SUPPORTING INFORMATION the Real Sixth Mass Extinction

Total Page:16

File Type:pdf, Size:1020Kb

SUPPORTING INFORMATION the Real Sixth Mass Extinction 1 SUPPORTING INFORMATION 2 3 The real sixth mass extinction: Biological annihilation signaled by population losses 4 and declines in vertebrates 5 6 Gerardo Ceballos,1* Paul R. Ehrlich,2* Rodolfo Dirzo2 7 8 9 I. DATA ON DECLINING VERTEBRATE SPECIES 10 11 We obtained the list of vertebrates species considered as declining from the 12 International Union of Conservation of Nature (IUCN). We accessed the IUCN webpage 13 (www.iucn.org; version 2015.3) on March 2016. The complete list of species is shown 14 below. 15 16 II. POPULATION EXTINCTIONS IN MAMMALS 17 The analysis of population extinctions was done in 177 species of mammals occurring 18 in five continents. We analyzed 54 species in Africa, 14 in Asia, 57 in Australia, 15 in 19 Europe, and 35 in America. The historical distribution was gathered from specialized 20 literature (see details in Ceballos and Ehrlich 2002); the current distribution from IUCN 21 (2015). See the historic and present lion (Panthera leo) distribution as an example (SI 22 Figure 1). Historic and current ranges were digitized as GIS polygons and were 23 elaborated in ArcGis 10.1 (ESRI, 2011). For each species we calculated the area of the 24 historical and present distribution (in squared kilometers) in order to estimate the 25 percentage of loss area and the percentage of area where the species are extant. We 26 estimated the number of species occurring historically and in the present in 10376 cells 27 of 100 km2 on the five continents. So we were able to define in each continent 28 percentage of cells that lost the 25%, 50%, 75% or 100% of species and to map these 29 percentages in each continent. 30 31 1 32 Figure 1. Historic (red) and present (blue) lion (Panthera leo) distribution. Note that 33 there is a single population left in Asia. Map from 34 http://brilliantmaps.com/distribution-of-lions/. 35 36 37 38 39 40 41 2 42 IV. LIST OF THE IUCN "DECREASING" SPECIES' WITH THEIR CONSERVATION STATUS 43 CATEGORY. 44 We considered as "Endangered" in our analyses all species in the IUCN (28) Extinct in 45 the wild (EW), Critically endangered (CR), Endangered (EN), Vulnerable (VU), and Near 46 threatened (NT) conservation categories. We considered as of "Low concern" all 47 species in the IUCN (28) Low concern (LC), data deficient (DD), or without data.
Recommended publications
  • Biogeography of Mammals in SE Asia: Estimates of Rates of Colonization, Extinction and Speciation
    Biological Journal oflhe Linnean Sociely (1986), 28, 127-165. With 8 figures Biogeography of mammals in SE Asia: estimates of rates of colonization, extinction and speciation LAWRENCE R. HEANEY Museum of <oology and Division of Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. Accepted for publication I4 February 1986 Four categories of islands in SE Asia may be identified on the basis of their histories of landbridge connections. Those islands on the shallow, continental Sunda Shelf were joined to the Asian mainland by a broad landbridge during the late Pleistocene; other islands were connected to the Sunda Shelf by a middle Pleistocene landbridge; some were parts of larger oceanic islands; and others remained as isolated oceanic islands. The limits of late Pleistocene islands, defined by the 120 ni bathymetric line, are highly concordant with the limits of faunal regions. Faunal variation among non-volant mammals is high between faunal regions and low within the faunal regions; endcmism of faunal regions characteristically exceeds 70%. Small and geologically young oceanic islands are depauperate; larger and older islands are more species-rich. The number of endemic species is correlated with island area; however, continental shelf islands less than 125000 km2 do not have endemic species, whereas isolated oceanic islands as small as 47 km2 often have endemic species. Geologirally old oceanic islands have many endemic species, whereas young oceanic islands have few endemic species. Colonization across sea channels that were 5-25 km wide during the Pleistocene has been low, with a rate of about 1-2/500000 years.
    [Show full text]
  • Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3052, 19 pp., 9 figures, 1 table December 14, 1992 Sucking Lice (Insecta, Anoplura) from Indigenous Sulawesi Rodents: a New Species of Polyplax from a Montane Shrew Rat, and New Information About Polyplax wallacei and P. eropepli LANCE A. DURDEN' AND GUY G. MUSSER2 ABSTRACT Polyplax melasmothrixi, a new species of po- from Eropeplus canus from tropical upper mon- lyplacid sucking louse, is described from Melas- tane rain forest also in Central Sulawesi. Host and mothrix naso, a small-bodied shrew rat known habitat associations for these three species ofsuck- only from tropical upper montane rain forest in ing lice are discussed. Polyplax melasmothrixi and Central Sulawesi, Indonesia. The male ofPolyplax P. eropepli are both known only from montane wallacei is described from specimens collected from habitats in Central Sulawesi and both appear to Bunomys chrysocomus trapped in tropical lowland be host specific (to M. naso and E. canus, respec- evergreen rain forest in Central Sulawesi. A further tively). Contrastingly, P. wallacei parasitizes two specimen ofPolyplax eropepli, a taxon previously species ofBunomys in lowland forests and is known known only from the type series, is documented from North and Central Sulawesi. INTRODUCTION Melasmothrix naso, Bunomys chrysoco- Musser and Holden, 1991). The shrew rat, mus, and Eropeplus canus are three murine M. naso, and the large-bodied E. canus have rodents found only in forests on the Indo- been recorded only from montane rainforest nesian island of Sulawesi (Musser, 1987; formations in the mountainous central part I Assistant Professor and Assistant Curator, Institute of Arthropodology and Parasitology, Georgia Southern Uni- versity, Landrum Box 8056, Statesboro, Georgia 30460.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Bats of Nepal a Field Guide/ /Bats of Nepal a Field Guide
    Bats of Nepal A field guide/ /Bats of Nepal A field guide This Publication is supported by: Critical Ecosystem Partnership Fund (CEPF) - World Wildlife Fund WWF Nepal Designed and published by: Small Mammals Conservation and Research Foundation (SMCRF) Compiled and edited by: Pushpa Raj Acharya, Hari Adhikari, Sagar Dahal, Arjun Thapa and Sanjan Thapa Cover photographs: Front cover: Myotis sicarius Mandelli's Mouse-eared Myotis by Sanjan Thapa Back cover: Myotis csorbai Csorba's Mouse-eared Myotis by Sanjan Thapa Cover design: Rajesh Goit First edition 2010 500 copies ISBN 978-9937-2-2951-7 Copyright © 2010 all rights reserved at authors and SMCRF No part of this publication may be reproduced, stored or copied in any form-printed, electronic and photocopied without the written Bats of Nepal permission from the publisher. A field guide Bats of Nepal A field guide/ /Bats of Nepal A field guide forts which strategically put their attention to bat research though we were less experienced and trained. Meanwhile, Bat researches were simultaneously PREFACE supported by international agencies: Bat Conservation International, Lubee Bat Conservancy, Rufford small grants and Chester Zoo. Inconsistent database advocates around 60 species of bat hosted to Nepalese land- scape. Our knowledge on bat fauna is merely based on opportunistic and rare A picture can speak thousand words, we have tried to include maximum pho- effort carried out by foreign scholars bounded with countries biological policy. tographs of the species (about 40 photographs); Most of the bat pictures used in Almost 40 years of biodiversity effort of Nepal, Small mammals has got no re- this book were clicked during different field studies in Nepal.
    [Show full text]
  • Ecological Assessments in the B+WISER Sites
    Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Novltates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novltates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3064, 34 pp., 8 figures, 2 tables June 10, 1993 Philippine Rodents: Chromosomal Characteristics and Their Significance for Phylogenetic Inference Among 13 Species (Rodentia: Muridae: Murinae) ERIC A. RICKART1 AND GUY G. MUSSER2 ABSTRACT Karyotypes are reported for 13 murines be- bers of 50 and 88, respectively, indicating longing to the endemic Philippine genera Apomys, substantial chromosomal variability within that Archboldomys, Batomys, Bullimus, Chrotomys, genus. Archboldomys (2N = 26, FN = 43) has an Phloeomys, and Rhynchomys, and the widespread aberrant sex chromosome system and a karyotype genus Rattus. The karyotype of Phloeomys cum- that is substantially different from other taxa stud- ingi (2N = 44, FN = 66) differs from that of P. ied. The karyotype ofBullimus bagobus (2N = 42, pallidus (2N = 40, FN = 60), and both are chro- FN = ca. 58) is numerically similar to that of the mosomally distinct from other taxa examined. Two native Rattus everetti and the two non-native spe- species of Batomys (2N = 52), Chrotomys gon- cies ofRattus, R. tanezumi and R. exulans. Chro- zalesi (2N = 44), Rhynchomys isarogensis (2N = mosomal data corroborate some phylogenetic re- 44), and Apomys musculus (2N = 42) have FN = lationships inferred from morphology, and support 52-53 and a predominance of telocentric chro- the hypothesis that the Philippine murid fauna is mosomes. Two other species ofApomys have dip- composed of separate clades representing inde- loid numbers of30 and 44, and fundamental num- pendent ancestral invasions of the archipelago. INTRODUCTION The Philippine Islands support a remark- Heaney and Rickart, 1990; Musser and Hea- ably diverse murine rodent fauna, including ney, 1992).
    [Show full text]
  • 1 Project Update Tanzania Mammal Atlas Project a Camera Trap Survey of Saadani National Park
    rd 3 Issue October 2007 - March 2008 Project Update A camera trap survey of Tanzania Mammal Atlas Project Saadani National Park By Alexander Loiruk Lobora By Charles Foley • Project Update The Tanzania Mammal Atlas Located on the coast roughly equidistant between Project Dear readers, rd Dar-es-Salaam and Tanga, Saadani is one of the • A Camera trap survey of Once again welcome to the 3 issue of the newest National Parks in Tanzania. It was formally Saadani National Park Tanzania Mammals Newsbites, the newsletter for gazetted in 2003 and created from an • The Cheetah and Wild Dog the Tanzania Mammal Atlas Project (TMAP). agglomeration of several separate parcels of land Rangewide Conservation nd Planning Process In our 2 issue of TMAP Newsbites, we including Saadani Game Reserve, Mkwaja Ranch informed you about the project achievements (a former cattle ranch) and the 20,000 hectare • Genetic tools use to unveil since the beginning of the project in November mating system in Serengeti Zoraninge Forest Reserve. The key attraction of the Cheetahs 2005 and the anticipated project work plans park is that it is one of the few places in Tanzania nd • Human Impacts on for the next quarter. If you missed the 2 where savanna and coastal fauna intermix. Carnivore Biodiversity issue please visit the project website at Elephant, buffalo and lions wander onto the Inside and Outside www.tanzaniamammals.org and download a free beaches at night – we saw plenty of tracks - and Protected Areas in Tanzania copy. In this issue, you will again have the small pods of bottle nose dolphins can sometimes • Population fluctuations in the opportunity to learn more about what transpired be seen in the waters off the shore.
    [Show full text]
  • Resource Utilization by Foraging Eastern Red Bats (Lasiurus Borealis) in the Ozark Region of Missouri
    The Journal of Wildlife Management 78(3):483–493; 2014; DOI: 10.1002/jwmg.685 Habitat Relations Resource Utilization by Foraging Eastern Red Bats (Lasiurus borealis) in the Ozark Region of Missouri SYBILL K. AMELON,1 Northern Research Station, U.S.D.A. Forest Service, 202 Natural Resource Building, Columbia, MO 65211, USA FRANK R. THOMPSON III, Northern Research Station, U.S.D.A. Forest Service, 202 Natural Resource Building, Columbia, MO 65211, USA JOSHUA J. MILLSPAUGH, University of Missouri, 302 Natural Resource Building, Columbia, MO 65211, USA ABSTRACT Resource selection by animals influences ecological processes such as dispersal, reproduction, foraging, and migration. Little information exists regarding foraging resource selection by bats during the maternity season. We evaluated support for effects of landcover type, landform, and landscape pattern on resource selection by individual foraging female eastern red bats (Lasiurus borealis) during the maternity period and compared resource utilization for all individuals pooled (population level), individuals grouped by geographic location, and individuals grouped by stage of lactation (early, mid, and late). We used a resource utilization function (RUF) to relate landcover and landscape attributes to the utilization distributions of individual bats estimated by the fixed-kernel method. We radio-tracked 64 lactating red bats and estimated utilization distributions for 52 individuals. Mean home range size ranged from 1,041 to 1,588 ha from late to mid lactation. The global RUF model was significantly better than the null RUF model for 36 (70%) individuals and the magnitude and direction of coefficients varied among individuals. Resource utilization at the population level was, on average, positively related to ridges and upland drainage landforms, water landcover, and road density; and negatively related to urban and nonforest landcover and distance to edge.
    [Show full text]
  • The Cause and Effect of Bat Wing Tears in Common Pipistrelle Bats (Pipistrellus Pipistrellus)
    The Cause and Effect of Bat Wing Tears in Common Pipistrelle Bats (Pipistrellus pipistrellus) R O Khayat PhD 2019 The Cause and Effect of Bat Wing Tears in Common Pipistrelle Bats (Pipistrellus pipistrellus) Rana Osama S Khayat A thesis submitted in partial fulfilment of the requirements of Manchester Metropolitan University for the degree of Doctor of Philosophy Department of Natural Sciences Manchester Metropolitan University 2019 i Abstract Bats represent a quarter of all mammalian species and play vital roles in many ecosystems. They are also are the only mammals capable of powered flight and have large, light, thin wings to enable flight. However, bats face many threats, including collisions with man-made structures, fungal infections and predator attacks, all of which can cause severe wing injuries. Hundreds of bats are admitted annually for care to treat torn and injured wings. This thesis aims to investigate the causes and effects of bat wing tears. In a series of studies, this thesis will: i) characterise wing tears in P. pipistrellus and other bat species in the UK; ii) explore the anatomy of the wing in P. pipistrellus, and see if knowledge of the anatomy is sufficient to understand wing tear placement and healing rates; iii) present a novel method for analysing flight from high-speed video data to assess the effect of tears on flight; and iv) develop a systematic forensic method to identify the presence of cat DNA on wing tears. Results from Chapter 2 indicate that most tears occurred in the Plagiopatagium wing section (section P), which is closest to the body.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]