Downloaded from Brill.Com10/06/2021 03:08:27PM Via Free Access 240 Jurado-Rivera Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Brill.Com10/06/2021 03:08:27PM Via Free Access 240 Jurado-Rivera Et Al Contributions to Zoology, 86 (3) 239-260 (2017) Molecular systematics of Haploginglymus, a genus of subterranean amphipods endemic to the Iberian Peninsula (Amphipoda: Niphargidae) José A. Jurado-Rivera1, 5, Genaro Álvarez2, José A. Caro2, 3, Carlos Juan1, 4, Joan Pons4, Damià Jaume4 1 Departament de Biologia, Universitat de les Illes Balears (UIB), Ctra. Valldemossa km 7’5, 07122-Palma de Mallorca, Spain 2 Sociedad Espeleológica Geos (Exploraciones e Investigaciones Subterráneas), C/ Dr. Miguel Ríos Sarmiento 74, 41020-Sevilla, Spain 3 Departamento de Geografía y Ciencias del Territorio, Universidad de Córdoba, Plaza del Cardenal Salazar 3, 14071-Córdoba, Spain 4 IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, C/ Miquel Marquès 21, 07190-Esporles, Spain 5 E-mail: [email protected] Key words: Stygofauna, Crustacea, taxonomy, cave fauna, phylogenetic relationships Abstract References ...................................................................................... 248 Online Supplementary Information .......................................... 250 The molecular systematics of the subterranean amphipod genus Appendix ........................................................................................ 251 Haploginglymus is addressed through the phylogenetic analysis Systematics ............................................................................... 251 of three DNA gene fragments (nuclear ribosomal 28S and pro- Haploginglymus geos sp. nov. .............................................. 251 tein-coding Histone 3, plus mitochondrial Cytochrome c Oxi- dase subunit I). We take advantage of the description of a new species from southern Spain (Haploginglymus geos sp. nov.) to Introduction assess the singularity of this genus endemic to the Iberian Penin- sula and the inclusion of the morphologically aberrant H. more- noi within Haploginglymus. Our results corroborate the mono- Haploginglymus Mateus and Oliveira-Mateus, 1958, is phyly of the family Niphargidae but shows Niphargus to be para- a genus of niphargid amphipod endemic to the fresh phyletic as it currently stands, with Haploginglymus appearing inland subterranean waters of the Iberian Peninsula nested within it. A strongly supported sister-group relationship (Spain and Portugal). It is found in caves, wells and the between niphargids and the (thalassoid) pseudoniphargids is re- interstitial medium associated to riverbanks, but appar- covered as well, but we propose the Niphargidae should continue to be considered as a primary limnic group for biogeographic ently avoids the brackish waters of coastal aquifers. purposes despite its presumed marine derivation. Our findings First discovered in wells from the lower course of river are in agreement with previous studies that suggest the family Douro in NW Portugal, the genus displays a broad dis- Niphargidae originated in the late Cretaceous in the NE Atlantic, tribution across the entire Peninsula, where it is one of from where it eventually expanded across continental Europe. the most common subterranean crustaceans (Noten- boom, 1990). The genus was originally distinguished Contents from Niphargus Schiödte, 1849 – by far the largest ge- nus among freshwater amphipods (408 valid species; Introduction .................................................................................... 239 Lowry, 2010) – based on the display of an unsegmented Material and methods .................................................................. 240 Study site .................................................................................. 240 (vs. 2-segmented) exopod on uropod III. Nevertheless, Material examined ................................................................. 240 two additional niphargid genera described later on, DNA isolation, PCR amplification and sequencing ....... 240 both monotypic, viz. Carinurella Sket, 1971, and Niphar- Phylogenetic analyses ........................................................... 242 gobates Sket, 1981, share with Haploginglymus the Results ............................................................................................. 242 same condition of uropod III, although both can be Discussion ....................................................................................... 243 readily told apart from Haploginglymus based on other On the genus Haploginglymus ............................................. 243 Origin, intra-generic relationships and biogeography ... 243 features (Sket, 1971; 1981). Age and origin of the Niphargidae ..................................... 246 Despite its almost generalised distribution across Acknowledgements ....................................................................... 247 Iberia, only five species of Haploginglymus have been Downloaded from Brill.com10/06/2021 03:08:27PM via free access 240 Jurado-Rivera et al. – The Iberian subterranean amphipod genus Haploginglymus formally described thus far (Mateus and Oliveira- uncispina Notenboom, 1988; Salentinella seviliensis Mateus, 1958; Stock, 1980; Karaman, 1986; Pretus and Platvoet, 1987; Stenasellus escolai Magniez, 1977; Mi- Sabater, 1990; Iannilli et al., 2009). Aside the morpho- crocharon marinus Chappuis and Delamare, 1954; logically aberrant H. morenoi Iannilli, Minelli and Megacyclops brachypus Kiefer, 1954; Diacyclops bi- Ruffo, 2009, which displays a modified spatulate max- cuspidatus odessanus (Shmankevich, 1875); Cypria illipedal palp, slender gnathopods and strongly sexual- ophtalmica (Jurine, 1820) and a not yet determined har- ly-dimorphic gnathopod II, all show a rather uniform, pacticoid copepod. In addition, the bathynellid syncarid ordinary Niphargus-like aspect. Anyway, molecular Hexabathynella sevillaensis Camacho, 2005, was re- analyses under way suggest the genus mirrors the con- cently described from the same caves (Camacho, 2005). dition described elsewhere for Niphargus, where each species displays a very reduced distribution and the few Material examined presumed widespread species correspond in fact to complexes of stenochorous cryptic species (Trontelj Specimens were collected directly with a hand-held et al., 2009; Meleg et al., 2013). plankton net in the cave lakes and fixed in situ in 95% As a first step to explore the diversification ofHaplo - ethanol. Once in the laboratory, they were dissected in ginglymus in Iberia, we combine herein morphology lactic acid under the stereomicroscope, and appendages and molecular traits to describe a new species from figured with a Leica DM2500 microscope equipped southern Spain. We use DNA sequences of three gene with Nomarski differential interference contrast and a fragments (nuclear ribosomal 28S and protein-coding drawing tube. Body measurements were derived from Histone 3, plus mitochondrial Cytochrome c Oxidase the sum of the maximum dorsal dimensions of body subunit I) to assess the distinctiveness of this Iberian somites and exclude telson length. Type material is de- genus in front of the rest of niphargids, and the place- posited in the invertebrate collection of Naturalis Bio- ment of the morphologically aberrant H. morenoi with- diversity Center, Leiden (RMNH). Abbreviations and in Haploginglymus. In addition, we have found the nomenclature used in morphological descriptions are Pseudo niphargidae Karaman, 1993 to be the closest as follows: A1 (antennule); A2 (antenna); G1-G2 (gna- relative to niphargids, which gives a new perspective to thopods I and II, respectively); P3-P7 (pereiopods III to the debate on the origin, diversification and biogeogra- VII, respectively); and U1-U3 (uropods I to III, respec- phy of this extremely diversified family of continental tively). water amphipods. DNA isolation, PCR amplification and sequencing Material and methods Genomic DNA was purified from 13 specimens corre- sponding to nine different Haploginglymus taxa, viz. the Study site new species described herein, the aberrant H. morenoi, and seven not yet formally described species coming The new species is known only from phreatic waters from several Iberian locations (v. Table 1 & Fig. 1). In found in two caves located at Cerro de Santiago, a addition, sequences from 14 specimens of Niphargus Cambrian limestone outcrop within the municipality of from four different populations from the Iberian west- Cazalla de la Sierra (Seville, southern Spain). The area ern edge of the Pyrenees (Basque Country), as well as is next to Riera de Benalija, a tributary brook to the eight specimens belonging to six different Pseudo- Guadalquivir River that flows into El Pintado reservoir. niphargus species from the Iberian Peninsula, Portugal The cave lakes are hydrographically connected to the and the Canary Islands were also obtained and includ- reservoir so that their level follows the annual oscilla- ed in the dataset as potentially close outgroups. DNA tion of the reservoir’s water table. Specimens were extraction was performed using the DNeasy Tissue kit found crawling in high numbers on the bottom of the (Qiagen, West Sussex, UK) following the manufactur- cave lakes and were readily attracted by bait. Some er’s protocol. Elutions were done in 100 μL volume and specimens were observed venturing in open water, but 1 μL was used in PCR reactions. Three different mo- most remained associated to the substratum. Direct ob- lecular markers were selected for the study, namely: a servations did not suggest the species carried an inter- partial sequence of the mitochondrial Cytochrome c stitial life. Crustaceans found
Recommended publications
  • Zoogeography of Epigean Freshwater Amphipoda (Crustacea) in Romania: Fragmented Distributions and Wide Altitudinal Variability
    Zootaxa 3893 (2): 243–260 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3893.2.5 http://zoobank.org/urn:lsid:zoobank.org:pub:8336FFDA-F1A5-4026-A5B6-CCEBFF84F40A Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability DENIS COPILAȘ-CIOCIANU1, MICHAŁ GRABOWSKI2, LUCIAN PÂRVULESCU3 & ADAM PETRUSEK1 1Charles University in Prague, Faculty of Science, Department of Ecology, Viničná 7, 12844, Prague, Czech Republic. E-mail: [email protected], [email protected] 2University of Łódź, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology & Hydrobiology, Banacha 12/16, 90-237, Łódź, Poland. E-mail: [email protected] 3West University of Timișoara, Faculty of Chemistry, Biology, Geography, Department of Biology and Chemistry, Pestalozzi 16A, 300115, Timișoara, Romania. E-mail: [email protected] Abstract Inland epigean freshwater amphipods of Romania are diverse and abundant for this region has a favourable geographical position between the Balkans and the Black Sea. Excluding Ponto-Caspian species originating in brackish waters and freshwater subterranean taxa, there are 11 formally recognized epigean freshwater species recorded from this country. They belong to 3 genera, each representing a different family: Gammarus (Gammaridae, 8 species or species complexes), Niphargus (Niphargidae, 2 epigean species) and Synurella (Crangonyctidae, one species). Their large-scale distribution patterns nevertheless remain obscure due to insufficient data, consequently limiting biogeographical interpretations. We provide extensive new data with high resolution distribution maps, thus improving the knowledge of the ranges of these taxa.
    [Show full text]
  • Biological and Landscape Diversity in Slovenia
    MINISTRY OF THE ENVIRONMENT AND SPATIAL PLANNING ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA Biological and Landscape Diversity in Slovenia An overview CBD Ljubljana, 2001 MINISTRY OF THE ENVIRONMENTAL AND SPATIAL PLANNING ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA Published by: Ministry of the Environment and Spatial Planning - Environmental Agency of the Republic of Slovenia Editors in chief and executive editors: Branka Hlad and Peter Skoberne Technical editor: Darja Jeglič Reviewers of the draft text: Kazimir Tarman Ph.D., Andrej Martinčič Ph.D., Fedor Černe Ph.D. English translation: Andreja Naraks Gordana Beltram Ph.D. (chapter on Invasive Species, ......., comments on the figures), Andrej Golob (chapter on Communication, Education and Public Awareness) Revision of the English text: Alan McConnell-Duff Ian Mitchell (chapter on Communication, Education and Public Awareness) Gordana Beltram Ph.D. Designed and printed by: Littera Picta d.o.o. Photographs were contributed by: Milan Orožen Adamič (2), Matjaž Bedjanič (12), Gordana Beltram (3), Andrej Bibič (2), Janez Božič (1), Robert Bolješič (1), Branka Hlad (15), Andrej Hudoklin (10), Hojka Kraigher (1), Valika Kuštor (1), Bojan Marčeta (1), Ciril Mlinar (3), Marko Simić (91), Peter Skoberne (57), Baldomir Svetličič (1), Martin Šolar (1), Dorotea Verša (1) and Jana Vidic (2). Edition: 700 copies CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 502.3(497.4)(082) 574(497.4)(082) BIOLOGICAL and landscape diversity in Slovenia : an overview / (editors in chief Branka Hlad and Peter Skoberne ; English translation Andreja Naraks, Gordana Beltram, Andrej Golob; photographs were contributed by Milan Orožen Adamič... et. al.). - Ljubljana : Ministry of the Environment and Spatial Planning, Environmental Agency of the Republic of Slovenia, 2001 ISBN 961-6324-17-9 I.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Microevolutionary Processes in the Stygobitic Genus Typhlocirolana (Isopoda Flabellifera Cirolanidae) As Inferred by Partial 12S and 16S Rdnasequences
    J. Zool. Syst. Evol. Research 42 (2004) 27–32 Received on 14 January 2003 Ó 2004 Blackwell Verlag, Berlin ISSN 0947–5745 1Department of Animal Biology and Genetics ‘Leo Pardi’, University of Florence, Florence, Italy; 2Hydrobiology and Subterranean Ecology, University of Marrakech, Morocco; 3CNR-ISE, Florence, Italy Microevolutionary processes in the stygobitic genus Typhlocirolana (Isopoda Flabellifera Cirolanidae) as inferred by partial 12S and 16S rDNAsequences M. Baratti1,M.Yacoubi Khebiza2 and G. Messana3 Abstract Morocco is one of the regions of the world where many interesting discoveries have recently been made in the field of stygobiology, particularly concerning the cirolanid isopod fauna. One of the most interesting, variable and wide spread of these taxa is the perimediterranean stygobitic genus Typhlocirolana Racovitza, 1905, which has colonized the continental groundwater of Israel, Sicily, Spain, the Balearic Islands, Algeria and Morocco with several species. More populations have recently been found in Morocco, in some southern regions around Agadir, in High Atlas valleys near Marrakech and in the northeastern part of the country close to Oujda. The populations of these zones are not yet described and are the subject of this molecular analysis, together with other already designated species. To investigate the phylogenetic relationships and evolutionary history of the Typhlocirolana populations inhabiting the western Mediterranean basin, we analysed DNA sequences from the mitochondrial 12S and 16S rDNA genes. The molecular data were also used to infer the mechanisms driving the evolution of this thalassoid limnostygobitic cirolanid taxon, considered a good paleogeographic indicator because of its poor dispersion abilities. Vicariance because of paleogeographic events in the western Mediterranean basin played a prime evolutionary role in the Cirolanidae, as already suggested by morphological and ecological studies.
    [Show full text]
  • On Two Members of the Genus Niphargus Schiödte, 1849 (Crustacea: Niphargidae) from the Balkan Peninsula, N
    Acta entomologica serbica, 2013, 18(1/2): 207-235 UDC 595.371.063.8(497.11) ON TWO MEMBERS OF THE GENUS NIPHARGUS SCHIÖDTE, 1849 (CRUSTACEA: NIPHARGIDAE) FROM THE BALKAN PENINSULA, N. DEELEMANAE GREX SSP. N. AND N. JURINACI S. KAR. 1950 (CONTRIBUTION TO THE KNOWLEDGE OF THE AMPHIPODA 271) GORDAN S. KARAMAN Montenegrin Academy of Sciences and Arts, 20000 Podgorica, Montenegro E mail: [email protected] Abstract Two members of the genus Niphargus Schiödte, 1849 (Amphipoda: Gammaridea: Niphargidae) from the subterranean waters of the Balkan Peninsula are treated. Niphargus deelemanae grex ssp. n. is described and figured from Šarbanovac in E Serbia. The species Niphargus jurinaci S. Karaman 1950, scantily described and figured from Crni Lug near Ogulin in Croatia, is redescribed and figured more in detail, based on the type material. The taxonomical position and relations of these two taxa within the genus Niphargus are discussed. KEY WORDS: Amphipoda, taxonomy, Niphargus deelemanae grex ssp. n., jurinaci, redescription, Balkan Peninsula. Introduction The subterranean genus Niphargus Schiödte, 1849 (Amphipoda: Gammaridea: Niphargidae) is widely distributed through Europe and the Near East with over 300 known species and subspecies presented in various types of subterranean waters (caves, springs, subterranean torrents, deep lakes, etc.). The oldest known fossil members of the genus Niphargus are from the Tertiary Period (Eocene), and settled in the freshwaters at various times (G. KARAMAN, 1984). 208 G.S. KARAMAN Recently a new fossil, an amphipod from the Triassic Period, was described in Nevada, USA, Rosagammarus minichiellus (MCMENAMIN et al., 2013) altering our knowledge of fossil Amphipoda to the Mesozoic Period.
    [Show full text]
  • The Role of Predation in the Diet of Niphargus (Amphipoda: Niphargidae)
    Fišer et al. The role of predation in the diet of Niphargus (Amphipoda: Niphargidae) Cene Fišer, Žana Kovačec, Mateja Pustovrh, and Peter Trontelj Oddelek za biologijo, Biotehniška fakulteta, Univerza v Ljubljani, Večna pot 111, Ljubljana, Slovenia. Emails: [email protected], [email protected], [email protected]; [email protected] Key Words: Niphargus balcanicus, Niphargus timavi, Dinaric Karst, Vjetrenica, feeding, foraging. Niphargus (Amphipoda: Niphargidae) is the largest genus of freshwater amphipods1, with over 300 described species. Recently, it was identified as important for addressing ecological and evolutionary questions2. Nevertheless, the exploration of these issues critically depends on understanding the biology of individual species, which is mostly unknown. For instance, utilization of food sources has rarely been studied. Laboratory observations3,4 acknowledged a broad spectrum of foraging behaviors in N. virei Chevreux 1896 and N. fontanus Bate 1859, ranging from limnivory, detritivory, predation on oligochaetes and arthropods, feeding on decayed leaves and carrion, and fish flakes. Sket5 briefly mentioned how N. krameri Schellenberg 1935 fed on dead conspecifics. Finally, Mathieu et al. speculated that adult N. rhenorhodanesis Schellenberg 1937 could prey upon their own conspecifics6. Here we report on dietary data of two species from the Dinarc Karst. In 2001, we held several individuals of the troglobiotic Niphargus balcanicus Absolon 1927 in an aquarium. Unlike many other amphipods, this large (about 30 mm) species retains an upright position during activity (swimming, walking on ground) and rest. The animals were kept in the speleological laboratory in permanent darkness at 8 ºC. After a few days, we dropped a live isopod Asellus aquaticus (about 10 mm long) into the tank.
    [Show full text]
  • Updates to the Sporadic Knowledge On
    A peer-reviewed open-access journal SubterraneanUpdates Biology to 33:the 71–85 sporadic (2020) knowledge on microsporidian infections in groundwater amphipods 71 doi: 10.3897/subtbiol.33.48633 RESEARCH ARTICLE Subterranean Published by http://subtbiol.pensoft.net The International Society Biology for Subterranean Biology Updates to the sporadic knowledge on microsporidian infections in groundwater amphipods (Crustacea, Amphipoda, Niphargidae) Daniel Grabner1, Dieter Weber2, Alexander M. Weigand3 1 University of Duisburg-Essen, Aquatic Ecology and Centre for Water and Environmental Research, Univer- sitätsstr. 5, 45141 Essen, Germany 2 Université Libre de Bruxelles, Evolutionary Biology & Ecology group, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium 3 Musée National d'Histoire Naturelle Luxembourg, 25 Rue Munster, 2160 Luxembourg, Luxembourg Corresponding author: Alexander M. Weigand ([email protected]) Academic editor: O. T. Moldovan | Received 20 November 2019 | Accepted 20 January 2020 | Published 13 February 2020 http://zoobank.org/78CFBE17-0918-455A-8813-C92324DBFCFE Citation: Grabner D, Weber D, Weigand AM (2020) Updates to the sporadic knowledge on microsporidian infections in groundwater amphipods (Crustacea, Amphipoda, Niphargidae). Subterranean Biology 33: 71–85. https://doi. org/10.3897/subtbiol.33.48633 Abstract A set of 69 specimens from 19 groundwater species of the genera Niphargus, Niphargellus, Microniphargus and Crangonyx was genetically screened for microsporidian infections. Samples mostly originated from groundwater-dependent spring environments (71%), natural caves (9%) and artificial caverns/tunnels (13%). Amphipod hosts were identified by morphology and/or molecular data, whereas microsporidian parasites were characterised by a genetic screening assay targeting a section of the small subunit rRNA gene. Five microsporidian species (Dictyocoela duebenum; Nosema sp.; Hyperspora aquatica and two unde- scribed Microsporidium spp.) were revealed from 13 host specimens (Niphargus schellenbergi; N.
    [Show full text]
  • A New Species of Pseudoniphargus (Crustacea, Amphipoda, Melitidae) from an Anchialine Cave on the French Mediterranean Coast
    A new species of Pseudoniphargus (Crustacea, Amphipoda, Melitidae) from an anchialine cave on the French Mediterranean coast Franck BRÉHIER Alas, F-09800 Balaguères (France) [email protected] Damià JAUME Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), c/ Miquel Marquès 21, E-07190 Esporles (Mallorca) (Spain) [email protected] Bréhier F. & Jaume D. 2009. — A new species of Pseudoniphargus (Crustacea, Amphipoda, Melitidae) from an anchialine cave on the French Mediterranean coast. Zoosystema 31 (1) : 17-32. ABSTRACT A new species of the stygobiont melitid amphipod genus Pseudoniphargus Chevreux, 1901 is described from an anchialine cave located on the inner shore of the Salses-Leucate coastal lagoon, on the French Mediterranean coast. Th e new species is distinguished from other members of the genus by the combined display of: 1) gnathopod II not sexually dimorphic, with short carpus; 2) outline of basis of pereopods V-VII sexually dimorphic, with both margins convex and with overhanging posterodistal lobe in male, whereas margins subparallel and posterodistal lobe present but not overhanging in female; 3) uropod I protopod KEY WORDS lacking basofacial robust seta; 4) protopod of uropod III sexually dimorphic, Crustacea, proportionaly more elongated in male; 5) exopod of male uropod III not Amphipoda, Gammaridea, strongly elongated (less than 12 times as long as wide), slightly upcurved and Melitidae, tapering; female exopod similar but shorter (about 8.8 times as long as wide); stygofauna, and 6) telson wider than long, with distal margin shallowly excavated and with France, mixohaline waters, two distal robust setae at each side. Th e relationships of this species are briefl y new species.
    [Show full text]
  • Discovery of Subterranean Amphipod Niphargus Stygius (Schiodte, 1847)
    NATURA SLOVENIAE 21(1): 57-59 Prejeto / Received: 6. 8. 2019 FIELD NOTE Sprejeto / Accepted: 8. 8. 2019 Discovery of subterranean dvorana«. As the second author tried to drink the water from the water puddles, he noticed its amphipod Niphargus stygius unusually sour and salty taste. We found and (Schiødte, 1847) (Amphipoda: collected one amphipod in one of the puddles filled with dripping water, and a sample of water was Niphargidae) in a cave drip taken directly from the drip. We measured abiotic pool with increased salinity parameters of the water in the lab on the same day, when returning to the lab of the Department Najdba slepe postranice Niphargus of Biology in Ljubljana, using portable multimeter CyberScan PCD650 (Eutech Instruments). The stygius (Schiødte, 1847) (Amphipoda: specific electric conductivity and salinity level were Niphargidae) v jamski luži prenikle increased (Tab. 1) compared to normal values for vode s povečano slanostjo freshwater, having salinity less than 0.5 ‰ (Venice system 1958). Maja ZAGMAJSTER, Teo DELIĆ, SubBioLab, Department of Biology, Biotechnical We repeated the visit two weeks later, on Faculty, University of Ljubljana, Jamnikarjeva 9. 3. 2012, when we checked only the Northern 101, Ljubljana; branch up to app. 600 m from the entrance, to the E-mail: [email protected] lake in »Skalni rov«. This time, there was no active water drip in »Podorna dvorana«, but the water With more than 430 species currently described, remained in puddles on the cave floor. We the subterranean genus Niphargus is the species collected the water from two different puddles, richest genus of amphipods (Fišer 2019).
    [Show full text]
  • Environmental DNA Reveals That Rivers Are Conveyer Belts of Biodiversity Information
    bioRxiv preprint doi: https://doi.org/10.1101/020800; this version posted June 11, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Environmental DNA reveals that rivers are conveyer belts of biodiversity information 2 Kristy Deiner1*, Emanuel A. Fronhofer1,2, Elvira Mächler1 and Florian Altermatt1,2 3 1 Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic 4 Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland. 5 2 Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 6 Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. 7 Running title: Rivers are conveyer belts of eDNA 8 Keywords: eDNA transport, metabarcoding, COI, river networks, community sampling, land 9 water interface, macroinvertebrates, biomonitoring 10 Type of Article: Letters 11 Abstract: 147 12 Main text: 4879 13 Text box: 360 14 Number of references: 50 15 Number of figures: 5 16 Number of tables: 1 17 *Corresponding author K. Deiner: Ph. +41 (0)58 765 67 35; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/020800; this version posted June 11, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 18 Abstract (150 max) 19 DNA sampled from the environment (eDNA) is becoming a game changer for uncovering 20 biodiversity patterns.
    [Show full text]
  • Fifty Years of Cave Arthropod Sampling: Techniques and Best Practices J
    International Journal of Speleology 48 (1) 33-48 Tampa, FL (USA) January 2019 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Fifty years of cave arthropod sampling: techniques and best practices J. Judson Wynne1*, Francis G. Howarth2, Stefan Sommer1, and Brett G. Dickson3 1Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Box 5640, Flagstaff, Arizona 86011, USA 2Department of Natural Sciences, Bernice P. Bishop Museum, 1525 Bernice St., Honolulu, Hawaii, 96817, USA 3Conservation Science Partners, 11050 Pioneer Trail, Suite 202, Truckee, CA 96161 and Lab of Landscape Ecology and Conservation Biology, Landscape Conservation Initiative, Northern Arizona University, Box 5694, Flagstaff, Arizona 86011, USA Abstract: Ever-increasing human pressures on cave biodiversity have amplified the need for systematic, repeatable, and intensive surveys of cave-dwelling arthropods to formulate evidence-based management decisions. We examined 110 papers (from 1967 to 2018) to: (i) understand how cave-dwelling invertebrates have been sampled; (ii) provide a summary of techniques most commonly applied and appropriateness of these techniques, and; (iii) make recommendations for sampling design improvement. Of the studies reviewed, over half (56) were biological inventories, 43 ecologically focused, seven were techniques papers, and four were conservation studies. Nearly one-half (48) of the papers applied systematic techniques. Few papers (24) provided enough information to repeat the study; of these, only 11 studies included cave maps. Most studies (56) used two or more techniques for sampling cave-dwelling invertebrates. Ten studies conducted ≥10 site visits per cave. The use of quantitative techniques was applied in 43 of the studies assessed.
    [Show full text]
  • (Amphipoda) Pseudoniphargus, Formerly Usually Pseudoniphargus
    Bijdragen tot de Dierkunde, 50 (1): 105-144 — 1980 Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda) by Jan H. Stock Institute of Taxonomie Zoology, University of Amsterdam, The Netherlands Abstract A forma described in 1955 by S. Karaman, was raised to specific rank by G. Karaman in 1978. The has been considered genus Pseudoniphargus long mono- In the I have revised of the present paper, most specific. Its unique species, Ps. africanus, was supposed to materials attributed to the as well occur both sides of the the Atlantic existing on Mediterranean, on genus, Iberian Ma- side of the peninsula, on the Azores, and on as a good number of newly collected samples. This deira, in localities from the shore than ranging sea to more nine named resulted in a classification into species, 1000 m of altitude, and covering almost the entire natural and a number of unnamed left-overs because of salinity range (0-36‰). A taxonomie revision revealed that at least nine named insufficient material. The actual names for the species and several unnamed forms (of which insufficient taxa of Pseudoniphargus, formerly usually recorded material is available) hide under the name Ps. africanus, Ps. shown in table each with and as africanus, are I. a narrow ecological geographical range. The evolutionary scenario of the members of the is Like in the Gammarus identification of genus group, discussed of marine at some length: they are presumably females is much more difficult than that of males. origin, and got adapted to conditions of continental waters both sexes should be available for a during various marine regressions in the Eocene and Oligo- Preferably cène, but notably in the Miocene.
    [Show full text]