<<

Topics on K¨ahler-EinsteinMetrics

Chi Li

Department of Mathematics, Purdue University

December 6, 2019 Table of Contents

1 Backgrounds

2 KE potentials on (singular) Fano varieties

3 Ideas and Techniques

4 Metric tangent cones and Normalized volume Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure:

Topology Metric Curvature 2 1 S = CP spherical 1 2 2 T = C/Z flat 0 1 Σg = B /π1(Σg) hyperbolic -1

2 ∂2ϕ 2 Riemannian metric: g = E|dz| = ∂z∂z¯|dz| . Constant Gauss/Ricci curvature equation = 1-dimensional complex Monge-Amp`ereequation

−λϕ Ric(g) = λg ⇐⇒ ∆ log E = −λE ⇐⇒ ϕzz¯ = e .

Backgrounds K¨ahlermanifolds and K¨ahlermetrics

X : complex manifold; J: TX → TX integrable complex structure; g: K¨ahlermetric, g(J·, J·) = g(·, ·) and dω = 0.

√ n X i j ω = g(·, J·) = −1 gij¯dz ∧ dz¯ , (gij¯) > 0. i,j=1

2 K¨ahlerclass [ω] ∈ H (X , R). Fact (∂∂¯-Lemma): any ω0 ∈ [ω] is of the form √ √ ¯ X   i j ωu := ω + −1∂∂u = −1 gij¯ + uij¯ dz ∧ dz¯ . i,j

Backgrounds K¨ahlermetric as curvature forms

L → X : a C-line bundle with holomorphic transition {fαβ}. e−ϕ := {e−ϕα } Hermitian metric on L:

−ϕα 2 −ϕβ e = |fαβ| e . (1)

Definition: L is positive (=ample) if ∃ e−ϕ = {e−ϕα } on L s.t. √ √ √ ω + −1∂∂¯u = −1∂∂ϕ¯ := −1∂∂ϕ¯ α > 0. (2)

n n ∗ Anticanonical line bundle: −KX = ∧ TholX , KX = ∧ TholX . Fact: {smooth volume forms}={Hermitian metrics on −KX } √ n 2πc1(X ) 3 Ric(ω) = − −1∂∂¯log ω X ∂2 = − log det(g )dzi ∧ dz¯j . ∂zi ∂z¯j kl¯ i,j

Backgrounds K¨ahler-Einsteinmetric and Monge-Amp`ereequation

KE equation: √ n −λu n Ric(ωu) = λ ωu ⇐⇒ (ω + −1∂∂¯u) = Fe ω (3)

 ∂2u  ⇐⇒ det g + = Fe−λu det(g ). ij¯ ∂zi ∂z¯j ij¯

λ = −1 Solvable (Aubin, Yau) c1(X ) < 0

λ = 0 Solvable (Yau) c1(X ) = 0

λ = 1 ∃ obstructions c1(X ) > 0

Backgrounds Fano manifolds

X Fano: c1(X ) > 0 ⇐⇒ ∃ K¨ahlermetric ω with Ric(ω) > 0.

1 1 2 dimC = 1: P = S .

2 2 1 1 2 2 dimC = 2: P , P × P , P ]kP , 1 ≤ k ≤ 8 (del Pezzo).

3 dimC = 3: 105 deformation families (Iskovskikh, Mori-Mukai) n+1 4 Hypersurface in P of degree ≤ n + 1;

5 Toric Fano manifolds Fact: there are finitely many deformation family in each dimension (Campana, Koll´ar-Miyaoka-Mori, Nadel ’90).

Backgrounds Examples: toric Fano manifolds

Toric manifolds ↔ lattice polytopes. Fano ↔ reflexive polytope.

Q

Pc O O Pc Pc Pc

Q

2 2 2 2 (a) P (b) P ]P2 (c) P ]2P2 (d) P ]3P2

Set β(X ) = sup{t; ∃ ω ∈ 2πc1(X ) s.t. Ric(ω) > tω} ∈ (0, 1]. Fact: KE =⇒ β(X ) = 1.

Theorem (Li ’09) −−→ If Pc 6= O, then β(X4) = OQ / Pc Q , where Q = Pc O ∩ ∂4.

2 2 Example: β(P ]P2) = 6/7, β(P ]2P2) = 21/25.

Backgrounds Q-Fano varieties: building blocks of algebraic varieties

Definition Q-Fano variety X is a normal satisfying: 1 Fano: Q-line bundle −KX is ample. 2 ∗ 1 n klt (Kawamata log terminal): ∀sα ∼ dz ∧ ... dz ∈ OKX (Uα)

Z √ 2 n ∗ ∗ ( −1 sα ∧ s¯α) < +∞. (4) Ureg Let µ : Y → X by a resolution of singularities (Hironaka)

∗ X KY = µ KX + (A(Ei ) − 1)Ei . (5) i

The condition (4) ⇐⇒ mld : = mini A(Ei ) > 0. Fact: (Birkar ’16) -klt (i.e. mld ≥  > 0) Fanos are bounded.

KE potentials on (singular) Fano varieties KE equation on Q-Fano varieties

−ϕ −ϕα Hermitian metric on the Q-line bundle −KX : e = {e } s.t.

−ϕα 2 −ϕ e = |sα| e , {sα} trivializing sections of − KX

K¨ahler-Einsteinequation on Fano varieties:

√ √ 2  ¯ n −ϕ 2 −ϕ n ∗ ∗ ( −1∂∂ϕ) = e :=|sα| e −1 sα∧s¯α . (6) √ ω = −1∂∂ψ¯ ⇒ u = ϕ − ψ is globally defined. Then (6)⇐⇒ (3). (weak) KE potential: generalized solutions in pluripotential sense. Fact: KE potential is unique up to automorphism (Berndtsson) and is smooth on X reg (Berman-Boucksom-Eddyssieux-Guedj-Zeriahi)

KE potentials on (singular) Fano varieties Obstructions to KEs on Fano varieties

1 KE =⇒ Aut(X ) is reductive: Aut(X )0 is the complexification of a compact Lie group (Matsushima, BBEGZ, CDS).

2 Futaki invariant: ∀ holomorphic vector field v , ∃ canonical Hamiltonian function θv , Z n ∃ KE =⇒ Fut(v) := θvω = 0. (7) X

3 Energy coerciveness (Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove, Darvas-Rubinstein, Hisamoto) 4 K-stability (Tian, Donaldson) Ding stability (Berman, Boucksom-Jonsson) all equivalent (Li-Xu ’12, Berman-Boucksom-Jonsson, Fujita).

KE potentials on (singular) Fano varieties Main result: Generalized Yau-Tian-Donaldson conjecture

Theorem (Li-Tian-Wang, Li ’19) A Q-Fano variety X has a KE potential if (and only if) X is Aut(X )0-uniformly K/Ding-stable.

1 X Smooth (Chen-Donaldson-Sun, Tian, Datar-Sz´ekelyhidi). 2 Q-Gorenstein smoothable (Spotti-Sun-Yao, Li-Wang-Xu); 3 Good (e.g. crepant) resolution of singularities (Li-Tian-Wang). Proofs in above special cases depend on compactness/regularity theory in metric geometry and do NOT generalize to singular case.

4 X smooth & Aut(X ) discrete: Berman-Boucksom-Jonsson (BBJ) in 2015 proposed an approach using pluripotential theory/non-Archimedean analysis. Our work greatly extends their work and removes the two assumptions.

KE potentials on (singular) Fano varieties Variational point of view

Consider energy functionals on a pluripotential version of Sobolev 1 space, denoted by E (X , −KX ) (Cegrell, Guedj-Zeriahi)

(e) Proper (f) Bounded (g) Unbounded

There is a distance-like energy:

J(ϕ) = Λ(ϕ) − E(ϕ) ∼ sup(ϕ − ψ) − E(ϕ) > 0. (8)

E is the primitive of complex Monge-Amp`ereoperator: Z √ δE(δϕ) = (δϕ)( −1∂∂ϕ¯ )n (9) X

Ideas and Techniques Analytic criterion for KE potentials

Energy functional with KE as critical points: Z  D = −E + L = −E − log e−ϕ . (10) X The Euler-Lagrangian equation is just the KE equation: Z  √  δD(δϕ) = (δϕ) −( −1∂∂ϕ¯ )n + C · e−ϕ . (11) X

Theorem (Darvas-Rubinstein, Darvas, Di-Nezza-Guedj, Hisamoto) A Q-Fano variety X admits a KE potential if and only if ∼ ∗ r 1 Aut(X )0 is reductive (with center T = (C ) ) 1 2 there exist γ > 0 and C > 0 s.t. ∀ϕ ∈ E (X , −KX )K,

D(ϕ) ≥ γ · inf J(σ∗ϕ) − C. (coercive) σ∈T

Ideas and Techniques Test of coerciveness along algebraic rays (Tian)

For k  1, fix an Aut(X )0-equivariant Kodaira embedding

Nk −1 0 ∗ ιk : X ,→ P = P(H (X , −kKX ) ).

Pick η ∈ MatNk ×Nk (C), hermitian and commutes with Aut(X )0. Set 1-psg: ση(t) = exp(−(log t)η) and a path: 1 ϕ(t) := σ (t)∗ϕ | ∈ E1(−K ), Φ = {ϕ(t); t ∈ ∗}. k η FS X X C Slope at infinity:

D(ϕ(t)) D0∞(Φ) := lim = −E0∞(Φ) + L0∞(Φ), t→0 − log |t|2 J(ϕ(t)) J0∞(Φ) := lim = Λ0∞(Φ) − E0∞(Φ). t→0 − log |t|2

coerciveness (2) =⇒ D0∞(Φ) ≥ γ · inf J0∞(σ (t)∗Φ). ξ∈NR ξ

Ideas and Techniques Algebraic rays=Test configurations=smooth non-Archimedean metrics

Nk −1 −1 Set X = {(ση(t)(X )), t} ⊆ P × C, L = k OP(1)|X .

BlI (X × C) Xξ J qq JJ ~ @@ qq JJ ~~ @@ qq JJ ~ @ qqq JJ ~~ @@ xq ση(t) J% ~ σξ(t) X × C ______/ X ______/ X NN ss NNN ss p1 NN sss NNN ss  NN ysss X ' C

L¯·(n+1) E0∞(Φ) = = ENA, Λ0∞(Φ) = L·¯ p∗(−K )·n = ΛNA. n + 1 1 X J0∞(Φ) = ΛNA − ENA =: JNA(X , L) 0∞ NA L (Φ) = inf (AX (v) − G(v)(I)) =: L (X , L). v∈X div Q

X div : space of divisorial valuations; G(v) : Gauss extension. Q

Ideas and Techniques K-stability and Ding-stability

Definition-Theorem (Berman, Hisamoto, Boucksom-Hisamoto-Jonsson)

X KE implies that it is Aut(X )0-uniformly Ding-stable: ∃γ > 0 (slope) such that for all Aut(X )0-equivariant test configurations

NA NA D (X , L) ≥ γ · inf J (Xξ, Lξ). (12) ξ∈NR Using as (Li-Xu ’12), one can derive: 1 valuative criterions (Li, Fujita, Boucksom-Jonsson). 2 algebraically checkable for (singular) Fano surfaces, and Fano varieties with large symmetries (e.g. all toric Fano varieties) Example: toric Fano case (12) ⇐⇒ pc = O ⇐⇒ KE.

Ideas and Techniques BBJ’s proof in case X smooth and Aut(X ) discrete

Assume D (and M) not coercive. 1 Step 1: construct a ray Φ in E (−KX ) such that

0 ≥ D0∞(Φ) = −E0∞(Φ) + L0∞(Φ), E0∞(Φ) = −1.

Step 2:Φ := (Bl (X × ), L = π∗ p∗(−K ) − 1 E ). m J (mΦ) C m m 1 X m+m0 m Just need to show that the TC Φm, m  1 is destabilising: Step 3+: Comparison of slopes:

NA 0∞ Φm ≥ Φ(⇒ E (Φm) ≥ E (Φ), FAILS when X is singular!)

Contradiction to uniform stability:

0∞ 0∞ NA −1 = E (Φ) ≥ L (Φ) ← L (Φm) NA 0∞ ≥Stability (1 − γ)E (Φm) ≥ (1 − γ)E (Φ) = γ − 1.

Ideas and Techniques New techniques for singularities I (Li-Tian-Wang ’17)

Take a resolution µ : Y → X :

B ! z }| { ∗ X X −KY = µ (−KX ) −  θi Ei + (1 − A(Ei ) + θi )Ei . (13) i i

If the cone angle 0 < 2πA(Ei ) ≤ 2π, then we can construct KE metrics on Y with edge cone singularities along Ei and take potential=metric=algebraic limit as  → 0 (Li-Tian-Wang ’17).

Ideas and Techniques New techniques for singularities II (Li-Tian-Wang, Li’19)

1 uniform stability of in-effective pair (Y , B) with slope γ → γ > 0 (proved by valuative criterion).

2 perturbed destabilizing geodesic ray Φ.

3 blow-up J (mΦ) to get: φ,m := (Y,m, B,m, L,m) of (Y , B). 4 Comparison of slopes

NA 0∞ E (φ,m) ≥ E (Φ) (true since Y is smooth) 0∞ 0∞ lim E (Φ) = E (Φ) (key convergence) →0 0∞ 0∞ lim L (Φ) = L (Φ) (key convergence) →0 2-parameters chain of contradiction:

0∞ 0∞ 0∞ NA −1 = E (Φ) ≥ L (Φ) ← L (Φ) ← L (φ,m) NA 0∞ 0∞ ≥Stab. (1 − γ)E (φ,m) ≥ (1 − γ)E (Φ) → (1 − γ)E (Φ)

Ideas and Techniques New ingredients for continuous Aut(X )(Li’19)

1 Valuative criterion for G-uniform stability: ∃δ > 1, s.t.

inf sup (AX (vξ) − δSL(vξ)) ≥ 0. (14) v∈X div ξ∈N Q R

div 2 Non-Archimedean metrics ←→ functions on X . Q

φξ(v) = φ(vξ) + θ(ξ), θ(ξ) = AX (vξ) − AX (v). (15)

3 Reduce the infimum (resp. supremum) to “bounded” subsets of X div (resp. N ) (use Strong Openness Conjecture) Q R 4 Delicate interplay between convexity and coerciveness of Archimedean and non-Archimedean energy.

Ideas and Techniques Synthesis: Chain of Contradiction in general Li’19

3-parameters approximation argument: Don’t follow!

E0∞(Φ) ≥ L0∞(Φ) + O(k−1) 0∞ −1 ← L (Φ) + O(, k ) NA −1 −1 ← L (φ,m) + O(, m , k )

= A(vk ) + φ,m(vk )

= A(vk,−ξk ) + φ,m,−ξk (vk,ξk )

≥ δSL (vk,−ξk ) + φ,m,−ξk (vk,ξk ) NA −1 ≥ δE (δ φ,m,−ξ) −1/n NA NA ≥ (1 − δ )J (φ,m,−ξk ) + E (φ,m,−ξk ) −1/n NA −1/n NA = (1 − δ )Λ (φ,m,−ξk ) + δ E (φ,m,−ξk ) −1/n 0∞ −1/n 0∞ ≥ (1 − δ )Λ (Φ,−ξk ) + δ E (Φ,−ξk ) −1/n 0∞ 0∞ = (1 − δ )J (Φ,−ξk ) + E (Φ,−ξk ) ≥ (1 − δ−1/n)χ + E0∞(Φ).

Ideas and Techniques Metric structures from KE potentials

Question: Do (weak) KEs induce “good” metric structures? Partial answer: Yes for orbifolds (Song-Tian). In general they have

orbifold singularities away from codimC 3 subvariety (Li-Tian). Related to [Rong-Zhang, Song, Tian-Zhang, Tian-Wang, ...]

Theorem (Li-Tian-Wang ’17) If X admits a good (e.g. crepant) resolution and is K-(poly)stable, then X admits a KE metric. Moreover, the metric completion of reg (X , ωKE) is homeomorphic to X .

KE Fano varieties from Gromov-Hausdorff (GH) limits:

(Mi , ωi,KE) −→ (X , dX ).

X is a Q-Fano variety with a weak KE (Donaldson-Sun, Tian).

Metric tangent cones and Normalized volume Metric tangent cones (MTC) on GH Fano limits

Question: What does the metric look like near the singularities? 1st order approximation of the metric structure (Cheeger-Colding):

p−GH   dX Cx X := lim X , x, rk →0+ rk

Donaldson-Sun: Cx X is homeomorphic to an affine variety and uniquely determined by the (unknown) metric structure.

Conjecture (Donaldson-Sun)

Cx X depends only on the algebraic structure of the germ x ∈ X .

Metric tangent cones and Normalized volume Normalized volume on any klt singularity

ValX ,x : space of real valuations centered at x ∈ X . Definition (Li’15, the normalized volume)

volc := volc X ,x : ValX ,x −→ R>0 ∪ {+∞} n v 7→ AX (v) · vol(v).

Properties/Remarks: 1 volc (x, X ) := inf volc (v) > 0 coincides with volume density (GMT) on GH limits. (Hein-Sun, Li-Xu) 2 This is an “anti-derivative” of Futaki invariant, motivated by Martelli-Sparks-Yau’s study of Sasaki-Einstein. 3 Related to previous works of de-Fernex-Ein-Mustat¸˘a.

Metric tangent cones and Normalized volume Minimizing normalized volumes

Conjecture (Proposed by Li, Li-Xu)

(i) ∀ klt germ x ∈ X , ∃ a minimizer v∗ unique up to scaling. (ii) v∗ is regular: quasi-monomial, finitely generated associated

graded ring s.t. Spec(grv∗ (OX ,x )) is a K-semistable Fano cone.

Existence: Blum (uses coerciveness estimate from Li’15) Uniqueness: Divisorival minimizers are plt blow-ups and unique (Li-Xu ’16) f.g. quasi-monomial minimizers are unique (Li-Xu ’17). Regularity of minimizer: True for valuations from GH limits (by Donaldson-Sun) Quasi-monomial (Xu ’19 by using Birkar’s boundedness)

Metric tangent cones and Normalized volume Examples

n nn volc (0, C /G) = |G| . Toric case: minimizing the volume of convex bodies. Example: X = AffCone(S = Bl 2, −K ) √ √ pP S v = ( 4− 13 , 4− 13 , 1) 3 3 √ 46+13 13 volc (x, X ) = 12 2 2 2 k 4 3-dim Ak−1: X = {z1 + z2 + z3 + z4 = 0} ⊂ C .

k 0 ≤ k ≤ 3 k = 4 (Li-Sun’12) k ≥ 5 minimizer (k, k, k, 2) (2, 2, 2, 1) (2, 2, 2, 1)

2 degeneration X (stable) X (semistable) C /Z2 × C (stable) 2 2 MTC X C /Z2 × C C /Z2 × C

Metric tangent cones and Normalized volume Application of normalized volumes

Theorem (Donaldson-Sun’s conjecture, Li-Xu ’17, Li-Wang-Xu ’18)

For any x on GH limit, ∃ a unique valuation v∗ ∈ ValX ,x satisfying: 1 v∗ minimizes volc and v∗ is “regular”.

2 grv∗ OX ,x uniquely degenerates to a K-polystable Fano cone which coincides with the MTC Cx X . This allows to determine metric tangent cones a priori without knowing metric structures. Other connections/applications: 1 Torus-equivariant criterions for the K-semistability and K-polystability (Li, Li-Liu, Li-Wang-Xu) 2 Bound the singularities of K-semistable Fano varieties (Liu) and application to moduli problem (Liu-Xu, Spotti-Sun) 3 2-dimensional logarithmic normalized volume is equal to Langer’s local orbifold Euler number (Borbon-Spotti, Li’18)

Metric tangent cones and Normalized volume Thanks for your attention!

Metric tangent cones and Normalized volume