3.1Mb PDF File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Environmental History of the Middle Rio Grande Basin
United States Department of From the Rio to the Sierra: Agriculture Forest Service An Environmental History of Rocky Mountain Research Station the Middle Rio Grande Basin Fort Collins, Colorado 80526 General Technical Report RMRS-GTR-5 Dan Scurlock i Scurlock, Dan. 1998. From the rio to the sierra: An environmental history of the Middle Rio Grande Basin. General Technical Report RMRS-GTR-5. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 440 p. Abstract Various human groups have greatly affected the processes and evolution of Middle Rio Grande Basin ecosystems, especially riparian zones, from A.D. 1540 to the present. Overgrazing, clear-cutting, irrigation farming, fire suppression, intensive hunting, and introduction of exotic plants have combined with droughts and floods to bring about environmental and associated cultural changes in the Basin. As a result of these changes, public laws were passed and agencies created to rectify or mitigate various environmental problems in the region. Although restoration and remedial programs have improved the overall “health” of Basin ecosystems, most old and new environmental problems persist. Keywords: environmental impact, environmental history, historic climate, historic fauna, historic flora, Rio Grande Publisher’s Note The opinions and recommendations expressed in this report are those of the author and do not necessarily reflect the views of the USDA Forest Service. Mention of trade names does not constitute endorsement or recommendation for use by the Federal Government. The author withheld diacritical marks from the Spanish words in text for consistency with English punctuation. Publisher Rocky Mountain Research Station Fort Collins, Colorado May 1998 You may order additional copies of this publication by sending your mailing information in label form through one of the following media. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
On the Moon with Apollo 16. a Guidebook to the Descartes Region. INSTITUTION National Aeronautics and Space Administration, Washington, D.C
DOCUMENT RESUME ED 062 148 SE 013 594 AUTHOR Simmons, Gene TITLE On the Moon with Apollo 16. A Guidebook to the Descartes Region. INSTITUTION National Aeronautics and Space Administration, Washington, D.C. REPORT NO NASA-EP-95 PUB DATE Apr 72 NOTE 92p. AVAILABLE FROM Superintendent of Documents, Government Printing Office, Washington, D. C. 20402 (Stock Number 3300-0421, $1.00) EDRS PRICE MF-$0.65 HC-$3.29 DESCRIPTORS *Aerospace Technology; Astronomy; *Lunar Research; Resource Materials; Scientific Research; *Space Sciences IDENTIFIERS NASA ABSTRACT The Apollo 16 guidebook describes and illustrates (with artist concepts) the physical appearance of the lunar region visited. Maps show the planned traverses (trips on the lunar surface via Lunar Rover); the plans for scientific experiments are described in depth; and timelines for all activities are included. A section on uThe Crewn is illustrated with photos showing training and preparatory activities. (Aathor/PR) ON THE MOON WITH APOLLO 16 A Guidebook to the Descartes Region U.S. DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO- DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG- grIl INATING IT POINTS OF VIEW OR OPIN- IONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDU- CATION POSITION on POLICY. JAI -0110 44 . UP. 16/11.4LI NATIONAL AERONAUTICS AND SPACE ADMINISTRATION April 1972 EP-95 kr) ON THE MOON WITH APOLLO 16 A Guidebook to the Descartes Region by Gene Simmons A * 40. 7 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION April 1972 2 Gene Simmons was Chief Scientist of the Manned Spacecraft Center in Houston for two years and isnow Professor of Geophysics at the Mas- sachusetts Institute of Technology. -
Science Training History of the Apollo Astronauts William C
NASA/SP-2015-626 Science Training History of the Apollo Astronauts William C. Phinney National Aeronautics and Space Administration Apollo 17 crewmembers Gene Cernan and Harrison Schmitt conducting a practice EVA in the southern Nevada Volcanic Field near Tonopah, NV (NASA Photograph AS17-S72-48930). ii NASA/SP-2015-626 Science Training History of the Apollo Astronauts William C. Phinney National Aeronautics and Space Administration Cover photographs: From top: Apollo 13 Commander (CDR) James Lovell, left, and Lunar Module Pilot (LMP) Fred Haise during a geologic training trip to Kilbourne Hole, NM, November 1969 (NASA Photography S69- 25199); (Center) Apollo 16 LMP Charles Duke (left) and CDR John W. Young (right) during a practice EVA at Sudbury Crater, Ontario, Canada, July 1971 (NASA Photograph AS16-S71-39840); Apollo 17 LMP Harrison Schmitt (left) and CDR Eugene Cernan (right) during a practive EVA at Lunar Crater Volcanic Field, Tonopah, Nevada, September 1972 (NASA Photograph AS17-S72-48895); Apollo 15 CDR David Scott (left) and James Irwin (right) during practice geologic EVA training at the Rio Grande Gorge, Taos, NM, March 1971 (NASA Photograph AS15-S71-23773) iv ACKNOWLEDGEMENTS When I retired from NASA several of my coworkers, particularly Dave McKay and Everett Gibson, suggested that, given my past role as the coordinator for the science training of the Apollo astronauts, I should put together a history of what was involved in that training. Because it had been nearly twenty-five years since the end of Apollo they pointed out that many of the persons involved in that training might not be around when advice might be sought for future missions of this type. -
F. REGOLITH of the APOLLO 16 SITE by VAL L
F. REGOLITH OF THE APOLLO 16 SITE By VAL L. FREEMAN CONTENTS Page Introduction ………………………………………………………………………………………147 Appearance of the regolith ……………………………………………………………………….147 Thickness of regolith …………………………………………………………………………….148 Composition of regolith ………………………………………………………………………….149 Summary …………………………………………………………………………………………156 ILLUSTRATIONS Page FIGURE 1-4. Photographs: 1. Apollo 16 traverse area in high-sun illumination …………………………………………………………………….148 2. Comparison of lunar surface within and between rays from South Ray crater ………………………………………150 3. Comparison of old and young ray-covered areas …………………………………………………………………….152 4. Location of concentric craters used to estimate depths of regolith …………………………………………………...154 5. Map of kilometer-size craters in Apollo region ……………………………………………………………………………...155 6-9. Variation diagrams; soil samples and rock and soil samples: 6. FeO, TiO2, A12O3, and Ni …………………………………………………………………………………………. 156 7. Ti02 relative to Al203 ……………………………………………………………………………………………….. 157 8. Al2O3 relative to FeO ……………………………………………………………………………………………….. 158 9. Ni relative to FeO …………………………………………………………………………………………………….159 TABLES Page TABLE 1.Apollo 16 soil analyses for A1203, TiO2, FeO, and Ni ……………………………………………………………………...155 2. Apollo 16 rock analyses for A12,03, Ti02, FeO, and Ni ……………………………………………………………………155 INTRODUCTION APPEARANCE OF THE REGOLITH The lunar regolith is generally defined as the relatively Premission investigations of the Apollo 16 site unconsolidated fragmental material that forms the suggested that differences -
WELCOME to the RIO GRANDE Camping at Developed Sites Within the Recreation Areas
Fees, Reservations & Other Information Orilla Verde and Wild Rivers are U.S. designated fee areas. Open year-round, fees are charged for day use and WELCOME TO THE RIO GRANDE camping at developed sites within the Recreation Areas. Individual campsites are available on a first-come, The Rio Grande travels 1,885 mites from the mountains The Recreation Areas are open year-round, first-served basis. Group shelters at each area may be of southern Colorado and north-central New Mexico to with limited facilities available in winter, because reserved at ( 505) 7 5 8-88 51. the Gulf of Mexico. S~Prlt"~otential difficult access and lack of water. In northern New Mexico, the river cuts through the The climate is semi-arid with summet' thunder Camping is permitted in designated sites only and fires must ancient Taos volcanic plateau to form the 78-mile long storms common in July and August. Snow is be contained in grills or fire pans (if no fire restrictions are Rio Grande Gorge. possible from November through March. Summer in place). Bring your own cookstove and/or firewood. The Bureau of Land Management (BLM) administers temperatures range from 45° to 90° F and in the Recycle Bins and Trash Receptacles are located two Recreation Areas along the Gorge: Wild Rivers to winter from - 15° to 45° F. permits. Interpretive throughout the Recreation Area. Please use them. the .,_orth of Taos and Ocilla Verde to the south of Taos. Elevation ranges from 6,ooo to 8,ooo feet. Pack Out What You Pack In. -
Mission Objectives for Geological Exploration of the Apollo 16 Landing
Papike, J.J. and Merrill, R.B., eds. Proc. Conf. Lunar Highlands Crust (1980), p. 1-49 Printed in the United States of America 1980luhc.conf....1M Mission objectives for geological exploration of the Apollo 16 landing site1 W. R. Muehlberger The University of Texas at Austin, Austin, Texas 78712 Friedrich Horz Geology Branch, NASA Johnson Space Center, Houston, Texas 77058 J. R. Sevier Lunar and Planetary Institute, Houston, Texas 77058 G. E. Ulrich U.S. Geological Survey, Flagstaff, Arizona 86001 Summary-This document is a committee report which outlines scientific objectives and specific rationales developed for the exploration of the Apollo 16 site, our most important mission to the lunar highlands. Although premission hypotheses erroneously favored a volcanic origin for the Cayley plains as well as Descartes Mountains, the major mission objectives were successfully accomplished: to delineate the nature and origin of two major physiographic units of the lunar central highlands. The units are composed of fragmental impact deposits; present debate focuses on specific source areas of the samples and depositional mechanism(s). The premission exploration strategy was to use impact craters of various diameters and associated depths of penetration as stratigraphic probes. Specific sampling procedures, operational constraints, and suites of samples that were collected for specific local objectives, are described for lunar scientists who are unfamiliar with mission planning in general and more specifically with Apollo 16. A large number of samples taken to reconstruct local stratigraphic-structural relationships are either insuffi- ciently studied or have not been studied at all. While such stratigraphic-structural relationships are extremely complex, or even chaotic, at Apollo 16, additional insight into local geologic processes could be obtained by future investigation of these special sample suites. -
Birth and Evolution of the Rio Grande Fluvial
University of New Mexico UNM Digital Repository Earth and Planetary Sciences ETDs Electronic Theses and Dissertations Fall 9-21-2016 Birth and evolution of the Rio Grande fluvial system in the last 8 Ma:Progressive downward integration and interplay between tectonics, volcanism, climate, and river evolution Marisa N. Repasch Follow this and additional works at: https://digitalrepository.unm.edu/eps_etds Part of the Geology Commons, Geomorphology Commons, Hydrology Commons, Other Earth Sciences Commons, Sedimentology Commons, Tectonics and Structure Commons, and the Volcanology Commons Recommended Citation Repasch, Marisa N.. "Birth and evolution of the Rio Grande fluvial system in the last 8 Ma:Progressive downward integration and interplay between tectonics, volcanism, climate, and river evolution." (2016). https://digitalrepository.unm.edu/eps_etds/139 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Earth and Planetary Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Marisa Repasch Candidate Earth and Planetary Sciences Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Karl Karlstrom Laura Crossey Matt Heizler i BIRTH AND EVOLUTION OF THE RIO GRANDE FLUVIAL SYSTEM IN THE LAST 8 MA: PROGRESSIVE DOWNWARD INTEGRATION AND INTERPLAY BETWEEN TECTONICS, VOLCANISM, CLIMATE, AND RIVER EVOLUTION BY MARISA REPASCH B.S. EARTH AND ENVIRONMENTAL SCIENCES LEHIGH UNIVERSITY 2014 M.S. THESIS Submitted in partial fulfillment of the Requirements for the Degree of Master of Science Earth and Planetary Sciences The University of New Mexico Albuquerque, New Mexico December, 2016 ii ACKNOWLEDGEMENTS First and foremost, I acknowledge my advisor, Karl Karlstrom, for all of the guidance, time, and energy he invested in my research, professional development, and personal well-being. -
Apollo 16 (Descartes) Landing Site Road Log
UNITED STATES - DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY LIBRARY LUNAR _JEXAS 77058 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature. Prepared by the Geological Survey for the National Aeronautics and Space Administration INTERAGENCY REPORT: ASTROGEOLOGY 46 APOLLO 16 (DESCARTES) LANDING SITE ROAD LOG by E. L. Boudette, J. P. Schafer, and D. P. Elston April 1972 This report concerns work done on behalf of the National Aeronautics and Space Administration Manned Spacecraft Genter, Houston, Texas NASA Contract T-5874-A CONTENTS page EVA I. 1 EVA II 4 EVA III 12 iii APOLLO 16 (DESCARTES) LANDING SITE ROAD LOG l/ 2/ by E. L. Baudette, J. P. Schafer, and D. P. Elston EVA I 0.0 KM Leave ALSEP area on azimuth 280°; distance to Station 1 is Drive over undulating terrain of irregular unit of the Cayley Formation with degraded craters up to about 50 m across. 0.3 Cross northeast-trending filigree (possible layering) shown by low, sinuous escarpment. 0.8 Area of Station 2, North Rim of Spook (degraded crater) Convex escarpment about 5 m high facing southeast, which may require slight detour to north. Boulders ~s m l/This road log is intended for use with the following materials: (a) U. S. Geological Survey, 1972, Apollo 16 (Descartes) Sur- face Data Package (1:12,500 and 1:25,000-scale maps): [unpublished]. (b) Baudette, E. L., Schafer, J. P., and Elston, D. P., 1972, Engineering geology of the Apollo 16 (Descartes) traverse area (1~12,500-scale): U.S. -
Artist T.D. Kelsey All That Slithers in Yellowstone Mishaps in Wild West Shows to the Point
BUFFALO BILL HISTORICAL CENTER I CODY, WYOMING I SPRING 2008 Lee Whittlesey’s Yellowstone Lake continues Artist T.D. Kelsey All that slithers in Yellowstone Mishaps in Wild West Shows To the point © 2008 Buffalo Bill Historical Center. Written permission is required to copy, reprint, or distribute Points West materials in any medium or format. All photographs in Points West are BBHC photos unless otherwise noted. Questions about image rights and reproduction should be directed to Associate Registrar Ann Marie Donoghue at [email protected] or 307.578.4024. Bibliographies, works cited, and footnotes, etc. are purposely omitted to conserve space. However, such information is available by contacting the editor. Address correspondence to Editor, Points West , Buffalo Bill Historical Center, 720 Sheridan Avenue, Cody, Wyoming 82414 or [email protected]. Senior Editor Mr. Lee Haines by Bruce Eldredge Managing Editor Executive Director Ms. Marguerite House Copy Editors Thoughts from the Director Ms. Lynn Pitet, Ms. Joanne Patterson, Ms. Nancy McClure Designer he Buffalo Bill Historical Center family was saddened by Ms. Jan Woods–Krier the passing of Nancy -Carroll Draper, a long time Photography Staff Ttrustee, contributor and friend of the center . Ms. Chris Gimmeson, Mr. Sean Campbell Ms. Draper was known to all as a benefactor interested in Book Reviews environmental education and the natural science of the Dr. Kurt Graham Yellowstone region. Her lead gift founded the Draper Historical Photographs Museum of Natural History at the BBHC historical center Ms. Mary Robinson; Ms. Megan Peacock and helped set into motion the most recent expansion of Rights and Reproductions our facilities and programs.