Integrative Approach to Understanding the Multimodal Effects of Exercise Adaptation

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Approach to Understanding the Multimodal Effects of Exercise Adaptation Integrative Approach to Understanding the Multimodal Effects of Exercise Adaptation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alisa D. Blazek, M.A. Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2015 Dissertation Committee: Dr. Noah L. Weisleder, Advisor Dr. Timothy E. Hewett Dr. Sudha Agarwal Dr. Timothy D. Eubank Copyright by Alisa D. Blazek 2015 Abstract The study of the molecular basis of exercise adaptations in the field of exercise physiology is relatively new, as evidenced by the surge in articles citing molecular techniques over the last decade. This focus on molecular indicators is not surprising given the efforts to improve upon preventative healthcare and reduce healthcare cost burden in our country. The ability to exploit molecular indicators of exercise effectiveness as well as discover novel therapeutic options are clear advantages to studying molecular exercise physiology that could impact healthcare. In the studies described here, we used an integrative approach, building from a molecular basis to mice to human subjects, to develop a more comprehensive understanding of the molecular mechanisms mediating the effects of exercise. To study the effects of exercise on a physiological systems-wide level, we used microarray technology to characterize global upregulation and downregulation of genes in response to walking exercise in rat cartilage. We found temporal gene expression changes over 15 days of exercise. The networks of genes affected were responsible for directing extracellular matrix; cell metabolism; cytoskeleton; cell signaling, growth, and differentiation; and inflammatory pathways. It was evident from this study that integration of multiple physiological systems occurs in response to an exercise stimulus. We then aimed to isolate and study selected systems using molecular and physiological techniques. The objective of one particular study was to determine the role ii of exercise as an integrator of bone and muscle health. One of the genes that was observed during the microarray analysis to be upregulated by exercise by more than 1.5 fold was follistatin-like3 (FSTL3). FSTL3 belongs to the follistatin family of molecules which also includes follistatin (FST). Previous studies showed that FSTL3 is required for exercise driven bone formation. This protein also binds and inhibits myostatin, an inhibitor of muscle growth and strength, thus indicating a role for FSTL3 in hypertrophy and force generation. Using muscle contractility assays and genetic knockout mouse models, it was determined that walking exercise, while sufficient for bone growth, was not a potent enough stimulus for improvements in muscle hypertrophy and force generation. The follistatin family of proteins have been shown to be involved in cardiac health, thus we aimed to determine the role of follistatin 288 (FST288), a genetic knockout model for follistatin, in the heart with and without exercise and in response to pressure overload induced by transverse aortic constriction (TAC). We found that knockout of the circulating follistatin mediator, FST315, resulted in reduced hypertrophy in response to TAC, indicating that this molecule likely contributes to the generation of pathological hypertrophy in heart failure. Finally, we aimed to determine the translational potential of our FSTL3 studies in humans. Subjects were exposed to low intensity walking, high intensity walking, or a neuromuscular training program. Bone density, muscular strength, and serum levels of mediators in the follistatin/myostatin system were measured. It was concluded that walking was an insufficient stimulus for increasing FSTL3 to affect bone mass in iii humans, and that FSTL3 was not found to be a suitable biomarker for BMD. However, some gains in muscular strength were observed in previously sedentary patients. These studies show the importance of integration of multiple indicators (molecular, clinical, biochemical) in the study of the physiology of exercise, and they advance a growing field of knowledge. Future mechanistic studies of exercise will increase fundamental understanding that could be exploited to improve health by paving a path for biomarker discovery, developing methods for quantitation of exercise effectiveness, and advancing the possibility of personalized exercise prescriptions and novel therapeutics. iv Dedication This document is dedicated to my husband, family and friends for their patience and understanding. v Acknowledgments I would like to express my sincere gratitude to Dr. Noah Weisleder, my advisor, for his unwavering support, mentorship, and technical guidance throughout the completion of this work. He unselfishly gave of his time and energy, and I would likely not be at this point without his help and encouragement. I would like to thank Dr. Tim Hewett, my co-advisor, for believing in me and having a vision for how this work can fit into a broader, translational role. I realize that he has been a powerful advocate for me over the years, and I am truly grateful and humbled by that. I appreciate his positive energy. Lastly, and certainly not least, I would like to thank Dr. Sudha Agarwal, my co- advisor, for taking a chance on me and finding a way for me to study molecular mechanisms of exercise. I appreciate her hands-on approach in slogging through the day- to-day research with me. I want to thank Dr. Tim Eubank, my committee member, for serving as an unofficial advisor to me when I first started in my graduate program. He has been a sounding board and mentor to me through the years. As this work involves multiple projects across multiple labs, it would not have been possible to perform this research without the assistance of various individuals. vi I am grateful for the contributions of Dr. Zhaobin Xu, Dr. Karthikeyan Krishnamurthy, and Kevin McElhanon, members of the Weisleder lab who performed some of the work presented in the heart and recombinant cell treatment sections of this document. The reproducibility of the contractility work would have suffered without the skilled hands of Eric Beck. Dr. Heather Manring provided valuable assistance in breeding and maintaining some of the mouse models used here. In addition, I would like to thank the other members of the Weisleder lab for being a source of assistance in the lab, as well as being a sounding board for technical and graduate school matters, in particular, Jenna Alloush, Brian Paleo, Travis Gurney, Dr. Liubov Gushchina, Anjella Manoharan, Dr. Sayak Bhattacharya, and Prasanthi Appikatla. I want to express my gratitude to the members of the Hewett lab: Dr. Stephanie DiStasi Roewer has been a mentor and incredible role model for me. Dr. Sam Wordeman and Dr. Nienke Willigenburg provided invaluable technical expertise. Lab managers, Josh Hoffman and Ben Roewer, facilitated this work and were always ready to rescue. I am so grateful to be able to have worked with these five incredibly professional people. Isac Kunnath, Kari Stammen, and Amy Minnema did an exceptional job of recruitment and blood draws. Rachel Tatarski and Albert Chen performed some of the clinical tests in this study. Dr. Jackie Buell did an amazing job with the bone density scans and providing a great experience for the human subjects by taking time with them to explain the results of tests. Aileen Cudia looked out for me and made things happen when others thought it couldn't be done. Samantha Primmer did much for me behind the scenes that has not gone unnoticed. Chris "Godfather" Nagelli has been like a lab brother to me. I vii am so appreciative of the way he responsibly managed my project when I was not able to be physically present as if it were his own. Finally, I want to thank the members of the Agarwal lab. Jackie Li did so much to keep the lab running smoothly, especially mouse breeding, upkeep, and exercising. The mouse experiments presented here could not have happened without her. Jin Nam provided much of the data in the microarray section; I am grateful to be able to carry on his careful research. Although their time in the lab with me was limited, Meera Predhan, Michelle Williams, and Priyangi Perera provided wonderful assistance and friendship. Dr. Derrick Knapik helped to me integrate into the lab and taught me much. His assistance was invaluable. I am appreciative to Ziyue Chen for her assistance with raw data analysis, statistics, and interpretation. I want to thank the subjects who volunteered their time to participate in the study. I appreciate their interest, enthusiasm, and desire to make healthy changes in their lives. The human subjects research in these studies was supported by a Doctoral Student Research Grant from the American College of Sports Medicine. The molecular studies were supported by the Sigma Xi Grants in Aid of Research and The Ohio State University Alumni Grants for Graduate Research and Scholarship. Without the support of these funding agencies, the research would not have been possible. viii Vita 1996................................................................B.A. Zoology, Ohio Wesleyan University 2010................................................................M.A. Exercise Science, The Ohio State University, Columbus, OH 1996................................................................Sales Representative, Laboratory Solutions, Columbus, OH 1997-1999 ......................................................Chemist,
Recommended publications
  • Cytogenomic SNP Microarray - Fetal ARUP Test Code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells
    Patient Report |FINAL Client: Example Client ABC123 Patient: Patient, Example 123 Test Drive Salt Lake City, UT 84108 DOB 2/13/1987 UNITED STATES Gender: Female Patient Identifiers: 01234567890ABCD, 012345 Physician: Doctor, Example Visit Number (FIN): 01234567890ABCD Collection Date: 00/00/0000 00:00 Cytogenomic SNP Microarray - Fetal ARUP test code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells Single fetal genotype present; no maternal cells present. Fetal and maternal samples were tested using STR markers to rule out maternal cell contamination. This result has been reviewed and approved by Maternal Specimen Yes Cytogenomic SNP Microarray - Fetal Abnormal * (Ref Interval: Normal) Test Performed: Cytogenomic SNP Microarray- Fetal (ARRAY FE) Specimen Type: Direct (uncultured) villi Indication for Testing: Patient with 46,XX,t(4;13)(p16.3;q12) (Quest: EN935475D) ----------------------------------------------------------------- ----- RESULT SUMMARY Abnormal Microarray Result (Male) Unbalanced Translocation Involving Chromosomes 4 and 13 Classification: Pathogenic 4p Terminal Deletion (Wolf-Hirschhorn syndrome) Copy number change: 4p16.3p16.2 loss Size: 5.1 Mb 13q Proximal Region Deletion Copy number change: 13q11q12.12 loss Size: 6.1 Mb ----------------------------------------------------------------- ----- RESULT DESCRIPTION This analysis showed a terminal deletion (1 copy present) involving chromosome 4 within 4p16.3p16.2 and a proximal interstitial deletion (1 copy present) involving chromosome 13 within 13q11q12.12. This
    [Show full text]
  • Lineage-Specific Evolution of the Vertebrate Otopetrin Gene Family Revealed by Comparative Genomic Analyses
    Hurle et al. BMC Evolutionary Biology 2011, 11:23 http://www.biomedcentral.com/1471-2148/11/23 RESEARCHARTICLE Open Access Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses Belen Hurle1, Tomas Marques-Bonet2,3, Francesca Antonacci3, Inna Hughes4, Joseph F Ryan1, NISC Comparative Sequencing Program1,5, Evan E Eichler3, David M Ornitz6, Eric D Green1,5* Abstract Background: Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results: We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage- specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates.
    [Show full text]
  • The Global Architecture Shaping the Heterogeneity and Tissue-Dependency of the MHC Class I Immunopeptidome Is Evolutionarily Conserved
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317750; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Global Architecture Shaping the Heterogeneity and Tissue-Dependency of the MHC Class I Immunopeptidome is Evolutionarily Conserved Authors Peter Kubiniok†1, Ana Marcu†2,3, Leon Bichmann†2,4, Leon Kuchenbecker4, Heiko Schuster1,5, David Hamelin1, Jérome Despault1, Kevin Kovalchik1, Laura Wessling1, Oliver Kohlbacher4,7,8,9,10 Stefan Stevanovic2,3,6, Hans-Georg Rammensee2,3,6, Marian C. Neidert11, Isabelle Sirois1, Etienne Caron1,12* Affiliations *Corresponding and Leading author: Etienne Caron ([email protected]) †Equal contribution to this work 1CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada 2Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany. 3Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany. 4Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Baden- Württemberg, 72074, Germany. 5Immatics Biotechnologies GmbH, Tübingen, 72076, Baden-Württemberg, Germany. 6DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Baden- Württemberg, 72076, Germany. 7Institute for Bioinformatics and Medical Informatics,
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • A Cell Line P53 Mutation Type UM
    A Cell line p53 mutation Type UM-SCC 1 wt UM-SCC5 Exon 5, 157 GTC --> TTC Missense mutation by transversion (Valine --> Phenylalanine UM-SCC6 wt UM-SCC9 wt UM-SCC11A wt UM-SCC11B Exon 7, 242 TGC --> TCC Missense mutation by transversion (Cysteine --> Serine) UM-SCC22A Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC22B Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC38 Exon 5, 132 AAG --> AAT Missense mutation by transversion (Lysine --> Asparagine) UM-SCC46 Exon 8, 278 CCT --> CGT Missense mutation by transversion (Proline --> Alanine) B 1 Supplementary Methods Cell Lines and Cell Culture A panel of ten established HNSCC cell lines from the University of Michigan series (UM-SCC) was obtained from Dr. T. E. Carey at the University of Michigan, Ann Arbor, MI. The UM-SCC cell lines were derived from eight patients with SCC of the upper aerodigestive tract (supplemental Table 1). Patient age at tumor diagnosis ranged from 37 to 72 years. The cell lines selected were obtained from patients with stage I-IV tumors, distributed among oral, pharyngeal and laryngeal sites. All the patients had aggressive disease, with early recurrence and death within two years of therapy. Cell lines established from single isolates of a patient specimen are designated by a numeric designation, and where isolates from two time points or anatomical sites were obtained, the designation includes an alphabetical suffix (i.e., "A" or "B"). The cell lines were maintained in Eagle's minimal essential media supplemented with 10% fetal bovine serum and penicillin/streptomycin.
    [Show full text]
  • Downloaded and Searched Against the Dbest Database to Identify Ests
    BMC Genomics BioMed Central Research article Open Access A transcription map of the 6p22.3 reading disability locus identifying candidate genes Eric R Londin1, Haiying Meng2 and Jeffrey R Gruen*2 Address: 1Graduate Program in Genetics, State University of New York at Stony Brook, NY, USA and 2Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA Email: Eric R Londin - [email protected]; Haiying Meng - [email protected]; Jeffrey R Gruen* - [email protected] * Corresponding author Published: 30 June 2003 Received: 22 April 2003 Accepted: 30 June 2003 BMC Genomics 2003, 4:25 This article is available from: http://www.biomedcentral.com/1471-2164/4/25 © 2003 Londin et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. reading disabilitydyslexia6p22.3In silicoESTs Abstract Background: Reading disability (RD) is a common syndrome with a large genetic component. Chromosome 6 has been identified in several linkage studies as playing a significant role. A more recent study identified a peak of transmission disequilibrium to marker JA04 (G72384) on chromosome 6p22.3, suggesting that a gene is located near this marker. Results: In silico cloning was used to identify possible candidate genes located near the JA04 marker. The 2 million base pairs of sequence surrounding JA04 was downloaded and searched against the dbEST database to identify ESTs. In total, 623 ESTs from 80 different tissues were identified and assembled into 153 putative coding regions from 19 genes and 2 pseudogenes encoded near JA04.
    [Show full text]
  • The Role of Follistatin-Like 3 (Fstl3) In
    THE ROLE OF FOLLISTATIN-LIKE 3 (FSTL3) IN CARDIAC HYPERTROPHY AND REMODELLING Kalyani Panse A thesis submitted for the degree of Doctor of Philosophy and the Diploma of Imperial College Harefield Heart Science Centre National Heart & Lung Institute Imperial College London May 2011 1 ABSTRACT Follistatins are extracellular inhibitors of TGF-β family ligands like activin A, myostatin and bone morphogenetic proteins. Follistatin-like 3 (Fstl3) is a potent inhibitor of activin signalling and antagonises the cardioprotective role of activin A in the heart. The expression of Fstl3 is elevated in patients with heart failure and upregulated by hypertrophic stimuli in cardiomyocytes. However its role in cardiac remodelling is largely unknown. The aim of this thesis was to analyse the function of Fstl3 in the myocardium in response to hypertrophic stimuli using both in vivo and in vitro approaches. To explore the role of Fstl3 in cardiac hypertrophy, cardiac-specific Fstl3 knock-out mice (Fstl3 KO) were subjected to pressure overload induced by trans-aortic constriction. They showed attenuated cardiac hypertrophy and improved cardiac function compared to wild type littermate control mice. Knock-out of Fstl3 specifically from cardiomyocytes was sufficient to reduce the total expression of Fstl3 in the heart following pressure overload, implying that cardiomyocytes are the major source of Fstl3 in the heart after TAC. Fstl3 KO mice also showed reduced expression of typical hypertrophic markers including ANP, BNP, α-skeletal actin and β-MHC. Similarly, treatment of neonatal rat cardiomyocytes with Fstl3 resulted in hypertrophy as measured by increased cell size and protein synthesis. This was also accompanied by activation of p38 and JNK signalling pathways.
    [Show full text]
  • Relevance Network Between Chemosensitivity and Transcriptome in Human Hepatoma Cells1
    Vol. 2, 199–205, February 2003 Molecular Cancer Therapeutics 199 Relevance Network between Chemosensitivity and Transcriptome in Human Hepatoma Cells1 Masaru Moriyama,2 Yujin Hoshida, topoisomerase II ␤ expression, whereas it negatively Motoyuki Otsuka, ShinIchiro Nishimura, Naoya Kato, correlated with expression of carboxypeptidases A3 Tadashi Goto, Hiroyoshi Taniguchi, and Z. Response to nimustine was associated with Yasushi Shiratori, Naohiko Seki, and Masao Omata expression of superoxide dismutase 2. Department of Gastroenterology, Graduate School of Medicine, Relevance networks identified several negative University of Tokyo, Tokyo 113-8655 [M. M., Y. H., M. O., N. K., T. G., H. T., Y. S., M. O.]; Cellular Informatics Team, Computational Biology correlations between gene expression and resistance, Research Center, Tokyo 135-0064 [S. N.]; and Department of which were missed by hierarchical clustering. Our Functional Genomics, Graduate School of Medicine, Chiba University, results suggested the necessity of systematically Chiba 260-8670 [N. S.], Japan evaluating the transporting systems that may play a major role in resistance in hepatoma. This may provide Abstract useful information to modify anticancer drug action in Generally, hepatoma is not a chemosensitive tumor, hepatoma. and the mechanism of resistance to anticancer drugs is not fully elucidated. We aimed to comprehensively Introduction evaluate the relationship between chemosensitivity and Hepatoma is a major cause of death even in developed gene expression profile in human hepatoma cells, by countries, and its incidence is increasing (1). Despite the using microarray analysis, and analyze the data by progress of therapeutic technique (2), the efficacy of radical constructing relevance networks. therapy is hampered by frequent recurrence and advance of In eight hepatoma cell lines (HLE, HLF, Huh7, Hep3B, the tumor (3).
    [Show full text]
  • Metastatic Adrenocortical Carcinoma Displays Higher Mutation Rate and Tumor Heterogeneity Than Primary Tumors
    ARTICLE DOI: 10.1038/s41467-018-06366-z OPEN Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors Sudheer Kumar Gara1, Justin Lack2, Lisa Zhang1, Emerson Harris1, Margaret Cam2 & Electron Kebebew1,3 Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and high mortality due to metastatic disease. All reported genetic alterations have been in primary ACC, and it is 1234567890():,; unknown if there is molecular heterogeneity in ACC. Here, we report the genetic changes associated with metastatic ACC compared to primary ACCs and tumor heterogeneity. We performed whole-exome sequencing of 33 metastatic tumors. The overall mutation rate (per megabase) in metastatic tumors was 2.8-fold higher than primary ACC tumor samples. We found tumor heterogeneity among different metastatic sites in ACC and discovered recurrent mutations in several novel genes. We observed 37–57% overlap in genes that are mutated among different metastatic sites within the same patient. We also identified new therapeutic targets in recurrent and metastatic ACC not previously described in primary ACCs. 1 Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 2 Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 3 Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA. Correspondence and requests for materials should be addressed to E.K. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:4172 | DOI: 10.1038/s41467-018-06366-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06366-z drenocortical carcinoma (ACC) is a rare malignancy with types including primary ACC from the TCGA to understand our A0.7–2 cases per million per year1,2.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Integrating Transcriptome-Wide Study and Mrna Expression Profiles Yields Novel Insights Into the Biological Mechanism of Chondro
    Li et al. Arthritis Research & Therapy (2019) 21:194 https://doi.org/10.1186/s13075-019-1978-8 RESEARCH ARTICLE Open Access Integrating transcriptome-wide study and mRNA expression profiles yields novel insights into the biological mechanism of chondropathies Ping Li†, Yujie Ning†, Xiong Guo, Yan Wen, Bolun Cheng, Mei Ma, Lu Zhang, Shiqiang Cheng, Sen Wang and Feng Zhang* Abstract Background: Chondropathies are a group of cartilage diseases, which share some common pathogenetic features. The etiology of chondropathies is still largely obscure now. Methods: A transcriptome-wide association study (TWAS) was performed using the UK Biobank genome-wide association study (GWAS) data of chondropathies (including 1314 chondropathy patients and 450,950 controls) with gene expression references of muscle skeleton (MS) and peripheral blood (YBL). The candidate genes identified by TWAS were further compared with three gene expression profiles of osteoarthritis (OA), cartilage tumor (CT), and spinal disc herniation (SDH), to confirm the functional relevance between the chondropathies and the candidate genes identified by TWAS. Functional mapping and annotation (FUMA) was used for the gene ontology enrichment analyses. Immunohistochemistry (IHC) was conducted to validate the accuracy of integrative analysis results. Results: Integrating TWAS and mRNA expression profiles detected 84 candidate genes for knee OA, such as DDX20 − 3 − 3 (PTWAS YBL = 1.79 × 10 , fold change (FC) = 2.69), 10 candidate genes for CT, such as SRGN (PTWAS YBL = 1.46 × 10 , − 3 FC = 3.36), and 4 candidate genes for SDH, such as SUPV3L1 (PTWAS YBL =3.59×10 , FC = 3.22). Gene set enrichment analysis detected 73 GO terms for knee OA, 3 GO terms for CT, and 1 GO term for SDH, such as mitochondrial protein complex (P =7.31×10− 5) for knee OA, cytokine for CT (P =1.13×10− 4), and ion binding for SDH (P =3.55×10− 4).
    [Show full text]