Ground (Airport) APU Service Galley Peaker Equipment Power BR&T-E Madrid Technology/ Demo ecoDemonstrator Demo PEM SOFC HTPEM Projects: Ground Note: Service Equip.
    [Show full text]
  • Aviation & Sustainability
    ICAOINTERNATIONAL CIVIL AVIATION ORGANIZATION Aviation & Sustainability Determining the complex environmental, economic and social impacts that are defining aviation’s future. Special State Profile Feature: Poland Vol. 66, No. 6 Contents ICAO’s Role in Aviation’s Sustainable Future ICAO Environment Branch Chief, Jane Hupe, highlights the Organization’s 3 strategic role in facilitating coordination and cooperation among its Member States, the aviation industry and other stakeholders on environmental and sustainability issues. Working through UN-led Processes Sha Zukang, Secretary-General of the 2012 United Nations Conference 6 on Sustainable Development (Rio+20), discusses the UN goal of securing THE ICAO JOURNAL VOLUME 66, NUMBER 6, 2011 renewed political commitment on global sustainability challenges in Rio next June. Editorial ICAO Communications Office Tel: +01 (514) 954-8220 ICAO’s Sustainability-related Progress Website: www.icao.int ICAO is leading the aviation sector through its sustainable development Anthony Philbin Communications 8 agenda and working to ensure access to air transport for future generations. Senior Editor: Anthony Philbin Some of its key work to date is highlighted in articles relating to Secretariat Tel: +01 (514) 886-7746 E-mail: [email protected] accomplishments in the areas of: Website: www.philbin.ca State Action Plans on Emissions Mitigation ........................................ 8 Production and Design Economic Measures to Address Carbon Impacts ................................. 9 Bang Marketing Stéphanie Kennan Alternative Fuels Development (SUSTAF 2011 Conference Review) ... 10 Tel: +01 (514) 849-2264 E-mail: [email protected] Website: www.bang-marketing.com Sustainability: The Carrier View Brian Pearce, Chief Economist for the International Air Transport Association Advertising 12 (IATA), discusses how commercial aviation has added tremendous value for FCM Communications Inc.
    [Show full text]