Was There Sophisticated Mathematics During Vedic Age?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of Vedic Mathematics in Driving Optimal Solutions for Real Life Problems
ROLE OF VEDIC MATHEMATICS IN DRIVING OPTIMAL SOLUTIONS FOR REAL LIFE PROBLEMS Deepshikha Bhargava1, Anita Arya2 1,2AIIT, Department Amity University Rajasthan (India) ABSTRACT In this paper, we show the importance of Vedic mathematics to derive the optimal solution for real life problems. Vedic Mathematics is the name given to the ancient system of Mathematics which was rediscovered from the Vedas between 1911 and 1918 by Sri Bharati Krsna Tirthaji (1884-1960). According to his research all of mathematics is based on sixteen Sutras or word-formulae. It is not only useful for arithmetic computations but also helpful for solving problems related to other branches of Mathematics as Algebra, Trigonometry and Calculus etc. Vedic mathematics not only helps in faster computations but also in determining the right solutions to a problem. Keywords: Algebra, Arithmetic, Calculus, Sutra, and Vedas. I. INTRODUCTION Vedic Mathematics is the name given to the ancient system of Mathematics which was rediscovered from the Vedas between 1911 and 1918 by Sri Bharati Krisna Tirthraji (1884-1960). According to his research all of mathematics is based on sixteen Sutras or word-formulae. For example, 'Vertically and crosswise` is one of these Sutras. These formulae describe the way the mind naturally works and are therefore a great help in directing the student to the appropriate method of solution. Instead of learning by repetition, vedic mathematics involves logic and understanding the fundamental concepts. One can do calculations much faster than done by using the conventional method that is taught in schools. It teaches the students the same problem in different ways. -
Communalisation of Education Delhi Historians' Group
Communalisation of Education The History Textbooks Controversy Delhi Historians’ Group CONTENTS Section 1 An Overview Communalisation of Education, The History Textbooks Controversy: An Overview Mridula Mukherjee and Aditya Mukherjee Section 2 What Historians Say 1. Propaganda as History won’t sell Romila Thapar 2. Historical Blunders Bipan Chandra 3. The Rewriting of History by the Sangh Parivar Irfan Habib 4. Communalism and History Textbooks R. S. Sharma 5. Guru Tegh Bahadur’s Martyrdom Satish Chandra 6. NCERT, ‘National Curriculum’ and ‘Destruction of History’ Arjun Dev 7. Does Indian History need to be re-written Sumit Sarkar Section 3 What other Commentators Say 1. Talibanasing Our Education Vir Sanghvi 2. Udder Complexity Dileep Padgaonkar 3. Textbooks and Communalism Rajeev Dhavan 4. Consensus be Damned Anil Bordia 5. What is History Subir Roy 6. History as Told by Non-Historians Anjali Modi 7. History,Vaccum-Cleaned Saba Naqvi Bhaumik 8. Joshi’s History Editorial in Indian Express 9. History as Nonsense Editorial in Indian Express Section 4 Text of the Deletions made from the NCERT books Section 1: An Overview COMMUNALISATION OF EDUCATION THE HISTORY TEXTBOOK CONTROVERSY: AN OVERVIEW Mridula Mukherjee and Aditya Mukherjee Professors of History Centre for Historical Studies Jawaharlal Nehru University The current controversy over the nature of history textbooks to be prescribed in schools reflects two completely divergent views of the Indian nation. One of the most important achievements of the Indian national movement, perhaps the greatest mass movement in world history, was the creation of the vision of an open, democratic, secular and civil libertarian state which was to promote a modern scientific outlook in civil society in independent India. -
Ebook Download Vedic Mathematics Ebook
VEDIC MATHEMATICS PDF, EPUB, EBOOK Bharati Krsna Tirthaji,V.S. Agrawala | 419 pages | 01 Dec 1992 | Motilal Banarsidass | 9788120801646 | English | Delhi, India Vedic Mathematics PDF Book Practically explained as below. We have a range of free material for you including the Elementary Teacher's Manual which is one of the most popular books on Vedic Mathematics. It is a magical tool to reduce scratch work and counting on fingers. Scientific values and civic virtues. Who is it for. A place at the multicultural table the development of an American Hinduism. Sunyam Samya Samuccaya. From Wikipedia, the free encyclopedia. Vedic Mathematics is useful for all classes. There is a race against time in all the competitions. Kevalaih Saptakam Gunyat. Daily Telegraph. They are called specific methods. He passed his matriculation examination from the Madras University in topping the list as usual. The students understand the numbers better. Step 2 : Separate the last digit of the dividend from the rest to calculate the remainder. Org They were eager to learn and to perfect their skills. Notify of. It is run by pasyanthi. Desktop Version. For example:. Perhaps the most striking feature of the Vedic system is its coherence. Inline Feedbacks. Your email address will not be published. Shunya Anyat. You will hear when and how enrollments are being taken through the newsletter. Vedic Maths Tricks make not only multiplications, divisions but also addition and subtractions also. The American Mathematical Monthly. This area of the web site provides information on the people and organizations involved in Vedic Mathematics. Rutgers University Press. There is also a lively discussion forum where ideas and comments are exchanged. -
Equation Solving in Indian Mathematics
U.U.D.M. Project Report 2018:27 Equation Solving in Indian Mathematics Rania Al Homsi Examensarbete i matematik, 15 hp Handledare: Veronica Crispin Quinonez Examinator: Martin Herschend Juni 2018 Department of Mathematics Uppsala University Equation Solving in Indian Mathematics Rania Al Homsi “We owe a lot to the ancient Indians teaching us how to count. Without which most modern scientific discoveries would have been impossible” Albert Einstein Sammanfattning Matematik i antika och medeltida Indien har påverkat utvecklingen av modern matematik signifi- kant. Vissa människor vet de matematiska prestationer som har sitt urspring i Indien och har haft djupgående inverkan på matematiska världen, medan andra gör det inte. Ekvationer var ett av de områden som indiska lärda var mycket intresserade av. Vad är de viktigaste indiska bidrag i mate- matik? Hur kunde de indiska matematikerna lösa matematiska problem samt ekvationer? Indiska matematiker uppfann geniala metoder för att hitta lösningar för ekvationer av första graden med en eller flera okända. De studerade också ekvationer av andra graden och hittade heltalslösningar för dem. Denna uppsats presenterar en litteraturstudie om indisk matematik. Den ger en kort översyn om ma- tematikens historia i Indien under många hundra år och handlar om de olika indiska metoderna för att lösa olika typer av ekvationer. Uppsatsen kommer att delas in i fyra avsnitt: 1) Kvadratisk och kubisk extraktion av Aryabhata 2) Kuttaka av Aryabhata för att lösa den linjära ekvationen på formen 푐 = 푎푥 + 푏푦 3) Bhavana-metoden av Brahmagupta för att lösa kvadratisk ekvation på formen 퐷푥2 + 1 = 푦2 4) Chakravala-metoden som är en annan metod av Bhaskara och Jayadeva för att lösa kvadratisk ekvation 퐷푥2 + 1 = 푦2. -
Philosophy of Mathematics
Chapter 1: Philosophy of Mathematics: A Historical Introduction 1.0 Introduction Mathematics presents itself as a science in the general sense in which history is a science, namely as sector in the quest for truth. Historians aim at establishing the truth about what was done by and what happened to human beings in the past. 12 The history of mathematics is primarily an investigation into the origin of discoveries in mathematics, the standard mathematical methods and notations of the past. In this chapter, first we make a brief survey of the history of mathematics in view of placing Gödel’s Theorems within the historical trajectory of mathematics. Next we present contemporary developments in the philosophy of mathematics as a platform to delineate the relationship between mathematics and logic in general and also to expose the philosophical implications of Gödel’s Incompleteness Theorem in particular. 1.1 Historical Phases in the Development of Mathematics The most ancient mathematical texts available are Plimpton 322 (Babylonian mathematics c. 1900 BCE), the Moscow Mathematical Papyrus (Egyptian mathematics c. 1850 BC), the Rhind Mathematical Papyrus (Egyptian mathematics c. 12 Refer Michel Dummett, “What is Mathematics About?” in Alexander George (ed.), Mathematics and Mind , Oxford University Press, Oxford, 1994, 11-26. 21 1650 BC), and the Shulba Sutras (Indian mathematics c. 800 BC). 13 All these texts concern the so-called Pythagorean theorem, which seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry. Egyptian and Babylonian mathematics were then further developed in Greek and Hellenistic mathematics, which is generally considered to be very important for greatly expanding both the method and the subject matter of mathematics. -
Mathematics Newsletter Volume 21. No4, March 2012
MATHEMATICS NEWSLETTER EDITORIAL BOARD S. Ponnusamy (Chief Editor) Department of Mathematics Indian Institute of Technology Madras Chennai - 600 036, Tamilnadu, India Phone : +91-44-2257 4615 (office) +91-44-2257 6615, 2257 0298 (home) [email protected] http://mat.iitm.ac.in/home/samy/public_html/index.html S. D. Adhikari G. K. Srinivasan Harish-Chandra Research Institute Department of Mathematics, (Former Mehta Research Institute ) Indian Institute of Technology Chhatnag Road, Jhusi Bombay Allahabad 211 019, India Powai, Mumbai 400076, India [email protected] [email protected] C. S. Aravinda B. Sury, TIFR Centre for Applicable Mathematics Stat-Math Unit, Sharadanagar, Indian Statistical Institute, Chikkabommasandra 8th Mile Mysore Road, Post Bag No. 6503 Bangalore 560059, India. Bangalore - 560 065 [email protected], [email protected] [email protected] M. Krishna G. P. Youvaraj The Institute of Mathematical Sciences Ramanujan Institute CIT Campus, Taramani for Advanced Study in Mathematics Chennai-600 113, India University of Madras, Chepauk, [email protected] Chennai-600 005, India [email protected] Stefan Banach (1892–1945) R. Anantharaman SUNY/College, Old Westbury, NY 11568 E-mail: rajan−[email protected] To the memory of Jong P. Lee Abstract. Stefan Banach ranks quite high among the founders and developers of Functional Analysis. We give a brief summary of his life, work and methods. Introduction (equivalent of middle/high school) there. Even as a student Stefan revealed his talent in mathematics. He passed the high Stefan Banach and his school in Poland were (among) the school in 1910 but not with high honors [M]. -
Some Interesting Facts, Myths and History of Mathematics
International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 4 Issue 6 || August. 2016 || PP-54-68 Some Interesting Facts, Myths and History of Mathematics Singh Prashant1 1(Department of Computer Science, Institute of Science, Banaras Hindu University) ABSTRACT : This paper deals with primary concepts and fallacies of mathematics which many a times students and even teachers ignore. Also this paper comprises of history of mathematical symbols, notations and methods of calculating time. I have also included some ancient techniques of solving mathematical real time problems. This paper is a confluence of various traditional mathematical techniques and their implementation in modern mathematics. I. INTRODUCTION I have heard my father saying that ―Mathematics is the only genuine subject as it does not change with boundary of countries‖. It is lucrative just because of its simplicity. Galileo once said, ―Mathematics is the language with which God wrote the Universe.‖ He was precise in calling mathematics a language, because like any dialect, mathematics has its own rubrics, formulas, and nuances. In precise, the symbols used in mathematics are quite unique to its field and are profoundly engrained in history. The following will give an ephemeral history of some of the greatest well-known symbols employed by mathematics. Categorized by discipline within the subject, each section has its own interesting subculture surrounding it. Arithmetic is the most rudimentary part of mathematics and covers addition, subtraction, multiplication, and the division of numbers. One category of numbers are the integers, -n,…-3,-2,-1,0,1,2,3,…n , where we say that n is in .The capital letter Z is written to represent integers and comes from the German word, Zahlen, meaning numbers. -
Påˆini and Euclid: Reflections on Indian Geometry* (Published In: Journal of Indian Philosophy 29 (1-2; Ingalls Commemoration Volume), 2001, 43-80)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Serveur académique lausannois Påˆini and Euclid 1 JOHANNES BRONKHORST Påˆini and Euclid: reflections on Indian geometry* (published in: Journal of Indian Philosophy 29 (1-2; Ingalls Commemoration Volume), 2001, 43-80) Professor Ingalls — in an article called "The comparison of Indian and Western philosophy" — made the following interesting observation (1954: 4): "In philosophizing the Greeks made as much use as possible of mathematics. The Indians, curiously, failed to do this, curiously because they were good mathematicians. Instead, they made as much use as possible of grammatical theory and argument." This observation should not — as goes without saying in our day and age — be read as a description of the Indian “genius” as opposed to that of the Greeks (at least not in some absolute sense), but as a reminder of the important roles that mathematics and linguistics have played as methodical guidelines in the development of philosophy in Greece and in India respectively. Ingalls appears to have been the first to draw attention to this important distinction. He was not the last. Ingalls's observation has been further elaborated by J. F. (= Frits) Staal in a few articles (1960; 1963; 1965).1 Staal focuses the discussion on two historical persons in particular, Euclid and Påˆini, both of whom — as he maintains — have exerted an important, even formative, influence on developments in their respective cultures. Staal also broadens the horizon by drawing other areas than only philosophy into the picture. To cite his own words (1965: 114 = 1988: 158): "Historically speaking, Påˆini's method has occupied a place comparable to that held by Euclid's method in Western thought. -
International Conference on the 900Th Birth Anniversary of Bhāskarācārya
International Conference on the 900th Birth Anniversary of Bhāskarācārya 19, 20, 21 September 2014 ABSTRACTS Vidya Prasarak Mandai Vishnu Nagar, Naupada, Thane 400602 2 I BHĀSKARĀCĀRYA’S LIFE AND TIMES A. P. JAMKHEDKAR, Mumbai. ‘Learning and Patronage in 12th -13th Century A.D.: Bhaskarācarya and the Śāndilya Family, A Case Study’ … … … … … 5 II BHASKARĀCĀRYA’S POETIC GENIUS Pierre-Sylvain FILLIOZAT, Paris. ‘The poetical face of the mathematical and astronomical works of Bhāskarācārya’ … … … … … … … … 7 K. S. BALASUBRAMANIAN, Chennai. ‘Bhāskarācārya as a Poet’ … … … … 8 GEETHAKUMARI, K. K., Calicut. ‘Contribution of Līlāvatī to Prosody’ … … … 9 Poonam GHAI, Dhampur. ‘Līlāvatī men Kāvya-saundarya’ … … … … … … 10 III THE LĪLĀVATĪ K. RAMASUBRAMANIAN, Mumbai. ‘The Līlā of the Līlāvatī: A Beautiful Blend of Arithmetic, Geometry and Poetry’ … … … … … … … … … 11 PADMAVATAMMA, Mysore. ‘A Comparative Study of Bhāskarācārya’s Līlāvatī and Mahāvīrācārya’s Gaṇitasārasaṁgraha’… … … … … … … … 11 K. RAMAKALYANI, Chennai. ‘Gaṇeśa Daivajña’s Upapattis on Līlāvatī’ … … 12 Anil NARAYANAN, N., Calicut. ‘Parameswara’s Unpublished Commentary on Lilavati: Perceptions and Problems’ … … … … … … … … … … … 13 P. RAJASEKHAR & LAKSHMI, V. Calicut. ‘Līlāvatī and Kerala School of Mathematics’ 14 N. K. Sundareswaran & P. M. Vrinda, Calicut. ‘Malayalam Commentaries on Līlāvatī – A Survey of Manuscripts in Kerala’ … … … … … … 15 Shrikrishna G. DANI, Mumbai. ‘Mensuration of Quadrilaterals in Lilavati’ … … 16 Takanori KUSUBA, Osaka. ‘Aṅkapāśa in the Līlāvatī’ … … … … … … … 17 Medha Srikanth LIMAYE, Mumbai. Use of Bhūta-Saṅkhyās (Object Numerals) in Līlāvatī of Bhāskarācārya’ … … … … … … … … … … 17 Sreeramula Rajeswara SARMA, Düsseldorf. ‘The Legend of Līlāvatī’ … … … 17 IV THE BĪJAGAṆITA Sita Sundar RAM, Chennai. ‘Bījagaṇita of Bhāskara’ … … … … … … … 19 K. VIDYUTA, Chennai. ‘Sūryaprakāśa of Sūryadāsa – a Review’ … … … … 20 Veena SHINDE-DEORE & Manisha M. ACHARYA, Mumbai. ‘Bhaskaracharya and Varga Prakriti: the equations of the type ax2 + b = cy2’ … … … … … 20 K. -
International Journal of Research Ancient Indian Mathematicians
International Journal of Research e-ISSN: 2348-6848 & p-ISSN 2348-795X Vol-5, Special Issue-9 International Seminar on Changing Trends in Historiography: A Global Perspective Held on 2nd February 2018 organized by The Post Graduate Department of History. Dev Samaj College for Women, Ferozepur City, Punjab, India Ancient Indian Mathematicians Sanjay Gupta Assistant Professors, P.G. Department of Mathematics, Dev Samaj College For Women, Ferozepur City, Punjab, India. Poonam Assistant Professors, P.G. Department of Mathematics, Dev Samaj College For Women, Ferozepur City, Punjab, India. Sandeep Sandhu Assistant Professors, P.G. Department of Mathematics, Dev Samaj College For Women, Ferozepur City, Punjab, India. Abstract The aim of this paper is to present a brief history of ancient Indian mathematicians. We want to summarize the results and contributions of Indian mathematicians which were made in the period from the first civilization in Indian subcontinent to 5th century AD when classical era of Indian mathematics began. Keywords : History, Ancient, Mathematicians, Civilization, Classical. 1. Introduction In this paper, we have to present enormous work and contributions made by Ancient Indian Mathematicians. It is no doubt that the world today is greatly thankful to the contributions made by Indian mathematicians. One of the most important contributions made by them was the invention of zero as well as the introduction of decimal system. Indian mathematics emerged in the Indian subcontinent from 1200 BC until the end of the 18th century. In the classical period of Indian mathematics (400 AD to 1200AD), important contributions were made by scholars like Aryabhata, Brahmagupta and Bhaskara II. -
Ancient Indian Mathematics – a Conspectus*
GENERAL ARTICLE Ancient Indian Mathematics – A Conspectus* S G Dani India has had a long tradition of more than 3000 years of pursuit of Mathematical ideas, starting from the Vedic age. The Sulvasutras (which in- cluded Pythagoras theorem before Pythagoras), the Jain works, the base 10 representation (along with the use of 0), names given to powers of 10 S G Dani is a Distinguished up to 1053, the works of medieval mathematicians Professor at the Tata motivated by astronomical studies, and ¯nally Institute of Fundamental Research, Mumbai. He the contributions of the Kerala school that came obtained his bachelor’s, strikingly close to modern mathematics, repre- master’s and PhD degrees sent the various levels of intellectual attainment. from the University of Mumbai. His areas of There is now increasing awareness around the world that interest are dynamics and as one of the ancient cultures, India has contributed sub- ergodic theory of flows on stantially to the global scienti¯c development in many homogeneous spaces, spheres, and mathematics has been one of the recognized probability measures on Lie groups areas in this respect. The country has witnessed steady and history of mathematics. mathematical developments over most part of the last He has received 3,000 years, throwing up many interesting mathemati- several awards including cal ideas well ahead of their appearance elsewhere in the the Ramanujan Medal and the world, though at times they lagged behind, especially in TWAS Prize. the recent centuries. Here are some episodes from the fascinating story that forms a rich fabric of the sustained * This is a slightly modified ver- intellectual endeavour. -
Teaching Recurrent Sequences in Brazil Using
Volume 13, Number 1, 2020 - - DOI: 10.24193/adn.13.1.9 TEACHING RECURRENT SEQUENCES IN BRAZIL USING HISTORICAL FACTS AND GRAPHICAL ILLUSTRATIONS Francisco Regis Vieira ALVES, Paula Maria Machado Cruz CATARINO, Renata Passos Machado VIEIRA, Milena Carolina dos Santos MANGUEIRA Abstract: The present work presents a proposal for study and investigation, in the context of the teaching of Mathematics, through the history of linear and recurrent 2nd order sequences, indicated by: Fibonacci, Lucas, Pell, Jacobsthal, Leonardo, Oresme, Mersenne, Padovan, Perrin and Narayana. Undoubtedly, starting from the Fibonacci sequence, representing the most popular in the referred scenario of numerical sequences, it was possible to notice the emergence of other sequences. In some cases, being derived from Fibonacci, in others, changing the order of the sequence, we thus have the historical study, with the use of mathematical rigor. Besides, their respective recurrence formulas and characteristic equations are checked, observing their roots and the relationship with the number of gold, silver, bronze and others. The results indicated represent an example of international research cooperation involving researchers from Brazil and Portugal. Key words: Historical-mathematical investigation, Recurring Sequences, History of Mathematics. 1. Introduction Linear and recurring sequences have many applications in several areas, such as Science, Arts, Mathematical Computing and others, thus showing an increasing interest of scholars in this subject. The Fibonacci sequence is the best known and most commented on by authors of books on the History of Mathematics, being, therefore, an object of study for many years, until today, safeguarding a relevant character (Rosa, 2012). Originated from the problem of immortal rabbits, this sequence is shown in many works succinctly and trivially, not providing the reader with an understanding of how we can obtain other sequences, from the evolution of Fibonacci sequence.