Assessment of Natural Resources and the Environment: Issues and Opportunities for USAID/Sofia

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Natural Resources and the Environment: Issues and Opportunities for USAID/Sofia Assessment of Natural Resources and the Environment: Issues and Opportunities for USAID/Sofia Submitted to: USAID/Sofia Sofia, Bulgaria Submitted by: Alicia Grimes (EE/EEST/ENR), Gregory Myers (EE/EEST/ENR) and Jeff Ploetz (EISN Project, DevTech Systems, Inc.) February 2002 USAID/Washington Final Report 2/22/2002 The information contained in this report is the responsibility of the authors and does not necessarily represent USAID's official policy or position. It is an internal document prepared by technical experts intended to help inform long term planning. TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ......................................................................................................i EXECUTIVE SUMMARY......................................................................................................................... iii SECTION I....................................................................................................................................................1 Introduction and Background........................................................................................................................1 A. Purpose and Objectives of the Assessment ............................................................................................1 B. Methodology...........................................................................................................................................1 C. Environmental Requirements for Country Strategic Plans.....................................................................1 D. Acknowledgements ................................................................................................................................2 SECTION II ..................................................................................................................................................3 Bulgaria’s Biodiversity and its Economic Significance................................................................................3 A. Overview ...............................................................................................................................................3 1. Geography.............................................................................................................................................3 2. Biodiversity...........................................................................................................................................5 3. Flora......................................................................................................................................................5 4. Fauna.....................................................................................................................................................6 5. Bulgaria's Protected Areas ....................................................................................................................6 B. Economic Significance .........................................................................................................................7 SECTION III.................................................................................................................................................9 Legal and Institutional Framework Governing Environment and Natural Resources ..................................9 A. Legal Framework ..................................................................................................................................9 B. Institutional Framework.......................................................................................................................11 1. National Government..........................................................................................................................11 2. Municipal Government .......................................................................................................................12 3. Financial Bodies..................................................................................................................................13 SECTION IV...............................................................................................................................................14 Issues and Threats to Natural Resources and the Environment ..................................................................14 A. Threats to Biodiversity and Natural Resources .................................................................................14 1. Deforestation and Forest Fragmentation...........................................................................................14 2. Illegal hunting and Overharvesting...................................................................................................16 3. Loss of habitat, particularly wetlands ...............................................................................................16 4. Introduction of alien invasive species...............................................................................................16 5. Air pollution impacts on forests.......................................................................................................17 6. Climate change and drought .............................................................................................................17 B. Other Environmental Problems .........................................................................................................18 1. Air pollution......................................................................................................................................18 2. Solid Waste .......................................................................................................................................19 3. Hazardous Waste ..............................................................................................................................19 4. Municipal Wastewater ......................................................................................................................19 C. Cross-cutting Institutional and Legislative Issues .............................................................................20 1. Legislative Challenges......................................................................................................................20 a. Harmonization of Laws and Legislative Constraints....................................................................20 2. Institutional Weaknesses...................................................................................................................20 a. Difficulties in National Implementation of Law and Policy.........................................................20 b. Incomplete Decentralization.........................................................................................................21 c. Weakness of Regional Environmental Inspectorates....................................................................21 d. Weakness of Municipal Government ...........................................................................................22 e. Administrative inefficiencies and lack of coordination between agencies ...................................23 f. Lack of Transparency...................................................................................................................23 g. EU Accession at the expense of cushioning economic shock ......................................................23 h. Rule of Law and Judicial Concerns..............................................................................................24 i. Lack of Financial Resources for Environmental Interventions ....................................................24 j. Information Constraints................................................................................................................25 SECTION V ................................................................................................................................................26 Government, Private and Donor Actions to mitigate Environmental Threats ............................................26 A. GOB Responses...................................................................................................................................26 B. Private Sector/Civil Society Responses..............................................................................................27 C. Other Donors ......................................................................................................................................27 1. Government of Switzerland ...............................................................................................................27 2. Government of Denmark ...................................................................................................................28 3. UNDP/GEF Rhodope Region ............................................................................................................29 4. World Bank/GEF Wetlands Reconstruction......................................................................................30 5. EU Programs : SAPARD and Phare ..................................................................................................30 Section VI....................................................................................................................................................32 USAID’s Program.......................................................................................................................................32
Recommended publications
  • Trends of Aquatic Alien Species Invasions in Ukraine
    Aquatic Invasions (2007) Volume 2, Issue 3: 215-242 doi: http://dx.doi.org/10.3391/ai.2007.2.3.8 Open Access © 2007 The Author(s) Journal compilation © 2007 REABIC Research Article Trends of aquatic alien species invasions in Ukraine Boris Alexandrov1*, Alexandr Boltachev2, Taras Kharchenko3, Artiom Lyashenko3, Mikhail Son1, Piotr Tsarenko4 and Valeriy Zhukinsky3 1Odessa Branch, Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine (NASU); 37, Pushkinska St, 65125 Odessa, Ukraine 2Institute of Biology of the Southern Seas NASU; 2, Nakhimova avenue, 99011 Sevastopol, Ukraine 3Institute of Hydrobiology NASU; 12, Geroyiv Stalingrada avenue, 04210 Kiyv, Ukraine 4Institute of Botany NASU; 2, Tereschenkivska St, 01601 Kiyv, Ukraine E-mail: [email protected] (BA), [email protected] (AB), [email protected] (TK, AL), [email protected] (PT) *Corresponding author Received: 13 November 2006 / Accepted: 2 August 2007 Abstract This review is a first attempt to summarize data on the records and distribution of 240 alien species in fresh water, brackish water and marine water areas of Ukraine, from unicellular algae up to fish. A checklist of alien species with their taxonomy, synonymy and with a complete bibliography of their first records is presented. Analysis of the main trends of alien species introduction, present ecological status, origin and pathways is considered. Key words: alien species, ballast water, Black Sea, distribution, invasion, Sea of Azov introduction of plants and animals to new areas Introduction increased over the ages. From the beginning of the 19th century, due to The range of organisms of different taxonomic rising technical progress, the influence of man groups varies with time, which can be attributed on nature has increased in geometrical to general processes of phylogenesis, to changes progression, gradually becoming comparable in in the contours of land and sea, forest and dimensions to climate impact.
    [Show full text]
  • Histopathological Effects and Toxicity of Atrazine Herbicide in Caspian Kutum, Rutilus Frisii Kutum, Fry
    Iranian Journal of Fisheries Sciences 13(3) 702- 718 2014 Histopathological effects and toxicity of atrazine herbicide in Caspian Kutum, Rutilus frisii kutum, fry Khoshnood Z. 1*; Jamili Sh. 1; Khodabandeh S.2; Mashinchian Moradi A.1; Motallebi Moghanjoghi A.A.3 Received: June 2012 Accepted: May 2014 Abstract This study aimed to investigate the toxic effects of atrazine herbicide on the fry of Caspian Kutum (Rutilus frisii kutum, Kamensky, 1901). First the 96-h LC50 of the fry were exposed to atrazine at the concentration of 24.95 ppm was determined. Then the toxicity of this herbicide on Caspian kutum fry exposed to the concentration of 12.47ppm (1/2 LC50), for four days was measured and compared with a control group. Comparison of the length, weight and condition factor showed no significant differences between atrazine exposed and control group. The concentration of Na+, K+, Ca2+, Mg2+ and Cl- in the whole body of fry in control and atrazine exposure groups were as the following order: Ca2+>K+> Na +> Cl- >Mg2+ and Ca2+>Na+>K+>Mg2+>Cl-, respectively. Results showed that the concentration of all these ions were higher in atrazine exposure group than control group, except for Cl-, and the only significant differences was found in Na+ concentration. Major histopathological effects of atrazine on the gills were hyperplasia and thickening of the filaments, separation of the pavement cells of the lamellae epithelium from the pillar cells and swelling of the epithelial cells. Results of the present study showed that atrazine could affect the ion composition of the body, and caused major damages in gill epithelium even at sublethal concentration and acute exposure, but had no effects on the growth parameters.
    [Show full text]
  • Feature Saltation and the Evolution of Mimicry
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01482.x FEATURE SALTATION AND THE EVOLUTION OF MIMICRY Gabriella Gamberale-Stille,1,2 Alexandra C. V. Balogh,1,3 Birgitta S. Tullberg,1 and Olof Leimar1,4 1Department of Zoology, Stockholm University, 10691 Stockholm, Sweden 2E-mail: [email protected] 3Environmental & Marine Biology, Abo˚ Akademi University, FIN-20520 Turku, Finland 4Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany Received May 27, 2011 Accepted September 26, 2011 In Batesian mimicry, a harmless prey species imitates the warning coloration of an unpalatable model species. A traditional suggestion is that mimicry evolves in a two-step process, in which a large mutation first achieves approximate similarity to the model, after which smaller changes improve the likeness. However, it is not known which aspects of predator psychology cause the initial mutant to be perceived by predators as being similar to the model, leaving open the question of how the crucial first step of mimicry evolution occurs. Using theoretical evolutionary simulations and reconstruction of examples of mimicry evolution, we show that the evolution of Batesian mimicry can be initiated by a mutation that causes prey to acquire a trait that is used by predators as a feature to categorize potential prey as unsuitable. The theory that species gain entry to mimicry through feature saltation allows us to formulate scenarios of the sequence of events during mimicry evolution and to reconstruct an initial mimetic appearance for important examples of Batesian mimicry. Because feature-based categorization by predators entails a qualitative distinction between nonmimics and passable mimics, the theory can explain the occurrence of imperfect mimicry.
    [Show full text]
  • Environmental Assessment Report Armenia: North-South Road
    Environmental Assessment Report Environmental Impact Assessment (EIA) Document Stage: Draft Sub-project Number: 42145 August 2010 Armenia: North-South Road Corridor Investment Program Tranches 2 & 3 Prepared by Ministry of Transport and Communications (MOTC) of Armenia for Asian Development Bank The environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. Armenia: North-South Road Corridor Investment Program Tranches 2 & 3 – Environmental Impact Assessment Report ABBREVIATIONS ADB Asian Development Bank AARM ADB Armenian Resident Mission CO2 carbon dioxide EA executing agency EARF environmental assessment and review framework EIA environmental impact assessment EMP environmental management and monitoring plan IUCN International Union for Conservation of Nature LARP Land Acquisition and Resettlement Plan MFF multi-tranche financing facility MNP Ministry of Nature Protection MOC Ministry of Culture MOH Ministry of Health MOTC Ministry of Transport and Communication NGO nongovernment organization NO2 nitrogen dioxide NO nitrogen oxide MPC maximum permissible concentration NPE Nature Protection Expertise NSS National Statistical Service PAHs polycyclic aromatic hydrocarbons PMU Project Management Unit PPTA Project Preparatory Technical Assistance RA Republic of Armenia RAMSAR Ramsar Convention on Wetlands REA Rapid Environmental Assessment (checklist) SEI State Environmental Inspectorate
    [Show full text]
  • 49370-002: National Power Grid Strengthening Project
    Initial Environmental Examination Final Report Project No.: 49370-002 October 2020 Turkmenistan: National Power Grid Strengthening Project Volume 4 Prepared by the Ministry of Energy, Government of Turkmenistan for the Asian Development Bank. The Initial Environmental Examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. 49370-002: TKM TKM Power Sector Development Project 81. Out of these IBAs, eight IBAs are located close to phase I Transmission line alignments. Four IBAs are located close to proposed Gurtly (Ashgabat) to Balkanabat Transmission line. And four falls close to existing Sardar (West) to Dashoguz Transmission line. No IBA falls close to Dashoguz-Balkan Transmission line. The view of these IBAs with respect to transmission alignment of phase I are shown at Figure 4.17. 82. There are 8 IBAs along phase II alignment. Two IBAs, i.e. Lotfatabad & Darregaz and IBA Mergen is located at approx 6.0 km &approx 9.10 km from alignment respectively. The view of these IBAs with respect to transmission alignment of phase II is shown at Figure 4.18. : Presence of Important Bird Areas close to Proposed/existing
    [Show full text]
  • Lamprey, Hagfish
    Agnatha - Lamprey, Kingdom: Animalia Phylum: Chordata Super Class: Agnatha Hagfish Agnatha are jawless fish. Lampreys and hagfish are in this class. Members of the agnatha class are probably the earliest vertebrates. Scientists have found fossils of agnathan species from the late Cambrian Period that occurred 500 million years ago. Members of this class of fish don't have paired fins or a stomach. Adults and larvae have a notochord. A notochord is a flexible rod-like cord of cells that provides the main support for the body of an organism during its embryonic stage. A notochord is found in all chordates. Most agnathans have a skeleton made of cartilage and seven or more paired gill pockets. They have a light sensitive pineal eye. A pineal eye is a third eye in front of the pineal gland. Fertilization of eggs takes place outside the body. The lamprey looks like an eel, but it has a jawless sucking mouth that it attaches to a fish. It is a parasite and sucks tissue and fluids out of the fish it is attached to. The lamprey's mouth has a ring of cartilage that supports it and rows of horny teeth that it uses to latch on to a fish. Lampreys are found in temperate rivers and coastal seas and can range in size from 5 to 40 inches. Lampreys begin their lives as freshwater larvae. In the larval stage, lamprey usually are found on muddy river and lake bottoms where they filter feed on microorganisms. The larval stage can last as long as seven years! At the end of the larval state, the lamprey changes into an eel- like creature that swims and usually attaches itself to a fish.
    [Show full text]
  • Risks Induced by Maximum Flow with 1% Probability and Their Effect on Several Species and Habitats in Pricop- Huta-Certeze and Upper Tisa Natura 2000 Protected Areas
    RISKS INDUCED BY MAXIMUM FLOW WITH 1% PROBABILITY AND THEIR EFFECT ON SEVERAL SPECIES AND HABITATS IN PRICOP- HUTA-CERTEZE AND UPPER TISA NATURA 2000 PROTECTED AREAS GH. ŞERBAN 1*, A. SABĂU1, S. RAFAN1, C. CORPADE1, A. NIŢOAIA1, R. PONCIŞ1 ABSTRACT. – Risks Induced by Maximum Flow with 1% Probability and Their Effect on Several Species and Habitats in Pricop-Huta-Certeze and Upper Tisa Natura 2000 Protected Areas. The purpose of the paper is to identify and locate some species related to habitats from Pricop-Huta-Certeze and Upper Tisa Natura 2000 Protected Areas (PHCTS) and to determine if they are vulnerable to risks induced by maximum flow phases. In the first chapter are mentioned few references about the morphometric parameters of the hydrographic networks within the study area, as well as some references related to the maximum flow phases frequency. After the second chapter, where methods and databases used in the study are described, we proceed to the identification of the areas that are covered by water during flood, as well as determining the risk level related to these areas. The GIS modeling reveals small extent of the flood high risk for natural environment related to protected areas and greater extent for the anthropic environment. The last chapter refers to several species of fish and batrachia, as well as to those amphibious mammals identified in the study area that are vulnerable to floods (high turbidity effect, reduction of dissolved oxygen quantity, habitats destruction etc.). Keywords: maximum flow, floods, flood risk, species, habitats. 1. INTRODUCTION 1.1. Morphometric data concerning catchment areas and water courses The Upper Tisa, which forms a 62 km of natural border between Romania and Ukraine among the villages Valea Vișeului and Piatra, is composed by merging the two tributaries, Tisa Neagră (Black Tisa) and Tisa Albă (White Tisa), which have the springs in Păduroşi Carpathian mountains, respectively in Svidoveţ (1183 m) and Cernagora (2058 m) mountains.
    [Show full text]
  • British Lepidoptera (/)
    British Lepidoptera (/) Home (/) Anatomy (/anatomy.html) FAMILIES 1 (/families-1.html) GELECHIOIDEA (/gelechioidea.html) FAMILIES 3 (/families-3.html) FAMILIES 4 (/families-4.html) NOCTUOIDEA (/noctuoidea.html) BLOG (/blog.html) Glossary (/glossary.html) Family: SPHINGIDAE (3SF 13G 18S) Suborder:Glossata Infraorder:Heteroneura Superfamily:Bombycoidea Refs: Waring & Townsend, Wikipedia, MBGBI9 Proboscis short to very long, unscaled. Antenna ~ 1/2 length of forewing; fasciculate or pectinate in male, simple in female; apex pointed. Labial palps long, 3-segmented. Eye large. Ocelli absent. Forewing long, slender. Hindwing ±triangular. Frenulum and retinaculum usually present but may be reduced. Tegulae large, prominent. Leg spurs variable but always present on midtibia. 1st tarsal segment of mid and hindleg about as long as tibia. Subfamily: Smerinthinae (3G 3S) Tribe: Smerinthini Probably characterised by a short proboscis and reduced or absent frenulum Mimas Smerinthus Laothoe 001 Mimas tiliae (Lime Hawkmoth) 002 Smerinthus ocellata (Eyed Hawkmoth) 003 Laothoe populi (Poplar Hawkmoth) (/002- (/001-mimas-tiliae-lime-hawkmoth.html) smerinthus-ocellata-eyed-hawkmoth.html) (/003-laothoe-populi-poplar-hawkmoth.html) Subfamily: Sphinginae (3G 4S) Rest with wings in tectiform position Tribe: Acherontiini Agrius Acherontia 004 Agrius convolvuli 005 Acherontia atropos (Convolvulus Hawkmoth) (Death's-head Hawkmoth) (/005- (/004-agrius-convolvuli-convolvulus- hawkmoth.html) acherontia-atropos-deaths-head-hawkmoth.html) Tribe: Sphingini Sphinx (2S)
    [Show full text]
  • Effect of Weight on Osmoregulation Ability in Rutilus Frisii Kutum Fingerlings
    African Journal of Biotechnology Vol. 11(12), pp. 3014-3021, 9 February, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.3144 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Effect of weight on osmoregulation ability in Rutilus frisii kutum fingerlings Seyed Ali Hosseini1, Che Roos Saad1*, Seyed Ahmad Hosseini2, Mohammad Sayyad Bourani3, Hassan Mohd Daud4 and Sharr Azni Harmin5 1Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. 2Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. 3National Inland Waters Aquaculture Institute, Aquaculture Department, P.O. Box 66, Bandar Anzali, Iran. 4Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia. 5Center for Land and Aquatic Technology Faculty of Science and Biotechnology, University Selangor, 40000 Shah Alam, Selangor, Malaysia. Accepted 28 December, 2011 Experiments were conducted to study the downstream migratory behavior and effects of weight on osmoregulation ability of hatchery-reared Rutilus frisii kutum fingerlings during adaptation to the seawater. Accordingly, blood osmotic pressure regulation ability in kutum fingerlings with weights of 1, 3, 5 and 7 g in three different salinities, 13 ppt (Caspian Sea salinity), 7 ppt (estuarine area) and 0.3 ppt (freshwater) were assessed. The blood samples were collected before being transferred as control (freshwater) and after exposure to the sea and estuarine water in a period of up to 336 h by a pooling method. The results indicate that only 3, 5 and 7 g kutum are able to adapt to salinity of 7 and 13 ppt since they maintained the osmolarity.
    [Show full text]
  • (Rutilus, Teleostei, Cyprinidae) Molecular Phylogenetics and Evolut
    ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2008) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Short Communication Molecular systematics, phylogeny and biogeography of roaches (Rutilus, Teleostei, Cyprinidae) V. Ketmaier a,*, P.G. Bianco b, J.-D. Durand c a Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 25, D-14476 Potsdam, Germany b Dipartimento di Zoologia, Università di Napoli ‘‘Federico II”, V. Mezzocannone 8, I-80134 Naples, Italy c IRD UR 070 RAP route des hydrocarbures, BP 1386, Bel Air, Dakar, Sénégal article info Article history: Received 7 March 2008 Revised 15 July 2008 Accepted 16 July 2008 Available online xxxx 1. Introduction two alternative hypotheses (Zardoya and Doadrio, 1999; Durand et al., 2000, 2002a,b, 2003; Ketmaier et al., 1998, 2003, 2004; Cyprinid species diversity is not evenly distributed across Eur- Tsigenopoulos et al., 2003 and references therein). Although many ope. Central Europe hosts a homogeneous ichthyofauna, while of these studies have invoked the Lago Mare phase to explain many taxa are endemic to relatively narrow Southern European patterns of divergence, evidence supporting it as the most likely areas. This led to the recognition of 13 ichthyogeographic districts scenario is not always unambiguous. around the Mediterranean Sea (Fig. 1), each of which characterized Here, we used roaches (genus Rutilus) to infer speciation pat- by its own assemblage of endemic species (Bianco, 1990). Two bio- terns of primary freshwater fishes in the Eastern peri-Mediterra- geographic hypotheses have been proposed to explain the evolu- nean area.
    [Show full text]
  • Annotated Checklist of Albanian Butterflies (Lepidoptera, Papilionoidea and Hesperioidea)
    A peer-reviewed open-access journal ZooKeysAnnotated 323: 75–89 (2013) checklist of Albanian butterflies( Lepidoptera, Papilionoidea and Hesperioidea) 75 doi: 10.3897/zookeys.323.5684 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Annotated checklist of Albanian butterflies (Lepidoptera, Papilionoidea and Hesperioidea) Rudi Verovnik1, Miloš Popović2 1 University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia 2 HabiProt, Bulevar oslobođenja 106/34, 11040 Belgrade, Serbia Corresponding author: Rudi Verovnik ([email protected]) Academic editor: Carlos Peña | Received 25 May 2013 | Accepted 6 August 2013 | Published 13 August 2013 Citation: Verovnik R, Popović M (2013) Annotated checklist of Albanian butterflies (Lepidoptera, Papilionoidea and Hesperioidea). ZooKeys 323: 75–89. doi: 10.3897/zookeys.323.5684 Abstract The Republic of Albania has a rich diversity of flora and fauna. However, due to its political isolation, it has never been studied in great depth, and consequently, the existing list of butterfly species is outdated and in need of radical amendment. In addition to our personal data, we have studied the available litera- ture, and can report a total of 196 butterfly species recorded from the country. For some of the species in the list we have given explanations for their inclusion and made other annotations. Doubtful records have been removed from the list, and changes in taxonomy have been updated and discussed separately. The purpose of our paper is to remove confusion and conflict regarding published records. However, the revised checklist should not be considered complete: it represents a starting point for further research.
    [Show full text]
  • Rutilus Frisii Kutum) Broodstock from the Southern Basin of the Caspian Sea
    Turkish Journal of Veterinary and Animal Sciences Turk J Vet Anim Sci (2013) 37: 320-325 http://journals.tubitak.gov.tr/veterinary/ © TÜBİTAK Research Article doi:10.3906/vet-1201-20 A comparative study of some blood factors in male and female Caspian kutum (Rutilus frisii kutum) broodstock from the southern basin of the Caspian Sea Farid FIROUZBAKHSH*, Zeynab ABEDI, Hossain RAHMANI, Mohammad K. KHALESI Sari Agricultural Sciences and Natural Resources University, Sari, Iran Received: 15.01.2012 Accepted: 14.08.2012 Published Online: 03.06.2013 Printed: 27.06.2013 Abstract: In this study, some serum factors in male and female Caspian kutum (Rutilus frisii kutum) broodstocks were investigated. The estimated values were compared between male and female fish of various age groups. A total of 80 mature fish (40 males and 40 females) were randomly caught from the Shirood and Tajen rivers (southern Caspian Sea) during spawning season. Blood samples were then taken from the caudal peduncles and the serum biochemical parameters were measured according to common laboratory methods. Cholesterol levels showed significant differences (P < 0.05) between male and female broodstocks from the Tajen River, as well as between male and female kutum of the Tajen and Shirood rivers. Comparison of the estimated serum factors with the fish ages revealed no significant changes (P > 0.05). A high correlation was found between total protein and weight in fish from both rivers based on Pearson’s correlation. This study suggests that male and female variations in blood factors should be taken into account when these parameters are used to assess sex, age, and spawning sites.
    [Show full text]