Complete Chloroplast Genome Sequence and Comparative and Phylogenetic Analyses of the Cultivated Cyperus Esculentus

Total Page:16

File Type:pdf, Size:1020Kb

Complete Chloroplast Genome Sequence and Comparative and Phylogenetic Analyses of the Cultivated Cyperus Esculentus diversity Article Complete Chloroplast Genome Sequence and Comparative and Phylogenetic Analyses of the Cultivated Cyperus esculentus Wei Ren 1,†, Dongquan Guo 1,†, Guojie Xing 1,†, Chunming Yang 1, Yuanyu Zhang 1, Jing Yang 1, Lu Niu 1, Xiaofang Zhong 1, Qianqian Zhao 1, Yang Cui 1, Yongguo Zhao 2,* and Xiangdong Yang 1,* 1 Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130024, China; [email protected] (W.R.); [email protected] (D.G.); [email protected] (G.X.); [email protected] (C.Y.); [email protected] (Y.Z.); [email protected] (J.Y.); [email protected] (L.N.); [email protected] (X.Z.); [email protected] (Q.Z.); [email protected] (Y.C.) 2 College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China * Correspondence: [email protected] (Y.Z.); [email protected] (X.Y.) † These authors contributed equally to this study. Abstract: Cyperus esculentus produces large amounts of oil as one of the main oil storage reserves in underground tubers, making this crop species not only a promising resource for edible oil and biofuel in food and chemical industry, but also a model system for studying oil accumulation in non-seed tissues. In this study, we determined the chloroplast genome sequence of the cultivated C. esculentus (var. sativus Boeckeler). The results showed that the complete chloroplast genome of C. esculentus was 186,255 bp in size, and possessed a typical quadripartite structure containing one large single copy (100,940 bp) region, one small single copy (10,439 bp) region, and a pair of Citation: Ren, W.; Guo, D.; Xing, G.; inverted repeat regions of 37,438 bp in size. Sequence analyses indicated that the chloroplast genome Yang, C.; Zhang, Y.; Yang, J.; Niu, L.; encodes 141 genes, including 93 protein-coding genes, 40 transfer RNA genes, and 8 ribosomal RNA Zhong, X.; Zhao, Q.; Cui, Y.; et al. genes. We also identified 396 simple-sequence repeats and 49 long repeats, including 15 forward Complete Chloroplast Genome repeats and 34 palindromes within the chloroplast genome of C. esculentus. Most of these repeats Sequence and Comparative and were distributed in the noncoding regions. Whole chloroplast genome comparison with those of the Phylogenetic Analyses of the Cultivated Cyperus esculentus. other four Cyperus species indicated that both the large single copy and inverted repeat regions were Diversity 2021, 13, 405. https:// more divergent than the small single copy region, with the highest variation found in the inverted doi.org/10.3390/d13090405 repeat regions. In the phylogenetic trees based on the complete chloroplast genomes of 13 species, all five Cyperus species within the Cyperaceae formed a clade, and C. esculentus was evolutionarily Academic Editor: Mario A. Pagnotta more related to C. rotundus than to the other three Cyperus species. In summary, the chloroplast genome sequence of the cultivated C. esculentus provides a valuable genomic resource for species Received: 1 July 2021 identification, evolution, and comparative genomic research on this crop species and other Cyperus Accepted: 22 August 2021 species in the Cyperaceae family. Published: 26 August 2021 Keywords: Cyperus esculentus; chloroplast genome; comparative analysis; phylogeny Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction Cyperus esculentus L., also known as yellow tigernut, yellow nutsedge, or chufa, is a perennial C4 plant in the sedge family (Cyperaceae), which is comprised of approximately 5500 species worldwide. It occurs as wild or cultivated varieties and exhibits ecological Copyright: © 2021 by the authors. plasticity and a wide global distribution [1]. Cultivated C. esculentus (var. sativus Boeckeler) Licensee MDPI, Basel, Switzerland. originated in the Mediterranean area, where it has been grown for its edible tubers since This article is an open access article Cyperus esculentus distributed under the terms and pre-dynastic Egypt (fourth millennium BC) [1]. has been reported to conditions of the Creative Commons contain approximately 40% starch, 30% oil, 20% sugar, 9% protein, 6% fiber, and high levels Attribution (CC BY) license (https:// of vitamins E and C in its tubers [2]. In contrast to oil-bearing crops that mainly produce creativecommons.org/licenses/by/ oil in seeds as well as the mesocarp of certain fruits, C. esculentus might be the only plant 4.0/). known that accumulates a large amount of oil as one of the main storage reserves in its Diversity 2021, 13, 405. https://doi.org/10.3390/d13090405 https://www.mdpi.com/journal/diversity Diversity 2021, 13, 405 2 of 14 underground tubers [2]. The unique characteristics of the species make it a promising resource for producing edible oil and biofuel in the food and chemical industries, and also provide a novel model system for studying oil accumulation in non-seed tissues [3]. Additionally, as a medicine, C. esculentus has been reported to help boost blood circulation, reduce cardiovascular diseases and heart attacks, and prevent stroke and inflammation in the respiratory passages [4–8]. Previous studies revealed that C. esculentus can inhibit free radicals and/or key enzymes involved in starch digestion, such as α-amylase and α-glucosidase, making this plant a dietary control option for patients with diabetes [9]. As active metabolic centers responsible for photosynthesis and the synthesis of amino acids, nucleotides, fatty acids, phytohormones, vitamins, and other metabolites, chloro- plasts play important roles in the physiology and development of land plants and al- gae [10,11]. In most land plants, the chloroplast genomes exhibit highly conserved struc- tures and organization, and typically exist as circular DNA molecules with a size of 120–170 kb [12]. Chloroplast genomes generally have a quadripartite structure and contain a large single copy (LSC) region and small single-copy (SSC) region separated by inverted repeats (IRs), although these IR regions are missing in some species [13,14]. Specific charac- teristics of the chloroplast genome, such as its maternal inheritance, haploid nature, and low level of recombination, make it a robust tool for genomics and phylogenetic studies of several plant families [15–18]. Moreover, considerable variations within chloroplast genomes can also provide useful information for evaluating the phylogenetic relationships of taxonomically unresolved plant taxa and understanding the relationship between plant nuclear, chloroplast, and mitochondrial genomes in plants [17,19–21]. C. esculentus exhibits remarkable variability with several morphotypes because of its ecological plasticity and wide distribution. However, very little information on the nuclear, chloroplast, and mitochondrial genomes of C. esculentus has been reported. Here, we assembled and annotated the complete chloroplast genome of cultivated C. esculentus. Comparative analysis of the chloroplast genomes of Cyperus species was conducted, and the phylogenetic position of C. esculentus in the Cyperaceae family was inferred. 2. Materials and Methods 2.1. Plant Materials and Genomic DNA Extraction Cultivated C. esculentus was collected from plants grown in Wuhan, China in 2017, and voucher specimen (herbarium voucher No. JYD-2) was maintained at the Jilin Academy of Agricultural Sciences, Changchun, China. Fresh leaves of the plants were collected and immediately stored at −80 ◦C until analysis. Total genomic DNA was extracted using the modified CTAB method [22]. The integrity, quality, and concentration of the DNA were determined by agarose gel electrophoresis and a NanoDrop spectrophotometer 2000 (Thermo Fisher Scientific, Waltham, MA, USA). 2.2. DNA Sequencing and Genome Assembly High-quality genomic DNA was used to construct libraries with an average length of 350 bp using the NexteraXT DNA Library Preparation Kit (Illumina, San Diego, CA, USA) and sequenced on the Illumina Noveseq 6000 platform (Illumina). More than 18.5 million paired-end reads with an average length of 150 bp were generated and edited using the NGS QC Tool Kit v2.3.3 [23]. Complete circular assembly graph was checked and further extracted by visualization (e.g., Bandage) of the GFA graph files that were assembled from SPAdes 3.11.0 software (http://cab.spbu.ru/software/spades/, accessed on 25 December 2020) [24]. 2.3. Annotation and Analysis of C. esculentus Chloroplast DNA Sequence Annotation of C. esculentus chloroplast sequence was performed using PGA [25], and BLAST was used to evaluate the results. A circular gene map of the chloroplast genome was drawn using Organellar Genome DRAW v1.3.1 (https://chlorobox.mpimp-golm.mpg. de/OGDraw.html, accessed on 25 December 2020) [26]. The codon usage frequency and Diversity 2021, 13, 405 3 of 14 relative synonymous codon usage (RSCU) in C. esculentus were analyzed for all protein- coding genes (PCGs), using MEGAX to determine whether the chloroplast genes were under selection [27]. 2.4. Genome Comparison with Other Cyperus Species For comparative analysis, the chloroplast genome sequences of four Cyperus species, including C. fuscus Linn. (MK431855), C. glomeratus Linn. (MK423990), C. difformis Linn. (MK423991), and C. rotundus Linn. (MT473237), were retrieved from the Gen- Bank. The mVISTA program (http://genome.lbl.gov/vista/mvista/about.shtml, accessed on 12 November 2021) in Shuffle-LAGAN mode was used to compare the complete
Recommended publications
  • Flatsedge (Cyperus Fuscus)
    Invasive Plant Science and Management 2010 3:240–245 Spread, Growth Parameters, and Reproductive Potential for Brown Flatsedge (Cyperus fuscus) Charles T. Bryson and Richard Carter* Brown flatsedge (Cyperus fuscus) is widely distributed in Europe, Asia, the Indian subcontinent, and the Mediterranean region of Northern Africa. It was apparently introduced into North America in the late 1800s and has steadily moved southward and westward. Brown flatsedge is reported new to Arkansas and Mississippi herewith. Field observations from early spring until frost were made between 2003 and 2007 from populations present at three sites: Chicot County, Arkansas, and Pearl River and Washington counties, Mississippi. Under natural field conditions, brown flatsedge plants germinated from late March and early April until frost. Inflorescences were observed in mid-May and seed production continued until frost. In field populations, the average numbers of scales per spikelet, inflorescences per plant, and spikelets per inflorescence were 15, 28, and 33, respectively. Greenhouse experiments were established in 2008 at Stoneville, MS, to determine growth parameters and the reproductive potential of brown flatsedge. In greenhouse experiments, by 10 wk after emergence (WAE), brown flatsedge plants were 30.2 cm tall and 63.9 cm in diameter, and dry weights were 1.4, 1.0, 2.0, 0.5, and 1.9 g for roots, culms, leaves, bracts, and inflorescences, respectively. Brown flatsedge culms and inflorescences appeared 5 WAE, and by 9 WAE all plants were producing seed. Brown flatsedge could pose a threat to natural plant communities and rice agriculture in Arkansas, Louisiana, Mississippi, Missouri, Tennessee, and Texas. Additional research is needed to determine seed longevity and ecological range potential, and to develop inexpensive and effective control methods.
    [Show full text]
  • The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
    The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène.
    [Show full text]
  • Floristic Discoveries in Delaware, Maryland, and Virginia
    Knapp, W.M., R.F.C. Naczi, W.D. Longbottom, C.A. Davis, W.A. McAvoy, C.T. Frye, J.W. Harrison, and P. Stango, III. 2011. Floristic discoveries in Delaware, Maryland, and Virginia. Phytoneuron 2011-64: 1–26. Published 15 December 2011. ISSN 2153 733X FLORISTIC DISCOVERIES IN DELAWARE, MARYLAND, AND VIRGINIA WESLEY M. KNAPP 1 Maryland Department of Natural Resources Wildlife and Heritage Service Wye Mills, Maryland 21679 [email protected] ROBERT F. C. NACZI The New York Botanical Garden Bronx, New York 10458-5126 WAYNE D. LONGBOTTOM P.O. Box 634 Preston, Maryland 21655 CHARLES A. DAVIS 1510 Bellona Ave. Lutherville, Maryland 21093 WILLIAM A. MCAVOY Delaware Natural Heritage and Endangered Species Program 4876 Hay Point, Landing Rd. Smyrna, Delaware 19977 CHRISTOPHER T. FRYE Maryland Department of Natural Resources Wildlife and Heritage Service Wye Mills, Maryland 21679 JASON W. HARRISON Maryland Department of Natural Resources Wildlife and Heritage Service Wye Mills, Maryland 21679 PETER STANGO III Maryland Department of Natural Resources, Wildlife and Heritage Service, Annapolis, Maryland 21401 1 Author for correspondence ABSTRACT Over the past decade studies in the field and herbaria have yielded significant advancements in the knowledge of the floras of Delaware, Maryland, and the Eastern Shore of Virginia. We here discuss fifty-two species newly discovered or rediscovered or whose range or nativity is clarified. Eighteen are additions to the flora of Delaware ( Carex lucorum var. lucorum, Carex oklahomensis, Cyperus difformis, Cyperus flavicomus, Elymus macgregorii, Glossostigma cleistanthum, Houstonia pusilla, Juncus validus var. validus, Lotus tenuis, Melothria pendula var. pendula, Parapholis incurva, Phyllanthus caroliniensis subsp.
    [Show full text]
  • Cyperus Difformis L. USDA Plants Code
    NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Cyperus difformis L. USDA Plants Code: CYDI Common names: Variable flatsedge Native distribution: Southern Europe, Asia, Africa Date assessed: 20 July 2009 Assessors: Gerry Moore Reviewers: LIISMA SRC Date Approved: September 9, 2009 Form version date: 10 July 2009 New York Invasiveness Rank: Moderate (Relative Maximum Score 50.00-69.99) Distribution and Invasiveness Rank (Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Restricted Moderate 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 20 ) 6 2 Biological characteristic and dispersal ability 25 ( 25 ) 18 3 Ecological amplitude and distribution 25 ( 25 ) 15 4 Difficulty of control 10 ( 7) 1 Outcome score 100 ( 77 )b 40 a † Relative maximum score 51.95 § New York Invasiveness Rank Moderate (Relative Maximum Score 50.00-69.99) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places.
    [Show full text]
  • GC-MS Analysis of N-Hexane Extract of Fruits of Trichopus Zeylanicus Ssp. Travancoricus Burkill Ex K. Narayanan
    Pharmacogn J. 2017; 9(6)Suppl: s99-s102 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Original Article www.phcogj.com | www.journalonweb.com/pj | www.phcog.net GC-MS analysis of n-Hexane Extract of Fruits of Trichopus zeylanicus ssp. travancoricus Burkill ex K. Narayanan Sasi Kala Nambi, Ramasubbu Raju ABSTRACT Aim: The present study focused to analyse the bioactive compounds present in the fruits of Trichopus zeylanicus ssp. travancoricus Burkill ex K. Narayanan by using GC-MS. Methods: The dried and pulverized fruit materials were extracted with n-hexane for 6-8 h. The phyto- chemical constituents were analysed by GC-MS. Results: Totally 23 bioactive compounds were identified with RI and SI factors. Of the twenty-three compounds detected from n-hexane extract, Tetradecane (27.87%), Hexadecane (27.26%), Nonadecane (22.25%) and Pentacosane (8.13%) were detected as major compounds. Conclusion: The obtained bioactive compounds were reported as potentially active in various medicinal treatments and can be used for the treatment of various diseases. Key words: Agasthyamalai, Hexadecane, Kani tribe, Nonadecane, Tetradecane. INTRODUCTION Trichopus zeylanicus ssp. travancoricus Burkill ex cardioprotective,8 anxiolytic and antidepressant K. Narayanan is a rhizomatous herb belongs to the activity, hepatoprotective activity, immunomodula- tory activity and anti-ulcer activity.9,10,11 The phyto- Sasi Kala Nambi, family Dioscoreaceae locally known as Arogyapachai Ramasubbu Raju (Tamil) and Arogyapacha (Malayalam) and literally chemical studies have found that, the seeds and leaves known as the green that gives strength. In India, the extracts were reported with rich in saponins. The Department of Biology, The Gandhigram species have reported as endemic to the Southern chemical investigations showed that, the leaf contains Rural Institute – Deemed University, Western Ghats with a restricted distribution in Agas- flavonoid glycosides, glycolipids and some other Gandhigram -624302, Dindigul, Tamil thyamalai Biosphere Reserve.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Asia Regional Synthesis for the State of the World?
    REGIONAL SYNTHESIS REPORTS ASIA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE ASIA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2019 Required citation: FAO. 2019. Asia Regional Synthesis for The State of the World’s Biodiversity for Food and Agriculture. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-132041-9 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services.
    [Show full text]
  • Lilioceris Egena Air Potato Biocontrol Environmental Assessment
    United States Department of Field Release of the Beetle Agriculture Lilioceris egena (Coleoptera: Marketing and Regulatory Chrysomelidae) for Classical Programs Biological Control of Air Potato, Dioscorea bulbifera (Dioscoreaceae), in the Continental United States Environmental Assessment, February 2021 Field Release of the Beetle Lilioceris egena (Coleoptera: Chrysomelidae) for Classical Biological Control of Air Potato, Dioscorea bulbifera (Dioscoreaceae), in the Continental United States Environmental Assessment, February 2021 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
    Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir.
    [Show full text]
  • The Floral Anatomy of <Emphasis Type="Italic">Trichopus Zeylanicus </Emphasis> Gaertn
    Proc. Indian Aead. Sci., Vol. 88 B, Part 2, Number 1, January 1979, pp. 63-67, 9 printed in India. The floral anatomy of Trichopus zeylanicus Gaertn. N N KALE and R M PAI Plant Morphology Laboratory, Department of Botany, Marathwada University, Aurangabad 431 004 MS received 26 May 1978 Abstract. The floral anatomy of Triehopus zeylanicus Gaertn. is described in detail. The inferior ovary is considered to be an appendicular structure. The union of the filaments with the style to develop a short column and the vascular supply to the tepals are considered as important features in support of the separate treatment of Trichopus. Both the perianth whorls are anatomically similar and are best described as tepals. Keywords. Floral anatomy; Trichopus zeylanicus. 1. Introduction Evidence from vegetative anatomy (Ayensu 1966, 1972) and cytology (Ramachandran 1968) has been brought forth to suggest the separation of the genus Trichopus Gaertn. from the Dioseoreaceae and its treatment as a distinct family, the Triehopodaeeae. The present paper is an attempt to find out features of floral morphology and anatomy of the genus which are of taxonomic importance. 2. Materials and methods The flowering material was collected from the campus of Kerala University and fixed in FAA. Serial transverse sections of the paraffin-embedded material (7/~ to 12/z thick) were stained in crystal violet using erythrosin as a counter stain. 3. Observations The pedicel contains a ring of six vascular bundles (figure 1). These bundles increase in size, become interconnected and develop a ring of vascular tissue (figure 2). Six compound cords emerge out from this ring (figure 2).
    [Show full text]
  • New Hawaiian Plant Records from Herbarium Pacificum for 2019
    Published online: 29 April 2020 ISSN (online) 2376-3191 Records of the Hawaii Biological Survey for 2019. Edited by Neal L. Evenhuis. Bishop Museum Occasional Papers 129: 67 –92 (2020) New Hawaiian plant records from Herbarium Pacificum for 2019 CLydE T. I mAdA & B ArBArA H. K ENNEdy Hawaii Biological Survey, Bishop Museum, 1525 Bernice St., Honolulu, Hawai‘i 96817-2704, USA; email: [email protected]; [email protected] reducing the backlog of unprocessed historical collections in Bishop museum’s Herbarium Pacificum , combined with a sweep through the Hawaiian vascular plant data - base, has revealed a number of new plant records for the Hawaiian Islands. Among these are four new state records (naturalized taxa previously unrecorded in Hawai‘i), four new naturalized records (naturalized taxa previously known only in cultivation in Hawai‘i), numerous new island records (naturalized taxa now reported on a new island), and one cultivated species showing signs of adventive naturalization. Among the 51 taxa included in this paper, all are introduced except for 4 native taxa ( Cyperus hillebrandii var. hille - brandii, Microlepia strigosa var. mauiensis, Peperomia cookiana, Panicum fauriei var. carteri ). All identifications of taxa included in this paper were made by staff of Bishop museum’s department of Natural Sciences/Botany, except where noted in the acknowl - edgments, and all supporting voucher specimens are on deposit at Herbarium Pacificum (BISH), except as otherwise noted. readers of the Records of the Hawaii Biological Survey should note that Herbarium Pacificum subscribes to the taxonomic constructs recommended by the Angiosperm Phylogeny Group (1998, 2003, 2009, 2016) and Pteridophyte Phylogeny Group (2016).
    [Show full text]
  • Ethnomedicinal Studies in Selected Medicinal Plants of Dhoni Forest, Western Ghats, Kerala
    Vol 7, Issue 3, 2014 ISSN - 0974-2441 Original Article ETHNOMEDICINAL STUDIES IN SELECTED MEDICINAL PLANTS OF DHONI FOREST, WESTERN GHATS, KERALA JAYA PRIYA.V.K*, R. GOPALAN Department of Botany, Karpagam University, Coimbatore - 641 021, Tamil Nadu, India. Email: [email protected] Received: 9 April 2014, Revised and Accepted: 4 May 2014 ABSTRACT Objective: The objective of the study was to identify and utilize medicinal plants used by Irula tribal’s of Dhoni Forest, Kerala. Methods: Frequent field visits were made throughout the study period from October 2011 to June 2012 in the study area. Results: A total of 32 medicinal plant species used by the Irula tribes were documented. These medicinal plant species were distributed in 23 families and 32 genera. In terms of number of medicinal plant species, Apocynaceae, Malvaceae and Menispermaceae were the most dominant families of medicinal plants. The results of the present study provide evidences that medicinal plants continue to play an important role in the health care system of the tribal community. Conclusion: The treasure of knowledge on traditional medicine is gradually vanishing due to modernization and civilization of tribal community and also the younger generation not showing any interest in learning those practices. The collected detailed information on the list of plants and their therapeutic practices among Irula tribes may be helpful to improve the future pharmaceutical applications. Key words: Dhoni Forest, Irula tribe, medicinal plants, Ethnomedicinal uses. INTRODUCTION Palakkad Taluks of Palakkad Revenue District. The area lies between 10° 45’ and 10° 55’ North latitude and 76° 50’ and 76° 10’ East The history of herbal medicine of India is very old, perhaps the longitude.
    [Show full text]