From Using Science to Save the American Chestnut Tree (TACF

Total Page:16

File Type:pdf, Size:1020Kb

From Using Science to Save the American Chestnut Tree (TACF Native To: Asia (Anagnostakis 1997) Date of U.S. Introduction: First discovered in 1904 (Anagnostakis 1997) Means of Introduction: Introduced on nursery stock imported from Asia (Anagnostakis 1997) Impact: Fungal disease of chestnut trees (Castanea spp.) that virtually eliminated mature American chestnuts (Castanea dentata) from the U.S. (Griffin 2000) Current U.S. Distribution: Widespread throughout the U.S. Brief History (from Using Science to Save the American Chestnut Tree (TACF)) During the past 100 years, chestnut blight (Cryphonectria parasitica) and ink rot disease (Phytophthora cinnamomi) decimated an estimated four billion American chestnut (Castanea dentata) trees and brought the iconic species to the edge of extinction. Human interference triggered the American chestnut’s demise–and now scientific innovation offers us the best chance to save it. The American chestnut tree was a vital component of the eastern U.S. ecosystem, economy, and landscape. Before the blight, it was an important food source for a wide variety of wildlife and a valuable cash crop for rural communities from Maine to Alabama. As reliable and productive as the American chestnut tree was, it cannot recover fast enough to sustain itself in the wild. That is why The American Chestnut Foundation (TACF) is leading an unprecedented rescue mission. Our species-saving strategy is a powerful combination of traditional breeding, biotechnology, and biocontrol. Since our founding in 1983, the field of genomics and biotechnology has burgeoned in scope and affordability. Based on new insights into the complex inheritance of blight resistance, TACF has charted a new course for our restoration program. We continue to improve the disease tolerance in our traditional breeding program, while embracing innovations which can integrate the mechanisms of disease tolerance at the molecular level. Our approach follows multiple pathways to create a disease tolerant and genetically diverse population of American chestnut that will be adaptable to broad and changing climate. Breeding. Our traditional breeding program is carried out at our research farm in Meadowview, VA, and at more than 500 orchards planted, largely by volunteers and partners, across sixteen TACF chapters throughout the American chestnut’s native range. During the past 36 years, offspring from blight resistant hybrids have been bred with American chestnuts from across the species’ range. Four generations later, our traditional breeding program has produced a genetically diverse population of American chestnut hybrids with improved blight tolerance from Chinese chestnuts (Castanea mollissima). Moving forward, our breeding efforts are focused on further improving blight tolerance and incorporating resistance to Phytophthora cinnamomi, which causes a fatal root rot in chestnuts. We are using genomics to increase the speed and accuracy of selecting trees with the greatest tolerance to chestnut blight and root rot. Biotechnology. The core of our biotechnology program is transgenics. Scientists at the State University of New York, College of Environmental Science and Forestry (SUNY-ESF) discovered that a gene from wheat produces an enzyme, oxalate oxidase (OxO), which enhances blight tolerance significantly. TACF’s breeding program allows us to stack multiple blight resistance genes and increase the proportion of American chestnut genes in the resulting progeny. Biocontrol. The primary biological control method being explored by TACF and its partners is called hypovirulence. Here, the chestnut blight fungus is infected by a virus, thereby sickening the fungus and reducing the ability of chestnut blight fungus to cause lethal infections. Using this method, the natural defenses of the chestnut tree may enable the tree to halt canker growth and ultimately survive an infection. Other organisms are being investigated to further reducing the effect of the chestnut blight fungus.1 Photo: Blight Canker- Via Kendra Collins 1 The American Chestnut Foundation. “Using Science to Save the American Chestnut Tree.” Last modified 2020. https://www.acf.org/science-strategies/3bur/ Native To: Unknown, possibly Asia (Furnier et al. 1999) Date of U.S. Introduction: First detected in 1967, but may have been present before then (Farlee et al. 2010) Means of Introduction: Unknown (Ostry et al. 2004) Impact: Lethal disease of butternut trees (Juglans cinerea) (Farlee et al. 2010) Current U.S. Distribution: Northeastern and Midwestern U.S. Brief History (from An Intraspecific Tree Breeding Program) “During the mid 1960's, over 500 square miles of butternut veneer, and millions of board feet of butternut lumber were cut annually. Today, over 90% of the remaining butternut is infected with a non-native disease called 'butternut canker', and virtually all cutting of butternut has stopped. Butternut canker disease was most likely introduced from Asia, through the St. Lawrence Seaway, into the ports around the Great Lakes and first noticed in the late 1960's. The disease has now spread east and south to the farthest extent of the butternut's native range. Like Chestnut Blight and Dutch Elm Disease, Butternut Canker has effectively eliminated butternut as a thriving tree species within the northeast forest ecosystem. Most butternut dies within 15 years of infection and virtually all known populations of butternut are now infected…The New Hampshire Division of Forests and Lands has created a project to harvest shoots and buds, called 'scion wood', from the few apparently disease resistant trees still alive in New Hampshire. By collecting scions from the few resistant trees, we can graft them to black walnut root stock to create a seed orchard of resistant butternut trees. When we cross pollinate between different resistant trees, within the orchard, it's hoped we will produce resistant seed which can then be out-planted in the native forest environment that butternut once dominated. The process is called 'intraspecific tree breeding'. The project was started in 1996. Since then, we have surveyed more than 3000 possibly resistant trees at over 300 different sites statewide…”2 -Kyle Lombard, New Hampshire Division of Forests and Lands, Forest Health Section 2 Lombard, Kyle “Butternut restoration Project: An Intraspecific Tree Breeding Program.” Last modified 2019. https://www.nh.gov/nhdfl/community/forest-health/butternut-restoration-project.htm Native To: Eastern Russia, Northern China, Japan, and Korea (McCullough and Usborne 2015) Date of U.S. Introduction: 2002 (McCullough and Usborne 2015) Means of Introduction: Arrived accidentally in cargo imported from Asia (McCullough and Usborne 2015) Impact: Ash trees lose most of their canopy within 2 years of infestation and die within 3-4 years (McCullough and Usborne 2015; Poland and McCullough 2006) Brief History (from Biological Control of the Emerald Ash Borer, USFS NRS) In 2002, the emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), an Asian beetle that feeds on ash trees (Fraxinus spp.), was discovered as the cause of widespread ash tree mortality in southeast Michigan and nearby Ontario. The results of subsequent studies showed that EAB was inadvertently introduced near Detroit, Michigan during the 1990s from northeast China, probably in EAB-infested solid-wood packing materials used in international trade. Despite federal and state quarantines that restricts the movement of ash out of infested areas, EAB continues spreading in the U.S. and eastern Canada. Although this beetle spreads naturally by flying short distances, long-distance spread is caused by people moving EAB-infested ash firewood, nursery stock, and timber. The rapid expansion of the EAB infestation across a wide range of climate zones suggests that this invasive beetle will continue spreading throughout the continent… Biocontrol of EAB began in the U.S. in 2007 when APHIS issued permits for the environmental release of three hymenopteran parasitoid species of EAB from China to EAB- infested ash stands in southern Michigan. These EAB biocontrol agents are: an egg parasitoid, Oobius agrili (Encyrtidae) (Fig.1) and two larval parasitoids, Tetrastichus planipennisi (Eulophidae) (Fig. 2) and Spathius agrili (Braconidae) (Fig. 3). In 2015, another EAB larval parasitoid, Spathius galinae (Braconidae) (Fig. 4) from the Russian Far East, was approved for release because S. agrili did not establish in northern regions.3 3 USDA Forest Service Northern Research Station. “Biological Control of the Emerald Ash Borer.” Last modified July 31, 2019. https://www.nrs.fs.fed.us/disturbance/invasive_species/eab/control_management/biological_control/ Native To: Japan (Orwig et al. 2003) Date of U.S. Introduction: Discovered on the West Coast in the 1920s, but it is disputed whether this was an introduced or native population; an introduced population was discovered on the East Coast in the 1950s (Havill et al. 2006; Orwig et al. 2003) Means of Introduction: Accidental (Wallace and Hain 2006) Impact: Destroys Eastern hemlock trees (Tsuga canadensis) (Orwig et al. 2003) Brief History (from Hemlock Woolly Adelgid: A Non-Native Pest of Hemlocks in Eastern North America) It is the single most important pest of hemlocks in eastern North America and has a severe impact on the two susceptible species: eastern hemlock, Tsuga canadensis (L.) Carriere (Pinales: Pinaceae) and Carolina hemlock, Tsuga caroliniana Engelmann (Pinales: Pinaceae). Since the first report of hemlock woolly adelgid in Virginia in 1951, it has been slowly
Recommended publications
  • Arthropod Containment in Plant Research
    Arthropod Containment in Plant Research Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware What we do at USDA ARS BIIRU - • To develop biological control programs against invasive (non-native) agriculture and forest pests – Research involves both the plant-feeding insects and their natural enemies (predators & parasitoids) Invasive Emerald Ash Borer Larval Parasitoids of EAB (EAB) The Goal of Insect Containment at USDA ARS BIIRU-Quarantine Facility • Prevent “accidental introduction” of “unwanted” non-native insects from damaging our agriculture and forestry Outlines • Why do we need to contain insects in plant research? • How can we most effectively contain insects in plant research? • Quarantine containment facility and standard operation procedures Why Do We Need To Contain Insects in Plant Research • Non-native insects can become serious invasive pests in a newly introduced region because disassociation with co- evolved natural enemies • Non-native insects used in plant research should be contained prior to regulatory approval for environmental releases Non-native, plant-feeding insects can become devastating pests in agriculture and forestry Detected in Michigan in 2002 • 31 States in the U.S. • Killed millions of ash trees Emerald Ash Borer Native Range of EAB & Origin of EAB-Parasitoids Origin of EAB Biocontrol Agents (Year releases began in US) 1. Oobius agrili 2. Tetrastichus planipennisi 3. Spathius agrili 4. Spathius galinae Russia China 1 4 2 3 Prevent “accidental introduction” of weed biocontrol
    [Show full text]
  • Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus Rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba By
    Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba by Sunday Oghiakhe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Doctor of Philosophy Department of Entomology University of Manitoba Winnipeg Copyright © 2014 Sunday Oghiakhe Abstract Hylurgopinus rufipes, the native elm bark beetle (NEBB), is the major vector of Dutch elm disease (DED) in Manitoba. Dissections of American elms (Ulmus americana), in the same year as DED symptoms appeared in them, showed that NEBB constructed brood galleries in which a generation completed development, and adult NEBB carrying DED spores would probably leave the newly-symptomatic trees. Rapid removal of freshly diseased trees, completed by mid-August, will prevent spore-bearing NEBB emergence, and is recommended. The relationship between presence of NEBB in stained branch sections and the total number of NEEB per tree could be the basis for methods to prioritize trees for rapid removal. Numbers and densities of overwintering NEBB in elm trees decreased with increasing height, with >70% of the population overwintering above ground doing so in the basal 15 cm. Substantial numbers of NEBB overwinter below the soil surface, and could be unaffected by basal spraying. Mark-recapture studies showed that frequency of spore bearing by overwintering beetles averaged 45% for the wild population and 2% for marked NEBB released from disease-free logs. Most NEBB overwintered close to their emergence site, but some traveled ≥4.8 km before wintering. Studies comparing efficacy of insecticides showed that chlorpyrifos gave 100% control of overwintering NEBB for two years as did bifenthrin: however, permethrin and carbaryl provided transient efficacy.
    [Show full text]
  • Chestnut Growers' Guide to Site Selection and Environmental Stress
    This idyllic orchard has benefited from good soil and irrigation. Photo by Tom Saielli Chestnut Growers’ Guide to Site Selection and Environmental Stress By Elsa Youngsteadt American chestnuts are tough, efficient trees that can reward their growers with several feet of growth per year. They’ll survive and even thrive under a range of conditions, but there are a few deal breakers that guarantee sickly, slow-growing trees. This guide, intended for backyard and small-orchard growers, will help you avoid these fatal mistakes and choose planting sites that will support strong, healthy trees. You’ll know you’ve done well when your chestnuts are still thriving a few years after planting. By then, they’ll be strong enough to withstand many stresses, from drought to a caterpillar outbreak, with much less human help. Soil Soil type is the absolute, number-one consideration when deciding where—or whether—to plant American chestnuts. These trees demand well-drained, acidic soil with a sandy to loamy texture. Permanently wet, basic, or clay soils are out of the question. So spend some time getting to know your dirt before launching a chestnut project. Dig it up, roll it between your fingers, and send in a sample for a soil test. Free tests are available through most state extension programs, and anyone can send a sample to the Penn State Agricultural Analytical Services Lab (which TACF uses) for a small fee. More information can be found at http://agsci.psu.edu/aasl/soil-testing. There are several key factors to look for. The two-foot-long taproot on this four- Acidity year-old root system could not have The ideal pH for American chestnut is 5.5, with an acceptable range developed in shallow soils, suggesting from about 4.5 to 6.5.
    [Show full text]
  • The Chestnut Blight Fungus for Studies on Virus/Host and Virus/Virus Interactions: from a Natural to a Model Host
    Virology 477 (2015) 164–175 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro The chestnut blight fungus for studies on virus/host and virus/virus interactions: From a natural to a model host Ana Eusebio-Cope a, Liying Sun b, Toru Tanaka a, Sotaro Chiba a, Shin Kasahara c, Nobuhiro Suzuki a,n a Institute of Plant Science and Resources (IPSR), Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan b College of Plant Protection, Northwest A & F University, Yangling, Shananxi, China c Department of Environmental Sciences, Miyagi University, Sendai 982-215, Japan article info abstract Article history: The chestnut blight fungus, Cryphonectria parasitica, is an important plant pathogenic ascomycete. The Received 16 August 2014 fungus hosts a wide range of viruses and now has been established as a model filamentous fungus for Returned to author for revisions studying virus/host and virus/virus interactions. This is based on the development of methods for 15 September 2014 artificial virus introduction and elimination, host genome manipulability, available host genome Accepted 26 September 2014 sequence with annotations, host mutant strains, and molecular tools. Molecular tools include sub- Available online 4 November 2014 cellular distribution markers, gene expression reporters, and vectors with regulatable promoters that Keywords: have been long available for unicellular organisms, cultured cells, individuals of animals and plants, and Cryphonectria parasitica certain filamentous fungi. A comparison with other filamentous fungi such as Neurospora crassa has been Chestnut blight fungus made to establish clear advantages and disadvantages of C. parasitica as a virus host. In addition, a few dsRNA recent studies on RNA silencing vs.
    [Show full text]
  • NDP 11 V2 - National Diagnostic Protocol for Cryphonectria Parasitica
    NDP 11 V2 - National Diagnostic Protocol for Cryphonectria parasitica National Diagnostic Protocol Chestnut blight Caused by Cryphonectria parasitica NDP 11 V2 NDP 11 V2 - National Diagnostic Protocol for Cryphonectria parasitica © Commonwealth of Australia Ownership of intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth). Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from http://creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from https://creativecommons.org/licenses/by/3.0/au/legalcode. This publication (and any material sourced from it) should be attributed as: Subcommittee on Plant Health Diagnostics (2017). National Diagnostic Protocol for Cryphonectria parasitica – NDP11 V2. (Eds. Subcommittee on Plant Health Diagnostics) Authors Cunnington, J, Mohammed, C and Glen, M. Reviewers Pascoe, I and Tan YP, ISBN 978-0- 9945113-6-2. CC BY 3.0. Cataloguing data Subcommittee on Plant Health Diagnostics (2017). National Diagnostic Protocol for Cryphonectria parasitica – NDP11 V2. (Eds. Subcommittee on Plant Health Diagnostics) Authors Cunnington, J, Mohammed, C and Glen, M. Reviewers Pascoe, I and Tan YP, ISBN 978-0-9945113-6-2.
    [Show full text]
  • Additions to the Fauna of Braconidae (Hym., Ichneumonoidea) of Iran Based on the Specimens Housed in Hayk Mirzayans Insect Museum with Six New Records for Iran
    J. Ins. Biodivers. Syst. 06(4): 353–364 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/F59BDACD-3A4E-42A4-9DE6-4ABA3744048F Additions to the fauna of Braconidae (Hym., Ichneumonoidea) of Iran based on the specimens housed in Hayk Mirzayans Insect Museum with six new records for Iran Ali Ameri1* , Ebrahim Ebrahimi1 & Ali Asghar Talebi2 1 Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran, Islamic Republic of Iran. [email protected]; [email protected] 2 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Iran. [email protected] ABSTRACT. This study was based on examination of specimens of the family Braconidae (Hymenoptera: Ichneumonoidea) deposited in Hayk Mirzayans Insect Museum. Totally thirteen species from eleven genera and seven Received: subfamilies, including Braconinae (One genus – One species), Cardiochilinae (1- 02 December, 2019 1), Doryctinae (1-4), Macrocernrinae (1-2) , Opiinae (2-2), Rhyssalinae (1-1), Rogadinae (1-2) were identified, of which six species including Biosteres Accepted: spinaciaeformis Fischer, 1971, Heterospilus rubicola Fischer,1968, Utetes fulvicollis 12 July, 2020 (Thomson, 1895), Aleiodes arcticus (Thomson, 1892), Macrocentrus turkestanicus Published: (Telenga, 1950) and Rhyssalus longicaudis (Tobias & Belokobylskij, 1981) are new 28 July, 2020 records for the Iranian braconid founa. Subject Editor: Ehsan Rakhshani Key words: Taxonomy, Parasitoid wasps, first record Citation: Ameri, A., Ebrahimi, E. & Talebi, A.A. (2020) Additions to the fauna of Braconidae (Hym.: Ichneumonoidea) of Iran based on the specimens housed in Hayk Mirzayans Insect Museum with six new records for Iran.
    [Show full text]
  • Restoration of the American Chestnut in New Jersey
    U.S. Fish & Wildlife Service Restoration of the American Chestnut in New Jersey The American chestnut (Castanea dentata) is a tree native to New Jersey that once grew from Maine to Mississippi and as far west as Indiana and Tennessee. This tree with wide-spreading branches and a deep broad-rounded crown can live 500-800 years and reach a height of 100 feet and a diameter of more than 10 feet. Once estimated at 4 billion trees, the American chestnut Harvested chestnuts, early 1900's. has almost been extirpated in the last 100 years. The U.S. Fish and Wildlife Service, New Jersey Field Value Office (Service) and its partners, including American Chestnut The American chestnut is valued Cooperators’ Foundation, American for its fruit and lumber. Chestnuts Chestnut Foundation, Monmouth are referred to as the “bread County Parks, Bayside State tree” because their nuts are Prison, Natural Lands Trust, and so high in starch that they can several volunteers, are working to American chestnut leaf (4"-8"). be milled into flour. Chestnuts recover the American chestnut in can be roasted, boiled, dried, or New Jersey. History candied. The nuts that fell to the ground were an important cash Chestnuts have a long history of crop for families in the northeast cultivation and use. The European U.S. and southern Appalachians chestnut (Castanea sativa) formed up until the twentieth century. the basis of a vital economy in Chestnuts were taken into towns the Mediterranean Basin during by wagonload and then shipped Roman times. More recently, by train to major markets in New areas in Southern Europe (such as York, Boston, and Philadelphia.
    [Show full text]
  • UNIVERSITY of WISCONSIN-LA CROSSE Graduate Studies
    UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies BIOLOGICAL CONTROL OF CRYPHONECTRIA PARASITICA WITH STREPTOMYCES AND AN ANALYSIS OF VEGETATIVE COMPATIBILITY DIVERSITY OF CRYPHONECTRIA PARASITICA IN WISCONSIN, USA. A Manuscript Style Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology Ashley R. Smith College of Science and Allied Health Biology December, 2013 ABSTRACT Smith, A.S. Biological control of Cryphonectria parasitica with Streptomyces and an analysis of vegetative compatibility diversity of Cryphonectria parasitica in Wisconsin, USA. MS in Biology, December 2013, 52pp. (A. Baines) The American chestnut tree (Castanea dentata) has been plagued by the fungal pathogen Cryphonectria parasitica. While the primary biological control treatment has relied upon the use of hypovirus, a mycovirus that reduces the virulence of C. parasitica, here the potential for a Streptomyces inoculum as a biological control is explored. Two Wisconsin stands of infected chestnut in Galesville and Rockland were inoculated with hypovirus and Streptomyces using a randomized block design. At these stands the Streptomyces treatment reduced canker length expansion rates more than the hypovirus treatments and control. The Streptomyces treatment had significantly lower canker width expansion rates compared to the control. In addition to having reduced canker expansion rates, the trees inoculated with Streptomyces had the lowest mortality rate. The diversity of the fungus was low at the study sites and consisted of only two known vegetative compatibility types at each stand. This low level of diversity made it ideal for hypovirus dispersal, and for limiting canker expansion rates. This research supports the hypothesis that Streptomyces treatment is an effective alternative to hypovirus treatment that may prove beneficial in areas where hypovirus efforts have failed.
    [Show full text]
  • Chestnuts in Appalachian Culture Part II Chestnuts in Appalachian Culture Part II a Perfect Wildlife Food Lost in Time, But
    the September 2010 | Issue 2 Vol.24 27th Annual Meeting October 15-17 Registration Information Inside Chestnuts in Appalachian Culture Part II A Perfect Wildlife Food Lost in Time, But Not Forgotten Simple Strategies for Controlling a Common Pest MeadowviewMeadowview DedicationDedication a Success!S ! 27th REGISTER ONLINE AT WWW.ACF.ORG REGISTRATIONANNUAL MEETING OR CALL (828) 281-0047 TO REGISTER BY PHONE THE AMERICAN CHESTNUT FOUNDATION Option 1: Full Registration PAYMENT TACF Member $75 Name of Attendee(s) Non-Member $115 (includes a one-year membership) Address Full Registration for one person City (does not include lodging) State Includes: Zip Code Phone number t Friday Night Welcome Reception t Saturday Night Dinner & Awards Program Email t Access to all Workshops Form of Payment t All Meals Check (payable to TACF) Credit Card Option 2: Day Passes for Workshops Only (Registration fee does not include lodging Total amount due $ or meals) Credit Card Billing Information SATURDAY Credit Card (circle one): Visa Mastercard Regular Members $40 Card Number __ __ __ __-__ __ __ __-__ __ __ __-__ __ __ __ Student Members $40 Regular Non-Member $80 (includes a one-year membership) Expiration Date Student Non-Member $55 (includes a one-year membership) Name on Card (print) SUNDAY Address Regular Members $25 City Student Members $25 State Zip Code Regular Non-Member $65 (includes a one-year membership) Student Non-Member $40 (includes a one-year membership) Phone number All attendees MUST pre-register for the Annual Meeting. Signature TACF needs to register all of our attendees with NCTC’s security office prior to the meeting, and no on-site Return form and payment to: registration will be available.
    [Show full text]
  • And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
    A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-­CCo-Chairvhiadi rA.
    [Show full text]
  • American Chestnut Castanea Dentata
    Best Management Practices for Pollination in Ontario Crops www.pollinator.ca/canpolin American Chestnut Castanea dentata Tree nuts are usually grown under warmer conditions than are found in Ontario, but there are several types of nuts native to the province that are of interest for local consumption or commercial development (beaked hazelnut, black walnut). There are some non-native commercial species that have been imported. Many nuts require long hot growing seasons, and be- cause they are growing near the northern limit of hardiness, they can be a risky crop. Most are wind-pollinated and self- fruitful, although there are exceptions, and wild populations of at least some species appear to have mechanisms in place to encourage cross-fertilization, and produce higher quality nuts when cross-pollinated. Pollination Recommendations The chestnut was once an important tree in eastern deciduous forests, with the northern edge of its distribution in southern Ontario. After the chestnut blight was introduced in 1904, the species declined precipitously in the wild, and few trees re- main in Ontario forests. Chestnut is self-compatible, but still requires cross-pollination because the male and female flowers do not bloom at the same time on an individual tree. The flowers are in the form of catkins, and a variety of pollinators collect both nectar and pollen from the flowers. Unlike most other nut trees, the American chestnut is pollinated by insects. Wild trees generally cannot reproduce due to the isolation of individual trees, and artificial propagation is necessary to propagate the species. In the related Caucasian chestnut tree, Castanea sativa, pollination by honey bees can improve total nut yield.
    [Show full text]
  • Chestnuts Bred for Blight Resistance Depart Nursery with Distinct Fungal Rhizobiomes
    Mycorrhiza (2019) 29:313–324 https://doi.org/10.1007/s00572-019-00897-z ORIGINAL ARTICLE Chestnuts bred for blight resistance depart nursery with distinct fungal rhizobiomes Christopher Reazin1 & Richard Baird2 & Stacy Clark3 & Ari Jumpponen1 Received: 15 January 2019 /Accepted: 9 May 2019 /Published online: 25 May 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Restoration of the American chestnut (Castanea dentata) is underway using backcross breeding that confers chestnut blight disease resistance from Asian chestnuts (most often Castanea mollissima) to the susceptible host. Successful restoration will depend on blight resistance and performance of hybrid seedlings, which can be impacted by below-ground fungal communities. We compared fungal communities in roots and rhizospheres (rhizobiomes) of nursery-grown, 1-year-old chestnut seedlings from different genetic families of American chestnut, Chinese chestnut, and hybrids from backcross breeding generations as well as those present in the nursery soil. We specifically focused on the ectomycorrhizal (EcM) fungi that may facilitate host performance in the nursery and aid in seedling establishment after outplanting. Seedling rhizobiomes and nursery soil communities were distinct and seedlings recruited heterogeneous communities from shared nursery soil. The rhizobiomes included EcM fungi as well as endophytes, putative pathogens, and likely saprobes, but their relative proportions varied widely within and among the chestnut families. Notably, hybrid seedlings that hosted few EcM fungi hosted a large proportion of potential pathogens and endophytes, with possible consequences in outplanting success. Our data show that chestnut seedlings recruit divergent rhizobiomes and depart nurseries with communities that may facilitate or compromise the seedling performance in the field.
    [Show full text]