13.1 Measuring Absorption

Total Page:16

File Type:pdf, Size:1020Kb

13.1 Measuring Absorption 13.1 Measuring Absorption • derivation of Beer's Law using a chemical kinetic approach • definition of transmission and absorption • absorption cross-section and molar absorptivity • transmission is multiplicative and absorption is additive • expected performance when measuring concentration • expected performance when measuring spectra • using solution color to guess at absorbed wavelengths 13.1 : 1/10 Kinetic Derivation of Beer's Law (1) The process of absorption can be written as a ΔE = hν "reaction" involving light and two energy S states. 2 B1,2 Sh12+⎯⎯⎯ν → S B A second-order rate equation can be written 1,2 for the reaction, S1 -3 where ρ(ν) is the density of light in cm , N1 is the number density -3 of S1 in cm , and B1,2 is the second order rate constant (called the 3 -1 ___________________ for absorption). B1,2 has units of cm s . 13.1 : 2/10 Kinetic Derivation of Beer's Law (2) ddρ (νρν) ( ) dt B1,2 Of more interest is the change in ==−ρν()N1 photon density with distance dx dt dx c through the sample. This is B σ ≡ 1,2 obtained using, dx/dt = c. σ has c units of cm2 and is called the absorption cross-section. The total change in the photon ll dρν( ) density over a distance, l, is =−σ Ndx ∫ ρν 1∫ obtained by integration. 00() ⎛⎞ρν ()l ln ⎜⎟=−σlN1 ⎜⎟ρν() By converting photon density into ⎝⎠0 intensity, I = ρ(ν)×c, the final equation can be written in terms of an intensity ratio, I/I0. 13.1 : 3/10 Transmission and Absorption Transmission is defined as the intensity of light leaving the sample, divided by the intensity of I0 light entering the sample. Transmission can be related to number density using the last equation on the previous transparency. σlN I I − T ≡=102.3 = 10−εlC I0 Although the previous derivation used number density and cross- section, the more common units of molar absorptivity, ε, and molar concentration, C, give the same numeric result. Absorption is defined as the negative logarithm (base 10) of the transmission. This gives a parameter linear in concentration. 13.1 : 4/10 Cross-Section and Absorptivity Cross-sections and number densities are used in virtually every type of spectroscopy ______ solution-phase, molecular absorption. When comparing different spectroscopies, it is necessary to use cross-sections. The conversion between ε and σ involves nothing more than units. 331− 2.3× 10( cm L ) σεcm2-1-1= L mol cm () 23 -1 () 6.02× 10() mol In the UV/visible the maximum molar absorptivity is ______, which corresponds to a cross-section of ________________. The cross-section has nothing to do with the size of the molecule. Indeed, atoms have absorption cross-sections of ~10-13 cm2. The maximum cross-section comes from antenna theory and is (λ/2)2, which for 500 nm radiation is 6.25×10-10 cm2. 13.1 : 5/10 Measuring Absorption Optical Parameters with I0 = 5 μW A 0.001 0.01 0.1 1 2 3 T 0.9977 0.9772 0.7943 0.1 0.01 0.001 I(μW) 4.9885 4.8862 3.9716 0.5000 0.0500 0.0050 _____ absorption problem: I and I0 are nearly the same value. In order to measure an absorption of 0.001 the instrument has to measure I to a precision of at least 0.23%. _____ absorption problem: I is difficult to distinguish from 0. In order to measure an absorption of 3, the instrument has to have -3 three orders of magnitude of linearity, i.e. I = 10 I0. The detector and electronics must have a high precision and large ___________________. Top-of-the-line: 10-4 to 5; intermediate: 10-3 to 3; inexpensive: 0.01 to 2. 13.1 : 6/10 Absorption Adds Consider a solution in a 1-cm cell that has a transmission of 0.5. It doesn't matter how much light enters the cell, only half will exit. Now place two such cells back-to-back. The combination will transmit 0.5×0.5 = 0.25 of the light, thus it is seen that transmission is multiplicative. Since absorption is the negative log of transmission, it can be seen that absorption adds. -log(Ttotal) = -log(T1 × T2) = -logT1 + -logT2 Atotal = A1 + A2 The most common use of additive absorption involves two or more molecules in the same solution. A(λ1) = ε1,1(λ1)C1 + ε2,1(λ1)C2 A(λ2) = ε1,2(λ2)C1 + ε2,2(λ2)C2 Solve by matrix algebra. 13.1 : 7/10 Measuring Concentration Performance can be estimated from Beer's Law. Assume that an absorbance of 0.01 will provide a satisfactory signal-to-noise ratio. An optimistic estimate: assume ε = 105 and l = 10 cm. A 0.01 C == =10−8 M εl 105 × 10 A realistic estimate: assume ε = 104 and l = 1 cm. A 0.01 C == =10−5 M εl 104 × 1 For a given determination, the _________________ can be extended by using cells of different length. Commercially available lengths are: 10, 5, 2, 1, 0.5, 0.2, 0.1 and 0.01 cm. 13.1 : 8/10 Measuring Spectra The SNR at the peak has to be sufficiently large to observe small features. SNR = ____ data cannot be 0.04 compared to a reference SNR = 30 spectrum. 0.03 SNR = 3 SNR = ____ data cannot be 0.02 identified with great reliability. absorption 0.01 SNR = ____ is required to 0 400 450 500 550 obtain a faithful representation of the true -0.01 spectrum. wavelength (nm) Minimum concentrations for a spectrum are ~100× the minimum concentration for quantitation. 13.1 : 9/10 Color and Absorption Maximum An artist's color wheel can be used to determine the absorption maximum. Absorption occurs at the _____________ of the solution color. Thus, a yellow-colored solution absorbs in the ________. violet yellow Use the table below to convert color to wavelength. Thus, a yellow-colored solution absorbs near 400 nm. A colorless solution absorbs in the __________. Color and Approximate Wavelength color violet blue green yellow orange red λ (nm) 400 450 500 550 600 650 13.1 : 10/10.
Recommended publications
  • Lecture 6: Spectroscopy and Photochemistry II
    Lecture 6: Spectroscopy and Photochemistry II Required Reading: FP Chapter 3 Suggested Reading: SP Chapter 3 Atmospheric Chemistry CHEM-5151 / ATOC-5151 Spring 2005 Prof. Jose-Luis Jimenez Outline of Lecture • The Sun as a radiation source • Attenuation from the atmosphere – Scattering by gases & aerosols – Absorption by gases • Beer-Lamber law • Atmospheric photochemistry – Calculation of photolysis rates – Radiation fluxes – Radiation models 1 Reminder of EM Spectrum Blackbody Radiation Linear Scale Log Scale From R.P. Turco, Earth Under Siege: From Air Pollution to Global Change, Oxford UP, 2002. 2 Solar & Earth Radiation Spectra • Sun is a radiation source with an effective blackbody temperature of about 5800 K • Earth receives circa 1368 W/m2 of energy from solar radiation From Turco From S. Nidkorodov • Question: are relative vertical scales ok in right plot? Solar Radiation Spectrum II From F-P&P •Solar spectrum is strongly modulated by atmospheric scattering and absorption From Turco 3 Solar Radiation Spectrum III UV Photon Energy ↑ C B A From Turco Solar Radiation Spectrum IV • Solar spectrum is strongly O3 modulated by atmospheric absorptions O 2 • Remember that UV photons have most energy –O2 absorbs extreme UV in mesosphere; O3 absorbs most UV in stratosphere – Chemistry of those regions partially driven by those absorptions – Only light with λ>290 nm penetrates into the lower troposphere – Biomolecules have same bonds (e.g. C-H), bonds can break with UV absorption => damage to life • Importance of protection From F-P&P provided by O3 layer 4 Solar Radiation Spectrum vs. altitude From F-P&P • Very high energy photons are depleted high up in the atmosphere • Some photochemistry is possible in stratosphere but not in troposphere • Only λ > 290 nm in trop.
    [Show full text]
  • Development Team
    Paper No: 16 Environmental Chemistry Module: 01 Environmental Concentration Units Development Team Prof. R.K. Kohli Principal Investigator & Prof. V.K. Garg & Prof. Ashok Dhawan Co- Principal Investigator Central University of Punjab, Bathinda Prof. K.S. Gupta Paper Coordinator University of Rajasthan, Jaipur Prof. K.S. Gupta Content Writer University of Rajasthan, Jaipur Content Reviewer Dr. V.K. Garg Central University of Punjab, Bathinda Anchor Institute Central University of Punjab 1 Environmental Chemistry Environmental Environmental Concentration Units Sciences Description of Module Subject Name Environmental Sciences Paper Name Environmental Chemistry Module Name/Title Environmental Concentration Units Module Id EVS/EC-XVI/01 Pre-requisites A basic knowledge of concentration units 1. To define exponents, prefixes and symbols based on SI units 2. To define molarity and molality 3. To define number density and mixing ratio 4. To define parts –per notation by volume Objectives 5. To define parts-per notation by mass by mass 6. To define mass by volume unit for trace gases in air 7. To define mass by volume unit for aqueous media 8. To convert one unit into another Keywords Environmental concentrations, parts- per notations, ppm, ppb, ppt, partial pressure 2 Environmental Chemistry Environmental Environmental Concentration Units Sciences Module 1: Environmental Concentration Units Contents 1. Introduction 2. Exponents 3. Environmental Concentration Units 4. Molarity, mol/L 5. Molality, mol/kg 6. Number Density (n) 7. Mixing Ratio 8. Parts-Per Notation by Volume 9. ppmv, ppbv and pptv 10. Parts-Per Notation by Mass by Mass. 11. Mass by Volume Unit for Trace Gases in Air: Microgram per Cubic Meter, µg/m3 12.
    [Show full text]
  • Supplement Of
    Supplement of Effects of Liquid–Liquid Phase Separation and Relative Humidity on the Heterogeneous OH Oxidation of Inorganic-Organic Aerosols: Insights from Methylglutaric Acid/Ammonium Sulfate Particles Hoi Ki Lam1, Rongshuang Xu1, Jack Choczynski2, James F. Davies2, Dongwan Ham3, Mijung Song3, Andreas Zuend4, Wentao Li5, Ying-Lung Steve Tse5, Man Nin Chan 1,6 1Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China 2Department of Chemistry, University of California Riverside, Riverside, CA, USA 3Department of Earth and Environmental Sciences, Jeonbuk National University, Jeollabuk-do, Republic of Korea 4Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Québec, Canada 5Departemnt of Chemistry, The Chinese University of Hong Kong, Hong Kong, China’ 6The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China Corresponding author: [email protected] Table S1. Composition, viscosity, diffusion coefficient and mixing time scale of aqueous droplets containing 3-MGA and ammonium sulfate (AS) in an organic- to-inorganic dry mass ratio (OIR) = 1 at different RH predicted by the AIOMFAC-LLE. RH (%) 55 60 65 70 75 80 85 88 Salt-rich phase (Phase α) Mass fraction of 3-MGA 0.00132 0.00372 0.00904 0.0202 / / Mass fraction of AS 0.658 0.616 0.569 0.514 / / Mass fraction of H2O 0.341 0.380 0.422 0.466 / / Organic-rich phase (Phase β) Mass fraction of 3-MGA 0.612 0.596 0.574 0.546 / / Mass fraction of AS 0.218 0.209 0.199 0.190
    [Show full text]
  • Colloidal Suspensions
    Chapter 9 Colloidal suspensions 9.1 Introduction So far we have discussed the motion of one single Brownian particle in a surrounding fluid and eventually in an extaernal potential. There are many practical applications of colloidal suspensions where several interacting Brownian particles are dissolved in a fluid. Colloid science has a long history startying with the observations by Robert Brown in 1828. The colloidal state was identified by Thomas Graham in 1861. In the first decade of last century studies of colloids played a central role in the development of statistical physics. The experiments of Perrin 1910, combined with Einstein's theory of Brownian motion from 1905, not only provided a determination of Avogadro's number but also laid to rest remaining doubts about the molecular composition of matter. An important event in the development of a quantitative description of colloidal systems was the derivation of effective pair potentials of charged colloidal particles. Much subsequent work, largely in the domain of chemistry, dealt with the stability of charged colloids and their aggregation under the influence of van der Waals attractions when the Coulombic repulsion is screened strongly by the addition of electrolyte. Synthetic colloidal spheres were first made in the 1940's. In the last twenty years the availability of several such reasonably well characterised "model" colloidal systems has attracted physicists to the field once more. The study, both theoretical and experimental, of the structure and dynamics of colloidal suspensions is now a vigorous and growing subject which spans chemistry, chemical engineering and physics. A colloidal dispersion is a heterogeneous system in which particles of solid or droplets of liquid are dispersed in a liquid medium.
    [Show full text]
  • 7. Gamma and X-Ray Interactions in Matter
    Photon interactions in matter Gamma- and X-Ray • Compton effect • Photoelectric effect Interactions in Matter • Pair production • Rayleigh (coherent) scattering Chapter 7 • Photonuclear interactions F.A. Attix, Introduction to Radiological Kinematics Physics and Radiation Dosimetry Interaction cross sections Energy-transfer cross sections Mass attenuation coefficients 1 2 Compton interaction A.H. Compton • Inelastic photon scattering by an electron • Arthur Holly Compton (September 10, 1892 – March 15, 1962) • Main assumption: the electron struck by the • Received Nobel prize in physics 1927 for incoming photon is unbound and stationary his discovery of the Compton effect – The largest contribution from binding is under • Was a key figure in the Manhattan Project, condition of high Z, low energy and creation of first nuclear reactor, which went critical in December 1942 – Under these conditions photoelectric effect is dominant Born and buried in • Consider two aspects: kinematics and cross Wooster, OH http://en.wikipedia.org/wiki/Arthur_Compton sections http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551 3 4 Compton interaction: Kinematics Compton interaction: Kinematics • An earlier theory of -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of h or • The failure of the Thomson theory to describe high-energy photon scattering necessitated the • Inelastic collision • After the collision the electron departs
    [Show full text]
  • 12 Scattering in Three Dimensions
    12 Scattering in three dimensions 12.1 Cross sections and geometry Most experiments in physics consist of sending one particle to collide with another, and looking at what comes out. The quantity we can usually measure is the scattering cross section: by analogy with classical scattering of hard spheres, we assuming that scattering occurs if the particles ‘hit’ each other. The cross section is the apparent ‘target area’. The total scattering cross section can be determined by the reduction in intensity of a beam of particles passing through a region on ‘targets’, while the differential scattering cross section requires detecting the scattered particles at different angles. We will use spherical polar coordinates, with the scattering potential located at the origin and the plane wave incident flux parallel to the z direction. In this coordinate system, scattering processes dσ are symmetric about φ, so dΩ will be independent of φ. We will also use a purely classical concept, the impact parameter b which is defined as the distance of the incident particle from the z-axis prior to scattering. S(k) δΩ I(k) θ z φ Figure 11: Standard spherical coordinate geometry for scattering 12.2 The Born Approximation We can use time-dependent perturbation theory to do an approximate calculation of the cross- section. Provided that the interaction between particle and scattering centre is localised to the region around r = 0, we can regard the incident and scattered particles as free when they are far from the scattering centre. We just need the result that we obtained for a constant perturbation, Fermi’s Golden Rule, to compute the rate of transitions between the initial state (free particle of momentum p) to the final state (free particle of momentum p0).
    [Show full text]
  • Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 Kev to 100 Gev*
    1 of Stanaaros National Bureau Mmin. Bids- r'' Library. Ml gEP 2 5 1969 NSRDS-NBS 29 . A111D1 ^67174 tioton Cross Sections, i NBS Attenuation Coefficients, and & TECH RTC. 1 NATL INST OF STANDARDS _nergy Absorption Coefficients From 10 keV to 100 GeV U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS T X J ". j NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation’s central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology. The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and com- merce. The Institute consists of an Office of Measurement Services and the following technical divisions: Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molec- ular Physics—Radio Physics -—Radio Engineering -—Time and Frequency -—Astro- physics -—Cryogenics.
    [Show full text]
  • Calculation of Photon Attenuation Coefficients of Elements And
    732 ISSN 0214-087X Calculation of photon attenuation coeffrcients of elements and compound Roteta, M.1 Baró, 2 Fernández-Varea, J.M.3 Salvat, F.3 1 CIEMAT. Avenida Complutense 22. 28040 Madrid, Spain. 2 Servéis Científico-Técnics, Universitat de Barcelona. Martí i Franqués s/n. 08028 Barcelona, Spain. 3 Facultat de Física (ECM), Universitat de Barcelona. Diagonal 647. 08028 Barcelona, Spain. CENTRO DE INVESTIGACIONES ENERGÉTICAS, MEDIOAMBIENTALES Y TECNOLÓGICAS MADRID, 1994 CLASIFICACIÓN DOE Y DESCRIPTORES: 990200 662300 COMPUTER LODES COMPUTER CALCULATIONS FORTRAN PROGRAMMING LANGUAGES CROSS SECTIONS PHOTONS Toda correspondencia en relación con este trabajo debe dirigirse al Servicio de Información y Documentación, Centro de Investigaciones Energéticas, Medioam- bientales y Tecnológicas, Ciudad Universitaria, 28040-MADRID, ESPAÑA. Las solicitudes de ejemplares deben dirigirse a este mismo Servicio. Los descriptores se han seleccionado del Thesauro del DOE para describir las materias que contiene este informe con vistas a su recuperación. La catalogación se ha hecho utilizando el documento DOE/TIC-4602 (Rev. 1) Descriptive Cataloguing On- Line, y la clasificación de acuerdo con el documento DOE/TIC.4584-R7 Subject Cate- gories and Scope publicados por el Office of Scientific and Technical Information del Departamento de Energía de los Estados Unidos. Se autoriza la reproducción de los resúmenes analíticos que aparecen en esta publicación. Este trabajo se ha recibido para su impresión en Abril de 1993 Depósito Legal n° M-14874-1994 ISBN 84-7834-235-4 ISSN 0214-087-X ÑIPO 238-94-013-4 IMPRIME CIEMAT Calculation of photon attenuation coefíicients of elements and compounds from approximate semi-analytical formulae M.
    [Show full text]
  • Calculation Exercises with Answers and Solutions
    Atmospheric Chemistry and Physics Calculation Exercises Contents Exercise A, chapter 1 - 3 in Jacob …………………………………………………… 2 Exercise B, chapter 4, 6 in Jacob …………………………………………………… 6 Exercise C, chapter 7, 8 in Jacob, OH on aerosols and booklet by Heintzenberg … 11 Exercise D, chapter 9 in Jacob………………………………………………………. 16 Exercise E, chapter 10 in Jacob……………………………………………………… 20 Exercise F, chapter 11 - 13 in Jacob………………………………………………… 24 Answers and solutions …………………………………………………………………. 29 Note that approximately 40% of the written exam deals with calculations. The remainder is about understanding of the theory. Exercises marked with an asterisk (*) are for the most interested students. These exercises are more comprehensive and/or difficult than questions appearing in the written exam. 1 Atmospheric Chemistry and Physics – Exercise A, chap. 1 – 3 Recommended activity before exercise: Try to solve 1:1 – 1:5, 2:1 – 2:2 and 3:1 – 3:2. Summary: Concentration Example Advantage Number density No. molecules/m3, Useful for calculations of reaction kmol/m3 rates in the gas phase Partial pressure Useful measure on the amount of a substance that easily can be converted to mixing ratio Mixing ratio ppmv can mean e.g. Concentration relative to the mole/mole or partial concentration of air molecules. Very pressure/total pressure useful because air is compressible. Ideal gas law: PV = nRT Molar mass: M = m/n Density: ρ = m/V = PM/RT; (from the two equations above) Mixing ratio (vol): Cx = nx/na = Px/Pa ≠ mx/ma Number density: Cvol = nNav/V 26 -1 Avogadro’s
    [Show full text]
  • Alkali Metal Vapor Pressures & Number Densities for Hybrid Spin Exchange Optical Pumping
    Alkali Metal Vapor Pressures & Number Densities for Hybrid Spin Exchange Optical Pumping Jaideep Singh, Peter A. M. Dolph, & William A. Tobias University of Virginia Version 1.95 April 23, 2008 Abstract Vapor pressure curves and number density formulas for the alkali metals are listed and compared from the 1995 CRC, Nesmeyanov, and Killian. Formulas to obtain the temperature, the dimer to monomer density ratio, and the pure vapor ratio given an alkali density are derived. Considerations and formulas for making a prescribed hybrid vapor ratio of alkali to Rb at a prescribed alkali density are presented. Contents 1 Vapor Pressure Curves 2 1.1TheClausius-ClapeyronEquation................................. 2 1.2NumberDensityFormulas...................................... 2 1.3Comparisonwithotherstandardformulas............................. 3 1.4AlkaliDimers............................................. 3 2 Creating Hybrid Mixes 11 2.1Predictingthehybridvaporratio.................................. 11 2.2Findingthedesiredmolefraction.................................. 11 2.3GloveboxMethod........................................... 12 2.4ReactionMethod........................................... 14 1 1 Vapor Pressure Curves 1.1 The Clausius-Clapeyron Equation The saturated vapor pressure above a liquid (solid) is described by the Clausius-Clapeyron equation. It is a consequence of the equality between the chemical potentials of the vapor and liquid (solid). The derivation can be found in any undergraduate text on thermodynamics (e.g. Kittel & Kroemer [1]): Δv · ∂P = L · ∂T/T (1) where P is the pressure, T is the temperature, L is the latent heat of vaporization (sublimation) per particle, and Δv is given by: Vv Vl(s) Δv = vv − vl(s) = − (2) Nv Nl(s) where V is the volume occupied by the particles, N is the number of particles, and the subscripts v & l(s) refer to the vapor & liquid (solid) respectively.
    [Show full text]
  • 3 Scattering Theory
    3 Scattering theory In order to find the cross sections for reactions in terms of the interactions between the reacting nuclei, we have to solve the Schr¨odinger equation for the wave function of quantum mechanics. Scattering theory tells us how to find these wave functions for the positive (scattering) energies that are needed. We start with the simplest case of finite spherical real potentials between two interacting nuclei in section 3.1, and use a partial wave anal- ysis to derive expressions for the elastic scattering cross sections. We then progressively generalise the analysis to allow for long-ranged Coulomb po- tentials, and also complex-valued optical potentials. Section 3.2 presents the quantum mechanical methods to handle multiple kinds of reaction outcomes, each outcome being described by its own set of partial-wave channels, and section 3.3 then describes how multi-channel methods may be reformulated using integral expressions instead of sets of coupled differential equations. We end the chapter by showing in section 3.4 how the Pauli Principle re- quires us to describe sets identical particles, and by showing in section 3.5 how Maxwell’s equations for electromagnetic field may, in the one-photon approximation, be combined with the Schr¨odinger equation for the nucle- ons. Then we can describe photo-nuclear reactions such as photo-capture and disintegration in a uniform framework. 3.1 Elastic scattering from spherical potentials When the potential between two interacting nuclei does not depend on their relative orientiation, we say that this potential is spherical. In that case, the only reaction that can occur is elastic scattering, which we now proceed to calculate using the method of expansion in partial waves.
    [Show full text]
  • Receive! Osti
    DOE/MC/30175-5033 (DE96000569) RECEIVE! NOV 2 11995 OSTI Portable Sensor for Hazardous Waste Topical Report October 1993 - September 1994 Dr. Lawrence G. Piper October 1994 Work Performed Under Contract No.: DE-AC21-93MC30175 For U.S. Department of Energy U.S. Department of Energy Office of Environmental Management Office of Fossil Energy Office of Technology Development Morgantown Energy Technology Center Washington, DC Morgantown, West Virginia By Physical Sciences Inc. Andover, Massachusetts IAS DISTRIBUTION DP TMi.Q nnpiiycwr » I !MI IS UTT-n, S\c^ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manu• facturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, 175 Oak Ridge Turnpike, Oak Ridge, TN 37831; prices available at (615) 576-8401. Available to the public from the National Technical Information Service, U.S.
    [Show full text]