Medicinal Plants for Forest Conservation and Health Care

Total Page:16

File Type:pdf, Size:1020Kb

Medicinal Plants for Forest Conservation and Health Care 07#)) 1 0\ WOOD FOREST PRODUCTS 11 Medicinal plants for forest conservation and healthcare Food and Agriculture Organization of the United Nations \0\ -WOOD FOREST PRODUCTS 11 Medicinal plants for forest conservation and healthcare Edited by Gerard Bodeker Chair, GIFTS of Health Green College, University of Oxford, UK K.K.S. Bhat GIFTS of Health Green College, University of Oxford, UK Jeffrey Burley Director, Oxford Forestry Institute University of Oxford, UK Paul Vantomme Forestry Officer FAO GLOBAL INITIATIVE FOR TRADITIONAL SYSTEMS (GIFTS) OF HEALTH FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1997 This paper discusses both traditional and contemporary medicinal uses of plant products and includes an overview of issues dealing with their promotion and development. The designations employed and the materials presented in this publication do not imply any endorsement or the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the use of the plants described or the opinions expressed by the contributing authors. The use of the described plant products is not recommended unless carried out under the care and guidance of a qualified physician. Reprinted 1999, 2003 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN 92-5-104063-X Allrightsreserved.Reproduction and disseminationofmaterialinthis information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes isprohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] 0 FAO 1997 Foreword The World Health Organization estimated that 80% of the population of developing countries rely on traditional medicines, mostly plant drugs, for their primary health care needs. Also, modern pharmacopoeia still contain at least 25% drugs derived from plants and many others which are synthetic analogues builton prototype compounds isolated from plants. Demand for medicinal plants is increasing in both developing and developed countries, and surprisingly, the bulk of the material traded is still from wild harvested sources on forest lands and only a very small number of species are cultivated. The expanding trade in medicinal plants has serious implications on the survival of several plant species, with many under serious threat to become extinct. This volume brings together a most useful collection of papers bysome experts in medicinal plants.It draws attention in a sensitive way to the huge contribution of medicinal plants to traditional and modern health care systems, but also alert the readers on the many problems and challenges facing their sustainable development, such as: assessment and management of the resource base; best harvesting and processing practices; trade issues and aspects dealing with the intellectual property rights on traditional medicine by indigenous peoples. The prospective audience includes not only foresters, rural development workers and policy makers, but also all those whoare involved in one way or another with traditional medicine. The use of this document will help raise the awareness on medicinal plants as an important forest resource, and will help ensure that medicinal plants are adequately included in forest conservation and utilization programmes. The present study was developed jointly by the Global Initiative for Traditional Systems (GIFTS) of Health (a UK based NGO) and FAO. The document is basedon contributions made by many experts on medicinal plants, and has benefited from the detailed comments of several colleagues within GIFTS and FAO. Final editing of this publication was done by Gerry Bodeker and Paul Vantomme. I wish toexpress my thanks to all of them. I have great pleasure to release this document, in the hope that it willserve as a useful reference for all concerned with the sustainable development of medicinal plants from forests. Karl Hermann Schmincke Director Forest Products Division Preface Having lived amongst several of the groups of indigenous peoples of Amazonia, I have observed both the quantity of medicinal plants which they use and the efficacy of many of their cures. I have been treated by these people for intestinal upsets, parasites, cuts and bruises, headaches and other minor ailments and have personally experienced the healing powers of the rainforest plants. Since so many of our modern medicines were also derived from plants and such a small percentage have been accurately analysed chemically, it is certain that there are many more to be discovered. Whether a wonder medicine is developed from a plant or a local herbal remedy is harvested from the forest, there are many problems that need to be resolved. Historically indigenous peoples or even the countries in which they reside have benefited little from the development of medicines from their plant resources. When a herbal medicine becomes popular it can be over-exploited and the very resource threatened with extinction as is clearly shown in this volume for some Chinese medicinal plants by He and Sheng and for African plants by Cunningham. On the other hand the development of both pharmaceutical products and the harvesting of local non-timber forest products could be of great benefit to local peoples and to developing countries when properly controlled. This volume brings together a most useful collection of papers by some of the real experts in medicinal plants and on the issues of their exploitation. It draws attention to the problems involved in a sensitive way and reflects well the new attitudes of contemporary ethnobotany which seeks both to protect the rights of indigenous peoples and to conserve their botanical heritage. At the same time, however, this does not exclude the sustainable use of these plants. I am impressed by the wide geographical coverage that we have here and that the authors are well balanced between those from the developed and the developing world. This is a volume of interest to many people far beyond those directly working with medicinal plants. It raises issues of concern for conservationists, developers, forest managers, researchers and legislators. It is a most valuable contribution and FAO is to be congratulated on including a book of such topical concern in its series on the use of non-wood forest products. Anyone interested in the exploitation of forest medicines should read the chapters in this book before embarking on any project. Professor Sir Ghillean Prance FRS Director Royal Botanic Gardens, Kew Contents Foreword Preface iv Sir Ghillean Prance, Director, Royal Botanical Gardens, Kew. Introduction G.C. Bodeker, Chairman, Global Initiative for Traditional Systems of Health. Part I: General Articles covering Global Issues Forest based medicines in traditional and cosmopolitan health care 5 A.P. van Seters Ethnobotanical research and traditional health care in developing countries 12 Balick and P. A. Cox Between a rock and a hard place: Indigenous peoples, nation states 24 and the multinationals G. Dutfield Industrial utilisation of medicinal plants in developing countries 34 T. de Silva Trade in Medicinal Plants 45 S.E. Kuipers Medicinal plant information databases 60 K.K.S. Bhat Part II: Articles on Regional Aspects of Medicinal Plants Use Biodiversity - People Interface in Nepal 78 Bhattarai Beyond the Biodiversity Convention - the challenges facing 87 the bio-cultural heritage of Indias medicinal plants D. Shankar and B. Majumdar A biocultural medicinal plants conservation project in Sri Lanka 100 L. de Alwis Utilisation and conservation of medicinal plants in China with special 109 reference to Atractylides lancea S-A. He and N. Sheng An Africa-wide overview of medicinal plant harvesting, conservation 116 and health care A.B. Cunningham Biodiversity conservation and the application of Amazonian medicinal 130 plants in the control of malaria. W. Milliken Bulgarian model for regulating the trade in plant material for 135 medicinal and other purposes D. Lange and M. Mladenova Phytomedicinal forest harvest in the United States 147 J. A. Duke Introduction Gerard C. Bodeker Global Initiative For Traditional Systems (GIFTS) of Health. Health Services Research Unit Institute of Health Sciences, University of Oxford, UK fax: + +44 1865 226711 Email:[email protected] FAO's Non-Wood Forest Products Series addresses the use of forest resources by local communities in the context of conserving biodiversity and promoting local economic self- sufficiency. This volume on medicinal plants links together the physical environments of local communities and their use of plants in promoting and maintaining their health. Medicinal plants form the basis of traditional or indigenous health systems used, in the estimate of the World Health Organization, by the majority of the population of most developing countries.
Recommended publications
  • Characterization of UDP-Glucose Dehydrogenase Isoforms in the Medicinal Legume Glycyrrhiza Uralensis
    Plant Biotechnology 38, 205–218 (2021) DOI: 10.5511/plantbiotechnology.21.0222a Original Paper Characterization of UDP-glucose dehydrogenase isoforms in the medicinal legume Glycyrrhiza uralensis Ayumi Kawasaki, Ayaka Chikugo, Keita Tamura, Hikaru Seki, Toshiya Muranaka* Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan * E-mail: [email protected] Tel: +81-6-6879-7423 Fax: +81-6-6879-7426 Received June 15, 2020; accepted February 22, 2021 (Edited by S. Takahashi) Abstract Uridine 5′-diphosphate (UDP)-glucose dehydrogenase (UGD) produces UDP-glucuronic acid from UDP- glucose as a precursor of plant cell wall polysaccharides. UDP-glucuronic acid is also a sugar donor for the glycosylation of various plant specialized metabolites. Nevertheless, the roles of UGDs in plant specialized metabolism remain poorly understood. Glycyrrhiza species (licorice), which are medicinal legumes, biosynthesize triterpenoid saponins, soyasaponins and glycyrrhizin, commonly glucuronosylated at the C-3 position of the triterpenoid scaffold. Often, several different UGD isoforms are present in plants. To gain insight into potential functional differences among UGD isoforms in triterpenoid saponin biosynthesis in relation to cell wall component biosynthesis, we identified and characterized Glycyrrhiza uralensis UGDs (GuUGDs), which were discovered to comprise five isoforms, four of which (GuUGD1–4) showed UGD activity in vitro. GuUGD1–4 had different biochemical properties, including their affinity for UDP-glucose, catalytic constant, and sensitivity to feedback inhibitors. GuUGD2 had the highest catalytic constant and highest gene expression level among the GuUGDs, suggesting that it is the major isoform contributing to the transition from UDP-glucose to UDP-glucuronic acid in planta.
    [Show full text]
  • Review Paper Current Status of the Occurrence and Reaction Root-Knot
    1 Review Paper 2 3 Current status of the occurrence and reaction 4 root-knot nematodes in the main botanical 5 families of medicinal plants 76 8 .ABSTRACT 9 Medicinal plants are described such as those produce substances capable of provoking reactions in the human body leading to the cure of diseases. Like as cultivated species, medicinal plants can be attacked by various pests and diseases, affecting the qualitative and quantitative characteristics of their curative properties, as well as productivity. Phytonematodes are one of the main factors limiting the productivity of cultivated plants. In medicinal species this pathogens group has caused damage in the sanity of the plants interfering in the quality of the compounds produced. Among them, due to the high parasitism degree, the species of the genus Meloidogyne, popularly known as root-knot nematodes. Among the management strategies of these phytopathogens, biological and cultural controls have low efficiency reports. Likewise, chemical control is not indicated due to its high cost, besides, its high toxicity and risk of environmental pollution. Therefore, the most effective control method is the use of resistant plant species or cultivars. Once these species are identified, they can be used as antagonists or incorporated into the soil, aiming to decrease the nematode population in infested areas. The use of resistant medicinal species allows little or no reproduction of Meloidogyne spp., providing effective control in the field. Other advantages are the reduction of production costs, and the protection of the environment against pollution caused by chemical waste. 10 11 Keywords: Meloidogyne incognita; Meloidogyne javanica; Meloidogyne enterolobii; 12 Phytonematodes; Parasitism; Resistance sources; Gall; Traditional medicine; Herbal 13 medicines 14 15 16 1.
    [Show full text]
  • Alexander Krings Herbarium, Department of Plant Biology North Carolina State University Raleigh, North Carolina 27695-7612, U.S.A
    Index of names and types in West Indian Gonolobinae (Apocynace- ae: Asclepiadoideae), including fourteen new lectotypifications, one neotypification, A new name, and A new combination Alexander Krings Herbarium, Department of Plant Biology North Carolina State University Raleigh, North Carolina 27695-7612, U.S.A. [email protected] ABSTRACT Types and their location of deposit are provided for taxa of subtribe Gonolobinae (Apocynaceae: Asclepiadoideae) in the West Indies. The following fourteen taxa are lectotypified: Gonolobus bayatensis Urb., G. broadwayae Schltr., G. ciliatus Schltr., G. dictyopetalus Urb. & Ekman, G. ekmanii Urb., G. nipensis Urb., G. sintenisii Schltr., G. tigrinus Griseb., G. tobagensis Urb., G. variifolius Schltr., Ibatia mollis Griseb., Poicilla costata Urb., Poicilla tamnifolia Griseb., and Poicillopsis crispiflora Urb. Gonolobus grenadensis Schltr. is neotypified. A new name and a new combination in Matelea Aubl. are respectively proposed for Jacaima parvifolia Proctor and J. costata (Urb.) Rendle var. goodfriendii Proctor. RESUMEN Se aportan tipos y su localización de taxa de la subtribu Gonolobinae (Apocynaceae: Asclepiadoideae) en las Indias Occidentales. Se lectotipifican los siguientes catorce taxa: Gonolobus bayatensis Urb., G. broadwayae Schltr., G. ciliatus Schltr., G. dictyopetalus Urb. & Ekman, G. ekmanii Urb., G. nipensis Urb., G. sintenisii Schltr., G. tigrinus Griseb., G. tobagensis Urb., G. variifolius Schltr., Ibatia mollis Griseb., Poicilla costata Urb., Poicilla tamnifolia Griseb., y Poicillopsis crispiflora Urb. Se neotipifica Gonolobus grenadensis Schltr. Se propone un nombre y una combinación nueva en Matelea Aubl. para Jacaima parvifolia Proctor y J. costata (Urb.) Rendle var. goodfriendii Proctor respectivamente. INTRODUCTION Subtribe Gonolobinae (Apocynaceae: Asclepiadoideae) comprises about fifty species in the West Indies, here defined to include the Greater and Lesser Antilles, the Bahamas, Trinidad and Tobago, Aruba and the Neth- erland Antilles, and the Cayman Islands.
    [Show full text]
  • Phylogeography of a Tertiary Relict Plant, Meconopsis Cambrica (Papaveraceae), Implies the Existence of Northern Refugia for a Temperate Herb
    Article (refereed) - postprint Valtueña, Francisco J.; Preston, Chris D.; Kadereit, Joachim W. 2012 Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molecular Ecology, 21 (6). 1423-1437. 10.1111/j.1365- 294X.2012.05473.x Copyright © 2012 Blackwell Publishing Ltd. This version available http://nora.nerc.ac.uk/17105/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at http://onlinelibrary.wiley.com Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1 Phylogeography of a Tertiary relict plant, Meconopsis cambrica 2 (Papaveraceae), implies the existence of northern refugia for a 3 temperate herb 4 Francisco J. Valtueña*†, Chris D. Preston‡ and Joachim W. Kadereit† 5 *Área de Botánica, Facultad deCiencias, Universidad de Extremadura, Avda. de Elvas, s.n.
    [Show full text]
  • Allozyme Variation in American Ginseng, Panax Quinquefolius L (Araliaceae): Implications for Management of Wild and Cultivated Populations
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2001 Allozyme Variation in American Ginseng, Panax quinquefolius L (Araliaceae): Implications for Management of Wild and Cultivated Populations Holly Jean Grubbs College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Plant Sciences Commons Recommended Citation Grubbs, Holly Jean, "Allozyme Variation in American Ginseng, Panax quinquefolius L (Araliaceae): Implications for Management of Wild and Cultivated Populations" (2001). Dissertations, Theses, and Masters Projects. Paper 1539626306. https://dx.doi.org/doi:10.21220/s2-zyrf-5943 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ALLOZYME VARIATION IN AMERICAN GINSENG, Panax quinquefolius L. (Araliaceae): IMPLICATIONS FOR MANAGEMENT OF WILD AND CULTIVATED POPULATIONS A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary In Partial Fulfillment Of the Requirements for the Degree of Master of Arts By Holly Jean Grubbs 2001 APPROVAL SHEET This thesis is presented in partial fulfillment of The requirement for the degree of Master of Arts lly J. Grubbs Approved April, 2001 C Martha A. Case, Ph.D. c&OOna H . 'frf&TZ, Donna M. E. Ware, Ph.D. ’juuml <'IUQIU l Stewart A. Ware, Ph.D. DEDICATION This work is dedicated to my grandparents, J. Owen Pence, Verda Pence, and Norma Whitbeck, who each, in a unique way, taught me a love and curiosity for the natural world and persistence in seeking beauty and truth.
    [Show full text]
  • European Journal of Biomedical and Pharmaceutical Sciences
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341894994 A Review on Pharmacological Activities of Aristolochia Species Article · June 2020 CITATIONS READS 6 328 3 authors: Subbiah Latha Palanisamy Selvamani Anna University, Chennai Anna University, BIT Campus, Tiruchirappalli 107 PUBLICATIONS 510 CITATIONS 125 PUBLICATIONS 634 CITATIONS SEE PROFILE SEE PROFILE Dhivya Sundaram Anna University of Technology, Tiruchirappalli 6 PUBLICATIONS 13 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Natural Polymers View project All content following this page was uploaded by Palanisamy Selvamani on 15 July 2020. The user has requested enhancement of the downloaded file. ejbps, 2015, Volume 2, Issue 5, 160-167. Review Article SJIF Impact Factor 2.062 ISSN 2349-8870 Latha et al. European European Journal Journal of Biomedical of Biomedical and Pharmac eutical Sciences Volume: 2 AND Issue: 5 Pharmaceutical sciences 160-167 http://www.ejbps.com Year: 2015 A REVIEW ON PHARMACOLOGICAL ACTIVITIES OF ARISTOLOCHIA SPECIES S. Latha*, P. Selvamani, P. S. Dhivya and R. Benaseer Begam Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli– 24, Tamil Nadu, India. Article Received on 27/07/2015 Article Revised on 18/08/2015 Article Accepted on 09/09/2015 *Correspondence for ABSTRACT Author Aristolochia is a significant genus in the family of Aristolochiaceae. S. Latha The genus Aristolochia includes about 400 species of herbaceous Department of perennials, under shrubs or shrubs bearing essential oils and is Pharmaceutical Technology, Anna University, BIT extensive across Tropical Asia, Africa and South America. Campus, Tiruchirappalli–24, Aristolochia species has been used widely in the traditional Chinese Tamil Nadu, India.
    [Show full text]
  • Chemical Authentication of Botanical Ingredients: a Review of Commercial Herbal Products
    MINI REVIEW published: 15 April 2021 doi: 10.3389/fphar.2021.666850 Chemical Authentication of Botanical Ingredients: A Review of Commercial Herbal Products Mihael Cristin Ichim 1* and Anthony Booker 2,3* 1“Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania, 2Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom, 3Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom Chemical methods are the most important and widely used traditional plant identification techniques recommended by national and international pharmacopoeias. We have reviewed the successful use of different chemical methods for the botanical authentication of 2,386 commercial herbal products, sold in 37 countries spread over six continents. The majority of the analyzed products were reported to be authentic (73%) but more than a quarter proved to be adulterated (27%). At a national level, the number of products and the adulteration proportions varied very widely. Yet, the adulteration reported for the four countries, from which more than 100 commercial products were purchased Edited by: and their botanical ingredients chemically authenticated, was 37% (United Kingdom), 31% Marcello Locatelli, University of Studies G. d’Annunzio (Italy), 27% (United States), and 21% (China). Simple or hyphenated chemical analytical Chieti and Pescara, Italy techniques have identified the total absence of labeled botanical ingredients, substitution Reviewed by: with closely related or unrelated species, the use of biological filler material, and the hidden Santhosh Kumar J. Urumarudappa, Chulalongkorn University, Thailand presence of regulated, forbidden or allergenic species.
    [Show full text]
  • A CONCISE REPORT on BIODIVERSITY LOSS DUE to 2018 FLOOD in KERALA (Impact Assessment Conducted by Kerala State Biodiversity Board)
    1 A CONCISE REPORT ON BIODIVERSITY LOSS DUE TO 2018 FLOOD IN KERALA (Impact assessment conducted by Kerala State Biodiversity Board) Editors Dr. S.C. Joshi IFS (Rtd.), Dr. V. Balakrishnan, Dr. N. Preetha Editorial Board Dr. K. Satheeshkumar Sri. K.V. Govindan Dr. K.T. Chandramohanan Dr. T.S. Swapna Sri. A.K. Dharni IFS © Kerala State Biodiversity Board 2020 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, tramsmitted in any form or by any means graphics, electronic, mechanical or otherwise, without the prior writted permission of the publisher. Published By Member Secretary Kerala State Biodiversity Board ISBN: 978-81-934231-3-4 Design and Layout Dr. Baijulal B A CONCISE REPORT ON BIODIVERSITY LOSS DUE TO 2018 FLOOD IN KERALA (Impact assessment conducted by Kerala State Biodiversity Board) EdItorS Dr. S.C. Joshi IFS (Rtd.) Dr. V. Balakrishnan Dr. N. Preetha Kerala State Biodiversity Board No.30 (3)/Press/CMO/2020. 06th January, 2020. MESSAGE The Kerala State Biodiversity Board in association with the Biodiversity Management Committees - which exist in all Panchayats, Municipalities and Corporations in the State - had conducted a rapid Impact Assessment of floods and landslides on the State’s biodiversity, following the natural disaster of 2018. This assessment has laid the foundation for a recovery and ecosystem based rejuvenation process at the local level. Subsequently, as a follow up, Universities and R&D institutions have conducted 28 studies on areas requiring attention, with an emphasis on riverine rejuvenation. I am happy to note that a compilation of the key outcomes are being published.
    [Show full text]
  • Background Document: Roc: Aristolochic Acids ; 2010
    FINAL Report on Carcinogens Background Document for Aristolochic Acids September 2, 2008 U.S. Department of Health and Human Services Public Health Services National Toxicology Program Research Triangle Park, NC 27709 This Page Intentionally Left Blank RoC Background Document for Aristolochic Acids FOREWORD 1 The Report on Carcinogens (RoC) is prepared in response to Section 301 of the Public 2 Health Service Act as amended. The RoC contains a list of identified substances (i) that 3 either are known to be human carcinogens or are reasonably be anticipated to be human 4 carcinogens and (ii) to which a significant number of persons residing in the United 5 States are exposed. The Secretary, Department of Health and Human Services (HHS), has 6 delegated responsibility for preparation of the RoC to the National Toxicology Program 7 (NTP), which prepares the report with assistance from other Federal health and 8 regulatory agencies and nongovernmental institutions. 9 Nominations for (1) listing a new substance, (2) reclassifying the listing status for a 10 substance already listed, or (3) removing a substance already listed in the RoC are 11 reviewed in a multi-step, scientific review process with multiple opportunities for public 12 comment. The scientific peer-review groups evaluate and make independent 13 recommendations for each nomination according to specific RoC listing criteria. This 14 background document was prepared to assist in the review of aristolochic acids. The 15 scientific information used to prepare Sections 3 through 5 of this document must come 16 from publicly available, peer-reviewed sources. Information in Sections 1 and 2, 17 including chemical and physical properties, analytical methods, production, use, and 18 occurrence may come from published and/or unpublished sources.
    [Show full text]
  • Araliaceae – Ginseng Family
    ARALIACEAE – GINSENG FAMILY Plant: some herbs (perennial), woody vines, shrubs and trees Stem: usually pithy Root: sometimes with rhizomes Leaves: simple or palmately compound but rarely 2’s or 3’s, often thickened and large, mostly alternate (rarely opposite or whorled); usually with stipules that forms a stem sheath; often with star-shaped hairs Flowers: mostly perfect or unisexual (monoecious or dioecious), regular (actinomorphic); flowers very small, mostly in umbels; sepals 5, often forming small teeth or none, mostly 5(-10) petals; mostly 5(-10) stamens; ovary inferior, 2-5 (10) fused carpels Fruit: berry or drupe, oily Other: mostly tropical and subtropical, a few oranamentals; similar to Apiaceae; Dicotyledons Group Genera: 70+ genera; locally Aralia (spikenard), Hedera (English Ivy), Oplopanax, Panax (ginseng) WARNING – family descriptions are only a layman’s guide and should not be used as definitive Araliaceae (Ginseng Family) – 5 (mostly) sepals and petals (often 5-lobed), often in umbels or compound umbels; leaves simple or more often compound; fruit a berry or drupe Examples of common genera Devil's Walkingstick [Hercules’ Club] Wild Sarsaparilla Aralia spinosa L. Aralia nudicaulis L. Devil's Club [Devil’s Walking Stick; Alaskan Ginseng] Oplopanax horridus (Sm.) Miq. English Ivy Hedera helix L. (Introduced) Dwarf Ginseng Panax trifolius L. ARALIACEAE – GINSENG FAMILY Wild Sarsaparilla; Aralia nudicaulis L. Devil's Walkingstick [Hercules’ Club]; Aralia spinosa L. English Ivy; Hedera helix L. (Introduced) Devil's Club [Devil’s
    [Show full text]
  • Invisible Connections: Introduction to Parasitic Plants Dr
    Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium.
    [Show full text]
  • Okoubaka Aubrevillei (Pelleg & Norman): a Synthesis of Existing Knowledge for Research and Conservation in West and Central Africa
    Journal of Biology and Life Science ISSN 2157-6076 2015, Vol. 6, No. 1 Okoubaka Aubrevillei (Pelleg & Norman): A Synthesis of Existing Knowledge for Research and Conservation in West and Central Africa Temitope Israel Borokini1,2 1Plant Genetic Resources Unit, National Center for Genetic Resources and Biotechnology (NACGRAB), Ibadan, Nigeria 2Program in Ecology, Evolution and Conservation Biology, College of Science, University of Nevada Reno, Reno NV 89557-0314. E-mail: [email protected] Received: October 4, 2014 Accepted: October 21, 2014 doi:10.5296/jbls.v6i1.6399 URL: http://dx.doi.org/10.5296/jbls.v6i1.6399 Abstract Okoubaka aubrevillei is the largest parasitic plant known to man. It is a tropical tree species distributed within West and Central Africa. Concerns were drawn to the tree because of its rarity, disjunct distribution in all its native range, paucity of published scientific information and its hemi-parasitic potentials. This article gathered and synthesized all existing scientific information on the tree to provide a solid foundation for further research on the tree. This article provided detailed information on its name etymology, taxonomic history, and geographical distribution including new locations for the tree, ecological significance and behaviour within its range, supported with an updated map illustrating its distribution within West and Central Africa. The possible causes of its rarity in its range were identified and its hemi-parasitic behaviour was hypothesized. In addition, ethnobotanical uses of the tree, symbolism and dendrolatry, and its significance in modern medicine were extensively discussed. The paper concluded with highlights on prospects for immediate conservation, management and research focus areas for the tree species.
    [Show full text]