Dissimilatory Nitrate Reduction in Bacillus Copyright ©2017, Yihua Sun ISBN-Number: 978-94-6197-486-0 All Rights Are Reserved

Total Page:16

File Type:pdf, Size:1020Kb

Dissimilatory Nitrate Reduction in Bacillus Copyright ©2017, Yihua Sun ISBN-Number: 978-94-6197-486-0 All Rights Are Reserved Dissimilatory nitrate reduction in Bacillus Yihua Sun Promotors Dr. Kim Heylen Prof. Dr. em. Paul De Vos Prof. Dr. Anne Willems Dissertation submitted in fulfilment of the requirements for the degree of Doctor (Ph.D.) of Science: Biotechnology (Ghent University) Yihua Sun – Dissimilatory nitrate reduction in Bacillus Copyright ©2017, Yihua Sun ISBN-number: 978-94-6197-486-0 All rights are reserved. No part of this thesis protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system without written permission of the author and promotors. Printed by University Press | www.universitypress.be Ph.D. thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. This Ph.D. work was financially supported by Chinese scholar council ( 201206330054) and BOF CSC co- funding from Ghent University (01SC2713) Publicly defended in Ghent, Belgium, January 20 th , 2017 Examination committee Prof. Dr. Savvas Savvides (Chairman) L-Probe: Laboratory for Protein Biochemistry and Biomolecular Engineering Faculty of Sciences, Ghent University, Belgium VIB Inflammation Research Center VIB, Ghent, Belgium Prof. Dr. Anne Willems (Promotor) LM-UGent: Laboratory of Microbiology Faculty of Sciences, Ghent University, Belgium Prof. Dr. em. Paul De Vos (Promotor) LM-UGent: Laboratory of Microbiology Faculty of Sciences, Ghent University, Belgium Dr. Kim Heylen (Promotor) LM-UGent: Laboratory of Microbiology Faculty of Sciences, Ghent University, Belgium Prof. Dr. Sofie Goormachtig (Secretary) PSB: Plant systems Biology Faculty of Sciences, VIB, Ghent University, Belgium Prof. Dr. ir. Nico Boon CMET: Center for Microbial Ecology and Technology Faculty of Bioscience Engineering, Ghent University, Belgium Prof. Dr. Bart Devreese L-Probe: Laboratory for Protein Biochemistry and Biomolecular Engineering Faculty of Sciences, Ghent University, Belgium Dr. Boran Kartal Microbial Physiology Group Max Planck Institute for Marine Microbiology, Bremen, Germany iii iv Merci!!! PhD, Doctor of Philosophy, before I fully understand what it means, I came here far away from home for it. This 4-years exploring journey is both long and short. It is long because it took so much effort to figure out one topic in science even not fully understood it in the end, or let’s say that human beings can only take one step further in the exploring of knowledge with much more left to explore. Too short it is because I just figured out what it means to work in science and how to do it better, and 4 years has passed. Anyway in short, it has been my great great great pleasure to do my PhD in our Lab of microbiology in Ghent University. There are so much that I want to say and to thank for my 4 years life here, but here I have to make it short. Firstly I would like to thank my promoter Dr. Kim Heylen who gave me the opportunity to work on this topic. She is the smartest person I ever met and is so enthusiastic in science. During my study here, her extensive knowledge, and inspiring ideas and critical attitude on science inspired me a lot and she is the one that led me into the field of microbial nitrogen cycle, an amazing world that I would like to work on for the rest of my life. I highly appreciate all her contributions of time, ideas and energy to make my PhD experience productive and stimulating and guide me far away from a ‘silly’ beginner to a doctor! Hope now after all my effort in our research, I did satisfy her. ☺ Secondly I would like to thank my supervisor Prof. Dr. Paul De Vos, who has great passion in science. He guided me step by step to build up the chemostat with equipments and assisted me for this experimental work for one year even after his retirement. It was not easy to work with such big and complicated equipments, but thanks to him, this work became so exciting and I’m so proud to start another life journey of the chemostat. His humor, optimism and passion in research which made the tedious work more enjoyable and productive really have been of a great value to me and influenced my view of working in science. Next, I would like to thank Anne Willems who has been my promoter for the last year. She is a very caring person with a lot of patience; helped me a lot, both scientifically and personally. I still remember she worked so hard even in the weekend to carefully revising my manuscript. Thanks to her guidance, I could finish my last journey to my PhD diploma. v To sum up, without the guidance of Kim, Paul and Anne, I can never make this PhD work successful. And many many many thanks to my colleagues Margo, Bart, Evie, Bram, Helen, Guillaume, Charles, Maarten, Diana, Jessy, Charlotte, Eliza, Jindrich, Cindy, Anandi who has been so helpful for my experimental work, and especially Margo, Anique, Diana, Bram, Helen, Guillaume, who are willing to hear me out and help me out when I had problems, frustrated with my work or was depressed in my private life and gave me energy to keep on going. You all mean a lot to me!!! Thanks all people in the Laboratory of Microbiology and BCCM, who have been my company for my valuable and happy life here, I will never forget you! In addition, I would like to specially thank my friends and roommates, Leilei, QuQu, Gaozhen, Tongyan, Zhuo, Anan, Shanshan, Zhongjia, thanks for their company and their taking care of me, made me feel so at home in gent. And thanks my foreign friends in Belgium, David Servillo, Diana Goderich, Diana Angie Aguilar, Bodo Sylvianne, Sofie Thijs, Rema, Xin Li, Ewout, Alex, Ocean, thanks for bringing happiness to me and making my life so colourful and joyful! And other soul mates I met during my stay here, Dan, Jiyuan, Maxime and those nice people that I even forgot their names L! Without their wise advice and support, I wouldn’t have gone so far. And Last but not least, thanks to my parents for their support and their love, and thanks to my boyfriend Pieter Van den Meersch, the important PoKeMan, thanks for inviting me for Chinese food :) and falling in loving with me, you are the present from God. Thanks Van den Meersch Luc and Arijs Annie, and your whole family. Thanks for welcoming me to your family and taking care of me, I’m so touched. Many many thanks! I love you all! Yihua Sun Gent, January, 2017 vi 衷心感谢此时远在中国的关心爱护我的家人和朋友!感谢爸爸妈妈!女儿今天 所有的一切都离不开爸妈三十年来辛勤的养育和照顾,这本博士毕业论文和博士学位 是女儿的也是爸爸妈妈的。 虽然我有点任性,有时冲动伤爸爸妈妈的心,但以后会努 力改正的,永远最爱你们!愿用寸草心,来报三春晖!感谢 221 的朋友们! 感谢林青 在京都的关心和照顾!感谢根特与我同甘共苦的朋友们 : 蕾蕾,曲曲,高团长,潼雁, 薛清,朱云鹏,朱丹,崔卓,李欣 ! 感谢异国他乡相识的同事朋友 David servillo, Diana Goderich, Diana Angie Aguilar , Bodo Sylvianne, Sofie Thijs, Rema, Xin Li, Ewout, Alex, Ocean! 谢谢你们出现在我的生命中带给我快乐和欣喜,让我成长!感谢 Pieter 一家对 我的关心和照顾,让我在这里体会到家的温暖。特别感谢比利时感谢根特这个让我充 满感恩的城市,塑造了我让我成为更好的人,让我自信的站在这里开启我人生新的篇 章! 孙艺华 Gent, January 20 th , 2017 vii viii List of Abbreviations A amtB / AmtB ammonium transporter gene / protein Anammox anaerobic ammonium oxidation ANOVA analysis of variance ANI average nucleotide identity ATP adenosine triphosphate B BCCM Belgian Coordinated Collections of Microorganisms BLAST basic local alignment search tool BOF Bijzonder Onderzoeksfonds bp base pair C c cytochrome cbaBA nitric oxide reductase Cu ANor gene CDS coding sequences cNirK copper-dependent nitrite reductase cnor / cNor nitric oxide reductase gene / enzyme accepting electrons from heme c Cu ANor nitric oxide reductase accepting electron from cytochrome c CO 2 carbon dioxide codY / CodY GTP-sensing transcriptional pleiotropic repressor gene / protein D DNA deoxyribonucleic acid DNRA dissimilatory nitrate/nitrite reduction to ammonium dnrN / DnrN nitric oxide dependent regulator gene/ protein F fnr / Fnr fumarate-nitrate reductase regulatory protein gene/ protein FWO Fonds Wetenschappelijk Onderzoek ix G GC gas chromatography gdhA / GDH glutamate dehydrogenase gene / enzyme glnA / GS glutamine synthetase gene / enzyme glnH1 ABC-type glutamine transporter, periplasmic component / domain gene glnK /GlnK PII -type signal-transduction protein gene / protein glnP ABC-type glutamine transporter, permease component gene glnQ1 ABC-type glutamine transporter, ATPase component gene glnR / GlnR glutamine synthetase repressor gene / protein gltAB glutamate synthase genes gltT proton/sodium-glutamate symport protein gene GOGAT glutamate synthase or glutamine 2-oxoglutarate aminotransferase H hmp / HMP flavohaemoglobin gene / flavohaemoglobin I IBM International Business Machines Corporation IPCC International Panel for Climate Change K KEGG Kyoto Encyclopedia of Genes and Genomes L LMG Laboratory of Microbiology – Ghent University N NADH nicotinamide adenine dinucleotide nap / NapA periplasmic nitrate reductase gene / enzyme nar / NarG membrane-bound nitrate reductase gene / enzyme narGHJI the nar operon, coding for membrane-bound nitrate reductase narK/NarK nitrate/nitrite antiporter gene / protein narL nitrate/nitrite response regulatory protein gene narX nitrate/nitrite sensor regulatory protein gene x nasA/ NasA assimilatory nitrate transporter gene / enzyme nasC / NasC assimilatory nitrate reductase gene / enzyme NCBI National Center for Biotechnology Information NH 3 ammonia + NH 4 ammonium nirB /NirB gene/enzyme for assimilatory nitrite reductase (small subunit) nirC / NirC formate/nitrite transporter gene / enzyme nirD/NirD gene/enzyme for assimilatory nitrite reductase (large subunit) nirK / NirK periplasmic copper-dependent nitrite reductase gene / enzyme nirS / NirS periplasmic cytochrome cd1-dependent nitrite reductase gene / enzyme NtrB
Recommended publications
  • Heterotrophic Denitrification by Gram-Positive Bacteria: Bacillus Cereus and Bacillus Tequilensis
    International Journal of Scientific and Research Publications, Volume 4, Issue 4, April 2014 1 ISSN 2250-3153 Heterotrophic denitrification by Gram-positive bacteria: Bacillus cereus and Bacillus tequilensis Moukhlissi Saïd*, Aboussabiq Fatima Ezzahra*, Amine Jamal*, Rihani Mohammed* and Assobhei Omar* * Laboratory of Marine Biotechnology and Environment, Faculty of Science of El Jadida, P.O. Box 20, El Jadida 24000, Morocco. Abstract- Two bacteria were isolated from anoxic denitrifying notoriously overlooked in community analysis of denitrifiers in reactor for treatment of domestic wastewater. The analysis of the the environment because they are not targeted by the available 16S rDNA gene sequences showed that the isolated strains were PCR primers designed for denitrification genes (Throbäck et al., affiliated with Bacillus cereus and Bacillus tequilensis. 2004). Verbaendert et al. (2011) have studied the denitrification Denitrification was compared between Bacillus cereus and of a large collection of Bacillus strains and suggested that Bacillus tequilensis in this study. Two bacilli were able to denitrification occurred in nearly half of the analysed strains. denitrify and Bacillus cereus was more efficient than Bacillus More recently, a variety of bacilli were tested for gas production tequilensis. Bacillus cereus reduced 80% of high amount of under denitrifying conditions and found to be complete nitrate; however, Bacillus tequilensis could reduce 37.4% of denitrifiers (Jones et al., 2011). Genome sequencing has revealed nitrate. These heterotrophic bacteria are able to eliminate organic the potential for partial denitrification in some Bacillus species. matter with the same trend reducing 74.5% for Bacillus For example, qNor is present in Bacillus tusciae strain DSM2912 tequilensis and 70.2% for Bacillus cereus.
    [Show full text]
  • Bacillus Cereus Group Species
    The ISME Journal (2020) 14:2997–3010 https://doi.org/10.1038/s41396-020-0728-x ARTICLE Unique inducible filamentous motility identified in pathogenic Bacillus cereus group species 1 1 1 1 1 2 Martha M. Liu ● Shannon Coleman ● Lauren Wilkinson ● Maren L. Smith ● Thomas Hoang ● Naomi Niyah ● 2 3 3 2 1 Manjari Mukherjee ● Steven Huynh ● Craig T. Parker ● Jasna Kovac ● Robert E. W. Hancock ● Erin C. Gaynor 1 Received: 6 January 2020 / Revised: 11 July 2020 / Accepted: 23 July 2020 / Published online: 7 August 2020 © The Author(s) 2020. This article is published with open access Abstract Active migration across semi-solid surfaces is important for bacterial success by facilitating colonization of unoccupied niches and is often associated with altered virulence and antibiotic resistance profiles. We isolated an atmospheric contaminant, subsequently identified as a new strain of Bacillus mobilis, which showed a unique, robust, rapid, and inducible filamentous surface motility. This flagella-independent migration was characterized by formation of elongated cells at the expanding edge and was induced when cells were inoculated onto lawns of metabolically inactive Campylobacter jejuni 1234567890();,: 1234567890();,: cells, autoclaved bacterial biomass, adsorbed milk, and adsorbed blood atop hard agar plates. Phosphatidylcholine (PC), bacterial membrane components, and sterile human fecal extracts were also sufficient to induce filamentous expansion. Screening of eight other Bacillus spp. showed that filamentous motility was conserved amongst B. cereus group species to varying degrees. RNA-Seq of elongated expanding cells collected from adsorbed milk and PC lawns versus control rod- shaped cells revealed dysregulation of genes involved in metabolism and membrane transport, sporulation, quorum sensing, antibiotic synthesis, and virulence (e.g., hblA/B/C/D and plcR).
    [Show full text]
  • GRAS Notice 975, Maltogenic Alpha-Amylase Enzyme Preparation
    GRAS Notice (GRN) No. 975 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory novozyme~ Rethink Tomorrow A Maltogenic Alpha-Amylase from Geobacillus stearothermophilus Produced by Bacillus licheniformis Janet Oesterling, Regulatory Affairs, Novozymes North America, Inc., USA October 2020 novozyme~ Reth in k Tomorrow PART 2 - IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS AND PHYSICAL OR TECHNICAL EFFECT OF THE NOTIFIED SUBSTANCE ..................................................................... 4 2.1 IDENTITY OF THE NOTIFIED SUBSTANCE ................................................................................ 4 2.2 IDENTITY OF THE SOURCE ......................................................................................................... 4 2.2(a) Production Strain .................................................................................................. 4 2.2(b) Recipient Strain ..................................................................................................... 4 2.2(c) Maltogenic Alpha-Amylase Expression Plasmid ................................................... 5 2.2(d) Construction of the Recombinant Microorganism ................................................. 5 2.2(e) Stability of the Introduced Genetic Sequences .................................................... 5 2.2(f) Antibiotic Resistance Gene .................................................................................. 5 2.2(g) Absence of Production Organism in Product ......................................................
    [Show full text]
  • The Effect of Bacillus Licheniformis-Fermented Products
    animals Article The Effect of Bacillus licheniformis-Fermented Products and Postpartum Dysgalactia Syndrome on Litter Performance Traits, Milk Composition, and Fecal Microbiota in Sows Yu-Hsiang Yu , Ting-Yu Hsu, Wei-Jung Chen, Yi-Bing Horng and Yeong-Hsiang Cheng * Department of Biotechnology and Animal Science, National Ilan University, Yilan 260, Taiwan; [email protected] (Y.-H.Y.); [email protected] (T.-Y.H.); [email protected] (W.-J.C.); [email protected] (Y.-B.H.) * Correspondence: [email protected]; Tel.: +886-3-931-7712 Received: 6 October 2020; Accepted: 4 November 2020; Published: 5 November 2020 Simple Summary: Supplementation of probiotics can shape the gut microbiota of sows and further influence their offspring’s gut microbiota. Postpartum dysgalactia syndrome (PDS) is a common disease in sows worldwide. Sows with PDS have depressed milk production and increased piglet mortality. The bacterial pathogen is an important factor in the etiology of PDS. Bacillus licheniformis-fermented products (BLFP) containing probiotics and antimicrobial substances can prevent disease and improve growth performance in broilers and weaning piglets. However, little is known about the effect of BLFP, PDS, and interaction on litter performance traits, milk composition, and fecal microbiota in sows. In this study, the effects of BLFP and PDS on sows were evaluated. Results show that BLFP supplementation in the diet of sows improves the piglet body weight at weaning. Dietary supplementation of BLFP or PDS differentially regulates the fecal microbiota of sows. Abstract: This study was designed to evaluate the effects of Bacillus licheniformis-fermented products (BLFP) and postpartum dysgalactia syndrome (PDS) on litter performance traits, milk composition, and fecal microbiota in sows in a commercial farrow to finish pig farm.
    [Show full text]
  • Polyphasic Classification of the Gifted Natural Product Producer Streptomyces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC © Van der Aart, L.T., Nouioui, I., Kloosterman, A., Igual, J.M., Willemse, J., Goodfellow, M., van Wezel, J.P. 2019. The definitive peer reviewed, edited version of this article is published in International Journal of Systematic and Evolutionary Microbiology, 69, 4, 2019, http://dx.doi.org/10.1099/ijsem.0.003215 Polyphasic classification of the gifted natural product producer Streptomyces roseifaciens sp. nov. Lizah T. van der Aart 1, Imen Nouioui 2, Alexander Kloosterman 1, José Mariano Ingual 3, Joost Willemse 1, Michael Goodfellow 2, *, Gilles P. van Wezel 1,4 *. 1 Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands 2 School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK. 3 Instituto de Recursos Naturales y Agrobiologia de Salamanca, Consejo Superior de Investigaciones Cientificas (IRNASACSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain 4: Department of Microbial Ecology, Netherlands, Institute of Ecology (NIOO-KNAW) Droevendaalsteeg 10, Wageningen 6708 PB, The Netherlands *Corresponding authors. Michael Goodfellow: [email protected], Tel: +44 191 2087706. Gilles van Wezel: Email: [email protected], Tel: +31 715274310. Accession for the full genome assembly: GCF_001445655.1 1 Abstract A polyphasic study was designed to establish the taxonomic status of a Streptomyces strain isolated from soil from the QinLing Mountains, Shaanxi Province, China, and found to be the source of known and new specialized metabolites. Strain MBT76 T was found to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces .
    [Show full text]
  • Effect of Fermented Products Produced by Bacillus Licheniformis on the Growth Performance and Cecal Microbial Community of Broilers Under Coccidial Challenge
    animals Article Effect of Fermented Products Produced by Bacillus licheniformis on the Growth Performance and Cecal Microbial Community of Broilers under Coccidial Challenge Yeong-Hsiang Cheng 1 , Yi-Bing Horng 1, Wei-Jung Chen 1 , Kuo-Feng Hua 1, Andrzej Dybus 2 and Yu-Hsiang Yu 1,* 1 Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; [email protected] (Y.-H.C.); [email protected] (Y.-B.H.); [email protected] (W.-J.C.); [email protected] (K.-F.H.) 2 Department of Genetics, West Pomeranian University of Technology, 70-310 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +886-3-931-7716 Simple Summary: Coccidiosis is a severe parasitic disease of poultry caused by parasites of the genus Eimeria. Eimeria species infection disrupts the intestinal microbiota of broilers, thereby reducing gut health and growth performance. Continuous use of anti-coccidial drugs leads to the selection of drug-resistant strains of Eimeria. Therefore, developing substitutes for anti-coccidial drugs is an urgent, unmet need. Fermented products produced by Bacillus licheniformis containing probiotics and antimicrobial peptides can modulate the gut microbiota of broilers. However, little is known about the effect of fermented products produced by B. licheniformis on the health, growth, and gut Citation: Cheng, Y.-H.; Horng, Y.-B.; microbial community of broilers exposed to coccidial challenge. In this study, the anti-coccidial and Chen, W.-J.; Hua, K.-F.; Dybus, A.; Yu, gut microbiota modulatory effect of fermented products produced by B. licheniformis on broilers was Y.-H.
    [Show full text]
  • 41653410006.Pdf
    Acta Universitaria ISSN: 0188-6266 [email protected] Universidad de Guanajuato México Morales-Barrón, Bruce Manuel; Vázquez-González, Francisco J.; González-Fernández, Raquel; De La Mora-Covarrubias, Antonio; Quiñonez-Martínez, Miroslava; Díaz-Sánchez, Ángel Gabriel; Martínez-Martínez, Alejandro; Nevárez-Moorillón, Virginia; Valero-Galván, José Evaluación de la capacidad antagónica de cepas del orden bacillales aisladas de lixiviados de lombricomposta sobre hongos fitopatógenos Acta Universitaria, vol. 27, núm. 5, septiembre-octubre, 2017, pp. 44-54 Universidad de Guanajuato Guanajuato, México Disponible en: http://www.redalyc.org/articulo.oa?id=41653410006 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0188-6266 doi: 10.15174/au.2017.1313 Evaluación de la capacidad antagónica de cepas del orden bacillales aisladas de lixiviados de lombricomposta sobre hongos fitopatógenos Evaluation of antagonist capacity of bacillales strains isolated from vermicompost leachate on phytopatogenic fungi Bruce Manuel Morales-Barrón*, Francisco J. Vázquez-González*, Raquel González-Fernández*, Antonio De La Mora-Covarrubias*, Miroslava Quiñonez-Martínez*, Ángel Gabriel Díaz-Sánchez*, Alejandro Martínez-Martínez*, Virginia Nevárez-Moorillón**, José Valero-Galván*◊ RESUMEN El orden Bacillales se ha descrito como antagónico de fitopatógenos, además se ha mencionado en varios estudios algunas especies de este orden se encuentra en lixiviados de lombricomposta. En el presente estudio se evaluó el efecto antagónico de cinco cepas del orden Bacillales aisladas de lixiviados de lombricomposta sobre el crecimiento micelial de Phytophthora capsici, Fusarium oxysporum, Alternaria solani, y Rhizopus sp.
    [Show full text]
  • Bacillus Licheniformis Normalize the Ileum Microbiota of Chickens
    www.nature.com/scientificreports OPEN Bacillus licheniformis normalize the ileum microbiota of chickens infected with necrotic enteritis Received: 31 October 2016 Shuai Xu1,2, Yicen Lin1,2, Dong Zeng1,2, Mengjia Zhou1,2, Yan Zeng1,2, Hesong Wang1,2, Accepted: 12 January 2018 Yi Zhou1,2, Hui Zhu1,2, Kangcheng Pan1, Bo Jing1 & Xueqin Ni1,2 Published: xx xx xxxx Necrotic enteritis (NE) is a severe intestinal disease, which can change gut microbiota and result in a high cost for the poultry industry worldwide. However, little is known regarding how the gut microbiota of NE chicken ileum are changed by Bacillus licheniformis. This study was conducted to investigate how ileum microbiota structure was changed by B. licheniformis in broiler chickens challenged with Clostridium perfringens-induced NE through Illumina MiSeq sequencing. The broilers were randomly separated into four groups: the negative control group (NC), the positive control group (PC), the fshmeal and coccidia group (FC), and the PC group supplied with feed containing B. licheniformis (BL). Compared to the PC and FC, alpha diversity, beta diversity, and the bacterial taxa of the ileum microbiota were more similar in BL and NC. Some genera, which were related to the NE control, became insignifcant in BL with NC, such as Lactobacillus, Lactococcus, Bacteroides, Ruminococcus and Helicobacter. The PICRUSt analysis revealed that a tumour suppressor gene, p53, which was negatively correlated with Helicobacter, was enriched in the BL group. Our fndings showed that the ileum microbiota disorder caused by NE in chickens was normalized by dietary B. licheniformis supplementation. Necrotic enteritis (NE) in chickens, which was frst reported by Parish in 19611, is a common illness caused by Clostridium perfringens2.
    [Show full text]
  • Prevalence and Genetic Diversity of Bacillus Licheniformis in Avian Plumage
    J. Field Ornithol. 76(3):264±270, 2005 Prevalence and genetic diversity of Bacillus licheniformis in avian plumage Justine M. Whitaker,1 Daniel A. Cristol and Mark H. Forsyth Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, Williamsburg, Virginia 23187-8795 USA Received 28 May 2004; accepted 30 November 2004 ABSTRACT. Bacillus licheniformis, a soil bacterium capable of degrading the b-keratin in feathers, is present in the plumage of some wild-caught birds, but the published carriage rate is quite low. Microbial degradation could be a selective agent leading to the evolution of molt and plumage pigmentation, but we hypothesized that for B. licheniformis to have played an important role in avian evolution, it is likely to occur more widely in bird populations than previously reported. We sampled the plumage of 461 wild-caught birds of eight species. We designed a selective and differential culture method to isolate bacteria with the potential to degrade feathers. Putative feather-degrading bacteria were isolated from 21±59% of the individuals of each of the species tested, for an average carriage rate of 39%. 16S rRNA (rrnA) sequencing of 98 of these bacterial isolates indicated that 69% were Bacillus lichenformis, suggesting that the prevalence of this feather-degrading bacterium is 4 3 higher than previously reported. We also hypothesized that interspeci®c variation in avian plumage, behavior, and habitat may have led to the evolution of host-speci®c B. licheniformis strains. Fingerprinting of B. licheniformis isolated from Northern Saw-whet Owls (Aegolius acadicus) and Gray Catbirds (Dumetella carolinensis) using REP-PCR demonstrated that for nine owls, one individual carried four different strains and eight individuals carried only one strain.
    [Show full text]
  • INVESTIGATING the ACTINOMYCETE DIVERSITY INSIDE the HINDGUT of an INDIGENOUS TERMITE, Microhodotermes Viator
    INVESTIGATING THE ACTINOMYCETE DIVERSITY INSIDE THE HINDGUT OF AN INDIGENOUS TERMITE, Microhodotermes viator by Jeffrey Rohland Thesis presented for the degree of Doctor of Philosophy in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa. April 2010 ACKNOWLEDGEMENTS Firstly and most importantly, I would like to thank my supervisor, Dr Paul Meyers. I have been in his lab since my Honours year, and he has always been a constant source of guidance, help and encouragement during all my years at UCT. His serious discussion of project related matters and also his lighter side and sense of humour have made the work that I have done a growing and learning experience, but also one that has been really enjoyable. I look up to him as a role model and mentor and acknowledge his contribution to making me the best possible researcher that I can be. Thank-you to all the members of Lab 202, past and present (especially to Gareth Everest – who was with me from the start), for all their help and advice and for making the lab a home away from home and generally a great place to work. I would also like to thank Di James and Bruna Galvão for all their help with the vast quantities of sequencing done during this project, and Dr Bronwyn Kirby for her help with the statistical analyses. Also, I must acknowledge Miranda Waldron and Mohammed Jaffer of the Electron Microsope Unit at the University of Cape Town for their help with scanning electron microscopy and transmission electron microscopy related matters, respectively.
    [Show full text]
  • Identification and Characterization of Bacillus Cereus
    Journal of Insect Science RESEARCH Identification and Characterization of Bacillus cereus SW7-1 in Bombyx mori (Lepidoptera: Bombycidae) Guan-Nan Li,1,2 Xue-Juan Xia,3 Huan-Huan Zhao,1,2 Parfait Sendegeya,1,2 and Yong Zhu1,2,4 1College of Biotechnology, Southwest University, Chongqing 400716, China 2State Key Laboratory of Silkworm Genome Biology, Chongqing 400716, China 3College of Food Science, Southwest University, Chongqing 400716, China 4Corresponding author, e-mail: [email protected] Subject Editor: Seth Barribeau J. Insect Sci. (2015) 15(1): 136; DOI: 10.1093/jisesa/iev121 ABSTRACT. The bacterial diseases of silkworms cause significant reductions in sericulture and result in huge economic loss. This study aimed to identify and characterize a pathogen from diseased silkworm. SW7-1, a pathogenic bacterial strain, was isolated from the dis- eased silkworm. The strain was identified on the basis of its bacteriological properties and 16S rRNA gene sequence. The colony was round, slightly convex, opaque, dry, and milky on a nutrient agar medium, the colony also exhibited jagged edges. SW7-1 was Gram- positive, without parasporal crystal, and 0.8–1.2 by 2.6–3.4 mm in length, resembling long rods with rounded ends. The strain was posi- tive to most of the physiological biochemical tests used in this study. The strain could utilize glucose, sucrose, and maltose. The results of its 16S rRNA gene sequence analysis revealed that SW7-1 shared the highest sequence identity (>99%) with Bacillus cereus strain 14. The bacterial strain was highly susceptible to gentamycin, streptomycin, erythromycin, norfloxacin, and ofloxacin and moderately susceptible to tetracycline and rifampicin.
    [Show full text]
  • Phylogenomic Classification and Biosynthetic Potential of the Fossil
    Phylogenomic Classification and Biosynthetic Potential of the Fossil Fuel-Biodesulfurizing Rhodococcus Strain IGTS8 Dean Thompson, Valérie Cognat, Michael Goodfellow, Sandrine Koechler, Dimitri Heintz, Christine Carapito, Alain van Dorsselaer, Huda Mahmoud, Vartul Sangal, Wael Ismail To cite this version: Dean Thompson, Valérie Cognat, Michael Goodfellow, Sandrine Koechler, Dimitri Heintz, et al.. Phy- logenomic Classification and Biosynthetic Potential of the Fossil Fuel-Biodesulfurizing Rhodococcus Strain IGTS8. Frontiers in Microbiology, Frontiers Media, 2020, 11, 10.3389/fmicb.2020.01417. hal- 03024721 HAL Id: hal-03024721 https://hal.archives-ouvertes.fr/hal-03024721 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-11-01417 July 4, 2020 Time: 17:41 # 1 ORIGINAL RESEARCH published: 07 July 2020 doi: 10.3389/fmicb.2020.01417 Phylogenomic Classification and Biosynthetic Potential of the Fossil Fuel-Biodesulfurizing Rhodococcus Strain IGTS8 Dean Thompson1†, Valérie Cognat2†, Michael Goodfellow3, Sandrine Koechler2, Dimitri
    [Show full text]