Chapter V. Fano Varieties

Total Page:16

File Type:pdf, Size:1020Kb

Chapter V. Fano Varieties Chapter V. Fano Varieties A variety X is called Fano if the anticanonical bundle of X is ample. Thus Fano surfaces are the same as Del pezzo surfaces. The importance of Fano varieties in the theory of higher dimensional varieties is similar to the sig­ nificance of Del Pezzo surfaces in the two dimensional theory. The interest in Fano varieties increased recently since Mori's program predicts that every uniruled variety is birational to a fiberspace whose general fiber is a Fano variety (with terminal singularities). From this point of view it is more important to study the general prop­ erties of Fano varieties with terminal singularities than to understand the properties of smooth Fano varieties. At the moment, however, we know much more about smooth Fano varieties, and their theory should serve as a guide to the more subtle questions of singular Fano varieties. Fano varieties also appear naturally as important examples of varieties. In characteristic zero every projective variety which is homogeneous under a linear algebraic group is Fano (1.4), and their study is indispensable for the theory of algebraic groups. Also, Fano varieties have a very rich internal geometry, which makes their study very rewarding. This is one of the reasons for the success of the theory of Fano threefolds. This is a beautiful subject, about which I say essentially nothing. Section 1 is devoted to presenting the basic examples of Fano varieties and to the study of low degree rational curves on them. The largest class of examples are weighted complete intersections (1.2-3); these are probably the most accessible by elementary methods. Homogeneous spaces also provide many examples but their detailed study requires the machinery of algebraic groups (1.4). The most studied examples are the moduli spaces of stable vector bundles with fixed determinant on curves. Their theory deserves a monograph in itself; we mention them for sake of completeness only. The cone of curves of a Fano variety X is generated by rational curves Ci C X such that -Kx ,Ci S dim X +1 (1.6). This and many other examples lead to the following Principle. The geometry of a Fano variety is governed by rational curves of low degree. J. Kollár, Rational Curves on Algebraic Varieties © Springer-Verlag Berlin Heidelberg 1996 V.1 Low Degree Rational Curves on Fano Varieties 239 The rest of Sect. 1 is devoted to various assertions that support this prin­ ciple. The aim of Sect. 2 is to prove two general results about Fano varieties. Any smooth Fano variety is rationally chain connected (2.1, 2.13). For any dimension, there are only finitely many deformation types of Fano varieties, at least in characteristic zero (2.3, 2.14). This result implies that, in principle, it is possible to obtain a complete list of Fano varieties of any given dimension. In dimension three this has been accomplished, but the complexity of the arguments and the length of the list suggests that already in dimension 4 this is not a feasible project. Section 3 discusses Mori's characterization of Ipm as the only algebraic variety whose tangent bundle is ample (3.2). [Mori79] is the article where the bend-and-break technique was first introduced. Mori's arguments are very elegant and many of his ideas found later applications. I give a somewhat shortened version of the proof. This result can also be considered as another example of the validity of the above principle. The canonical line bundle of pn is O( -n - I}, thus lines in pn have anticanonical degree n + 1 and there are no curves with smaller anticanonical degree. Ampleness of the tangent bundle of a variety X easily implies that there are no rational curves of anticanonical degree less than dim X + 1 (3.6.1). Section 4 is more like an overgrown exercise about lines of low degree hypersurfaces. The main technical result says that the family of all lines is connected when dimension count suggests that it might be so. This can be used to prove that the group of I-cycles modulo algebraic equivalence is one dimensional (4.1). In some cases it also implies that the group of 1- cycles modulo rational equivalence is one dimensional (4.2). Even in this very concrete situation there are many interesting open problems. There are many similarities between rational and rationally connected varieties. In fact, it is not easy to show that not every rationally connected variety is rational. This question is studied in Sect. 5. The method first pro­ duces rationally connected varieties in positive characteristic which are not separably uniruled. These can then be lifted to characteristic zero to produce examples of Fano hypersufaces which are not ruled. These techniques produce other interesting examples in positive characteristic as well. V.I Low Degree Rational Curves on Fano Varieties The aim of this section is to present the basic examples of Fano varieties and to prove some simple results about low degree rational curves on them. In this section everything is defined over an algebraically closed field k. 240 Chapter V. Fano Varieties 1.1 Definition. Let X be a smooth projective variety. X is called Fano if -Kx is ample. Let X be a normal projective variety. X is called Q-Fano (or just Fano) if - K X is Q-Cartier and ample. 1.2 Example. Let X c ]pn be a smooth complete intersection of k hyper­ surfaces of degrees d}, ... , dk. Then -Kx = O{n+ 1-L: di ). Thus X is Fano iff L: di < n + 1. More generally, complete intersections in weighted projective spaces also provide lots of examples of Fano varieties. See [Dolgachev82) for a general introduction or [Fletcher89) for a series of examples of Q-Fano threefolds. The basic properties of weighted projective spaces are recalled in the next series of exercises. 1.3 Exercises. Let k be a field and S = k[xo, ... , xn ) the polynomial ring in n + 1 variables. Let ai E N. Define a grading of S by deg Xi = ai. Proj Sis called the weighted projective space of dimension n with weights ai. It is de­ noted by P(ao, ... , an}. We may and do assume that ao, ... , an are relatively prime. The following shortened version of this notation is frequently convenient: P( a~o , ... , a;{' ) denotes ro-times rn.-tinles Because of this convention, one should never use pel, 2, 32) to denote pel, 2, 9)! (1.3.l) Show that P(aO,al, ... ,an) 9:! P(aO,dal, ... ,dan) for every dE N. Thus in working with weighted projective spaces of dimension n we may always assume that any n weights are relatively prime. We say that P(ao, ... ,an) is well formed if this condition is satisfied. For the rest of the section we assume that all weighted projective spaces are well formed. (1.3.2) Show that P(ao, a}, ... ,an) ~ pn / /Lao X ••• X /La" where /Laj denotes the group of a~h roots of unity and it acts on pn via multiplication on the lh coordinate. (If you feel uneasy about group schemes, assume that the characteristic does not divide any of the ai.) (1.3.3) Describe a covering of P{ao, ... ,an) with affine charts. Show that P(ao, ... ,an) has only cyclic quotient sigularities. (1.3.4) Let Oem) denote the coherent sheaf associated to the graded module SCm). Show that Oem) is locally free iff ailm for every i. Show that (1.3.5) Show that the dualizing sheaf Kp of P{ao, ... ,an) is isomorphic to O{ - L: ai). V.l Low Degree Rational Curves on Fano Varieties 241 (1.3.6) Show that lP'(ao, ... ,an) has isolated singularities iff the weights are pairwise relatively prime. (1.3.7) Assume that IP'( ao, ... , an) has isolated singularities and ai Im for every i. Show that the smooth members of IO(m)1 form a dense open set. If H E IO(m)1 is smooth, then KH = Oem - ~ ai)IH. (1.3.8) Let do, . .. ,dr be pairwise relatively prime natural numbers. Let H be a smooth member of O(do'" dr ) on lP'(do, ... , dr ). OH(l) is a locally free sheaf, which is ample and has selfintersection 1. (1.3.9) Let X = Xd1, ... ,dk C lP'(ao, ... ,an) be a smooth (or normal) com­ plete intersection of k hypersurfaces of degrees db'" ,dk' Then -Kx = O(~aj - ~di)' Thus X is Fano iff ~di < ~aj. (1.3.10) Let I: 1P'1 --t lP'(ao, ... , an) be a morphism such that lP'(ao, ... , an) is smooth along im I. Show that I is given by a a collection of sections Ii E HO(lP'l,O(dai)), i = O, ... ,n where d = degf*O(l). d is called the degree of I. (1.3.11) Find further examples of Fano manifolds which are complete intersections in products of weighted projective spaces. Another large class of examples of Fano varieties is provided by homoge­ neous spaces: 1.4 Theorem. Let C be a reduced and connected linear algebraic group and X a proper homogeneous space under C. Pick a point x E X and let H < C be the stabilizer 01 x. Assume that H is reduced (which is always the case in characteristic zero). Then Tx is generated by global sections and K)/ is very ample. Proof As we see in (1.4.2.4), all such homogeneous spaces can be classified in terms of Dynkin diagrams and the theorem can be read off from various assertions about algebraic groups.
Recommended publications
  • Kähler-Einstein Metrics and Algebraic Geometry
    Current Developments in Mathematics, 2015 K¨ahler-Einstein metrics and algebraic geometry Simon Donaldson Abstract. This paper is a survey of some recent developments in the area described by the title, and follows the lines of the author’s lecture in the 2015 Harvard Current Developments in Mathematics meeting. The main focus of the paper is on the Yau conjecture relating the ex- istence of K¨ahler-Einstein metrics on Fano manifolds to K-stability. We discuss four different proofs of this, by different authors, which have ap- peared over the past few years. These involve an interesting variety of approaches and draw on techniques from different fields. Contents 1. Introduction 1 2. K-stability 3 3. Riemannian convergence theory and projective embeddings 6 4. Four proofs 11 References 23 1. Introduction General existence questions involving the Ricci curvature of compact K¨ahler manifolds go back at least to work of Calabi in the 1950’s [11], [12]. We begin by recalling some very basic notions in K¨ahler geometry. • All the K¨ahler metrics in a given cohomology class can be described in terms of some fixed reference metric ω0 and a potential function, that is (1) ω = ω0 + i∂∂φ. • A hermitian holomorphic line bundle over a complex manifold has a unique Chern connection compatible with both structures. A Her- −1 n mitian metric on the anticanonical line bundle KX =Λ TX is the same as a volume form on the manifold. When this volume form is derived from a K¨ahler metric the curvature of the Chern connection c 2016 International Press 1 2 S.
    [Show full text]
  • Fundamental Groups of Schemes
    Fundamental Groups of Schemes Master thesis under the supervision of Jilong Tong Lei Yang Universite Bordeaux 1 E-mail address: [email protected] Chapter 1. Introduction 3 Chapter 2. Galois categories 5 1. Galois categories 5 §1. Definition and elementary properties. 5 §2. Examples and the main theorem 7 §2.1. The topological covers 7 §2.2. The category C(Π) and the main theorem 7 2. Galois objects. 8 3. Proof of the main theorem 12 4. Functoriality of Galois categories 15 Chapter 3. Etale covers 19 1. Some results in scheme theory. 19 2. The category of étale covers of a connected scheme 20 3. Reformulation of functoriality 22 Chapter 4. Properties and examples of the étale fundamental group 25 1. Spectrum of a field 25 2. The first homotopy sequence. 25 3. More examples 30 §1. Normal base scheme 30 §2. Abelian varieties 33 §2.1. Group schemes 33 §2.2. Abelian Varieties 35 §3. Geometrically connected schemes of finite type 39 4. G.A.G.A. theorems 39 Chapter 5. Structure of geometric fundamental groups of smooth curves 41 1. Introduction 41 2. Case of characteristic zero 42 §1. The case k = C 43 §2. General case 43 3. Case of positive characteristic 44 (p0) §1. π1(X) 44 §1.1. Lifting of curves to characteristic 0 44 §1.2. the specialization theory of Grothendieck 45 §1.3. Conclusion 45 ab §2. π1 46 §3. Some words about open curves. 47 Bibliography 49 Contents CHAPTER 1 Introduction The topological fundamental group can be studied using the theory of covering spaces, since a fundamental group coincides with the group of deck transformations of the asso- ciated universal covering space.
    [Show full text]
  • 4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
    4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module.
    [Show full text]
  • Arxiv:1705.02740V4 [Math.AG] 18 Dec 2018 Iease Oaqeto Se Yyce I Uigteamwo AIM the During 2017
    BOUNDEDNESS OF Q-FANO VARIETIES WITH DEGREES AND ALPHA-INVARIANTS BOUNDED FROM BELOW CHEN JIANG Abstract. We show that Q-Fano varieties of fixed dimension with anti-canonical degrees and alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable Q-Fano varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family. 1. Introduction Throughout the article, we work over an algebraically closed field of char- acteristic zero. A Q-Fano variety is defined to be a normal projective variety X with at most klt singularities such that the anti-canonical divisor KX is an ample Q-Cartier divisor. − When the base field is the complex number field, an interesting prob- lem for Q-Fano varieties is the existence of K¨ahler–Einstein metrics which is related to K-(semi)stability of Q-Fano varieties. It has been known that a Fano manifold X (i.e., a smooth Q-Fano variety over C) admits K¨ahler–Einstein metrics if and only if X is K-polystable by the works [DT92, Tia97, Don02, Don05, CT08, Sto09, Mab08, Mab09, Ber16] and [CDS15a, CDS15b, CDS15c, Tia15]. K-stability is stronger than K-polystability, and K-polystability is stronger than K-semistability. Hence K-semistable Q- Fano varieties are interesting for both differential geometers and algebraic geometers. It also turned out that K¨ahler–Einstein metrics and K-stability play cru- cial roles for construction of nice moduli spaces of certain Q-Fano varieties. For example, compact moduli spaces of smoothable K¨ahler–Einstein Q-Fano varieties have been constructed (see [OSS16] for dimension two case and [LWX14, SSY16, Oda15] for higher dimensional case).
    [Show full text]
  • Nakai–Moishezon Ampleness Criterion for Real Line Bundles
    NAKAI{MOISHEZON AMPLENESS CRITERION FOR REAL LINE BUNDLES OSAMU FUJINO AND KEISUKE MIYAMOTO Abstract. We show that the Nakai{Moishezon ampleness criterion holds for real line bundles on complete schemes. As applications, we treat the relative Nakai{Moishezon ampleness criterion for real line bundles and the Nakai{Moishezon ampleness criterion for real line bundles on complete algebraic spaces. The main ingredient of this paper is Birkar's characterization of augmented base loci of real divisors on projective schemes. Contents 1. Introduction 1 2. Preliminaries 2 3. Augmented base loci of R-divisors 3 4. Proof of Theorem 1.4 4 5. Proof of Theorem 1.3 5 6. Proof of Theorem 1.5 7 7. Proof of Theorem 1.6 8 References 9 1. Introduction Throughout this paper, a scheme means a separated scheme of finite type over an alge- braically closed field k of any characteristic. We call such a scheme a variety if it is reduced and irreducible. Let us start with the definition of R-line bundles. Definition 1.1 (R-line bundles). Let X be a scheme (or an algebraic space). An R-line bundle (resp. a Q-line bundle) is an element of Pic(X) ⊗Z R (resp. Pic(X) ⊗Z Q) where Pic(X) is the Picard group of X. Similarly, we can define R-Cartier divisors. Definition 1.2 (R-Cartier divisors). Let X be a scheme. An R-Cartier divisor (resp. a Q-Cartier divisor) is an element of Div(X)⊗Z R (resp. Div(X)⊗Z Q) where Div(X) denotes the group of Cartier divisors on X.
    [Show full text]
  • Vanishing Theorems and Syzygies for K3 Surfaces and Fano Varieties
    VANISHING THEOREMS AND SYZYGIES FOR K3 SURFACES AND FANO VARIETIES F. J. Gallego and B. P. Purnaprajna May 26, 1996 Abstract. In this article we prove some strong vanishing theorems on K3 surfaces. As an application of them, we obtain higher syzygy results for K3 surfaces and Fano varieties. 1. Introduction In this article we prove some vanishing theorems on K3 surfaces. An application of the vanishing theorems is a result on higher syzygies for K3 surfaces and Fano varieties. One part of our results fits a meta-principle stating that if L is a line bundle that is a product of (p+1) ample and base point free line bundles satisfying certain conditions, then L satisfies the condition Np ( a condition on the free resolution of the homogeneous coordinate ring of X embedded by L). Other illustrations of this meta-principle have been given in [GP1], [GP2] and [GP3]. The condition Np may be interpreted, through Koszul cohomology, as a vanishing condition on a certain vector bundle. arXiv:alg-geom/9608008v1 7 Aug 1996 The other part of our results provides strong vanishing theorems that imply, in particular, the vanishing needed for Np. We also prove stronger variants of the principle stated above for K3 surfaces and Fano varieties. Before stating our results in detail, we recall some key results in this area, namely the normal generation and normal presentation on K3 surfaces due to Mayer and St.Donat. Mayer and St. Donat proved that if L is a globally generated line bundle on a K3 surface X such that the general member in the linear system is a non hyperelliptic curve of genus g ≥ 3, then L is normally generated (in other words, the homogeneous coordinate ring of X in projective space P(H0(L)) is projectively normal).
    [Show full text]
  • Lines, Conics, and All That Ciro Ciliberto, M Zaidenberg
    Lines, conics, and all that Ciro Ciliberto, M Zaidenberg To cite this version: Ciro Ciliberto, M Zaidenberg. Lines, conics, and all that. 2020. hal-02318018v3 HAL Id: hal-02318018 https://hal.archives-ouvertes.fr/hal-02318018v3 Preprint submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LINES, CONICS, AND ALL THAT C. CILIBERTO, M. ZAIDENBERG To Bernard Shiffman on occasion of his seventy fifths birthday Abstract. This is a survey on the Fano schemes of linear spaces, conics, rational curves, and curves of higher genera in smooth projective hypersurfaces, complete intersections, Fano threefolds, on the related Abel-Jacobi mappings, etc. Contents Introduction 1 1. Counting lines on surfaces 2 2. The numerology of Fano schemes 3 3. Geometry of the Fano scheme 6 4. Counting conics in complete intersection 8 5. Lines and conics on Fano threefolds and the Abel-Jacobi mapping 11 5.1. The Fano-Iskovskikh classification 11 5.2. Lines and conics on Fano threefolds 12 5.3. The Abel-Jacobi mapping 14 5.4. The cylinder homomorphism 16 6. Counting rational curves 17 6.1. Varieties of rational curves in hypersurfaces 17 6.2.
    [Show full text]
  • All Complete Intersection Varieties Are Fano Visitors 3
    ALL COMPLETE INTERSECTION VARIETIES ARE FANO VISITORS YOUNG-HOON KIEM, IN-KYUN KIM, HWAYOUNG LEE, AND KYOUNG-SEOG LEE Abstract. We prove that the derived category of a smooth complete inter- section variety is equivalent to a full subcategory of the derived category of a smooth projective Fano variety. This enables us to define some new invariants of smooth projective varieties and raise many interesting questions. 1. Introduction In recent years, derived categories of projective varieties attracted tremendous interest among algebraic geometers as well as physicists. Fano varieties in particular have been most intensively studied because their derived categories (1) determine the varieties completely due to the reconstruction theorem of Bondal and Orlov and (2) have canonical semiorthogonal decompositions by canonical exceptional collections of line bundles by the Kodaira vanishing theorem. Moreover, the de- rived categories of many Fano varieties of low dimension have been calculated quite explicitly. Often the derived categories of Fano varieties are big enough to contain interest- ing subcategories. For example, the derived categories of hyperelliptic curves are full subcategories of the derived categories of intersections of two quadrics (cf. [6]) and the derived categories of some special cubic 4-folds contain the derived cate- gories of K3 surfaces (cf. [17]). These results provide derived category theoretic explanations for the corresponding geometric results of [10, 27] and [3]. Analysis of derived categories may tell us where to dig (or where not to dig) when we are searching for a specific type of varieties. In 2011, Bondal raised the following question (cf. [5]). Question 1.1. (Fano visitor problem) arXiv:1503.00125v2 [math.AG] 29 Apr 2015 Let Y be a smooth projective variety.
    [Show full text]
  • Notes on Automorphism Groups of Projective Varieties
    NOTES ON AUTOMORPHISM GROUPS OF PROJECTIVE VARIETIES MICHEL BRION Abstract. These are extended and slightly updated notes for my lectures at the School and Workshop on Varieties and Group Actions (Warsaw, September 23{29, 2018). They present old and new results on automorphism groups of normal projective varieties over an algebraically closed field. Contents 1. Introduction 1 2. Some basic constructions and results 4 2.1. The automorphism group 4 2.2. The Picard variety 7 2.3. The lifting group 10 2.4. Automorphisms of fibrations 14 2.5. Big line bundles 16 3. Proof of Theorem 1 18 4. Proof of Theorem 2 20 5. Proof of Theorem 3 23 References 28 1. Introduction Let X be a projective variety over an algebraically closed field k. It is known that the automorphism group, Aut(X), has a natural structure of smooth k-group scheme, locally of finite type (see [Gro61, Ram64, MO67]). This yields an exact sequence 0 (1.0.1) 1 −! Aut (X) −! Aut(X) −! π0 Aut(X) −! 1; where Aut0(X) is (the group of k-rational points of) a smooth connected algebraic group, and π0 Aut(X) is a discrete group. To analyze the structure of Aut(X), one may start by considering the connected automorphism 0 group Aut (X) and the group of components π0 Aut(X) separately. It turns out that there is no restriction on the former: every smooth connected algebraic group is the connected automorphism group of some normal projective variety X (see [Bri14, Thm. 1]). In characteristic 0, we may further take X to be smooth by using equivariant resolution of singularities (see e.g.
    [Show full text]
  • Some Structure Theorems for Algebraic Groups
    Proceedings of Symposia in Pure Mathematics Some structure theorems for algebraic groups Michel Brion Abstract. These are extended notes of a course given at Tulane University for the 2015 Clifford Lectures. Their aim is to present structure results for group schemes of finite type over a field, with applications to Picard varieties and automorphism groups. Contents 1. Introduction 2 2. Basic notions and results 4 2.1. Group schemes 4 2.2. Actions of group schemes 7 2.3. Linear representations 10 2.4. The neutral component 13 2.5. Reduced subschemes 15 2.6. Torsors 16 2.7. Homogeneous spaces and quotients 19 2.8. Exact sequences, isomorphism theorems 21 2.9. The relative Frobenius morphism 24 3. Proof of Theorem 1 27 3.1. Affine algebraic groups 27 3.2. The affinization theorem 29 3.3. Anti-affine algebraic groups 31 4. Proof of Theorem 2 33 4.1. The Albanese morphism 33 4.2. Abelian torsors 36 4.3. Completion of the proof of Theorem 2 38 5. Some further developments 41 5.1. The Rosenlicht decomposition 41 5.2. Equivariant compactification of homogeneous spaces 43 5.3. Commutative algebraic groups 45 5.4. Semi-abelian varieties 48 5.5. Structure of anti-affine groups 52 1991 Mathematics Subject Classification. Primary 14L15, 14L30, 14M17; Secondary 14K05, 14K30, 14M27, 20G15. c 0000 (copyright holder) 1 2 MICHEL BRION 5.6. Commutative algebraic groups (continued) 54 6. The Picard scheme 58 6.1. Definitions and basic properties 58 6.2. Structure of Picard varieties 59 7. The automorphism group scheme 62 7.1.
    [Show full text]
  • Fano Varieties; Iskovskih's Classification
    Fano varieties; Iskovskih’s classification Ekaterina Amerik For details and extensive bibliography, we refer to [2], chapter V, and [1]. A Fano variety is a projective manifold X such that the anticanonical line bundle −1 p,0 0,p KX is ample. By Kodaira vanishing, the Hodge numbers h (X) = h (X) are zero for p 6= 0. Furthermore, Fano manifolds are simply connected (this is implied for example by their property to be rationally connected; see the main article on rational curves and uniruled varieties). Simplest examples are obtained by taking smooth complete intersections of type n (m1, m2, . , mk) in P . By adjunction formula, such a complete intersection is Fano P if and only if i mi ≤ n. A larger class of examples is that of complete intersections n+1 ∗ ∗ in a weighted projective space P(a0, a1, . , an) (this is (C − 0)/C , where C acts with weights a0, a1, . , an; it is singular when not isomorphic to a usual projective space, but we consider complete intersections avoiding the singularities) : the Fano P P condition amounts then to i mi < i ai. Rational homogeneous varieties G/H (G semisimple, H parabolic) are Fano, too. A Fano curve is, obviously, P1. If n = dim(X) = 2 and X is Fano, then X is called a Del Pezzo surface. Such surfaces have been classically studied, and it is well-known that any such X is isomorphic either to P2, or to P1 ×P1, or to P2 blown up in d points (1 ≤ d ≤ 8) in general position, ”general position” meaning here that no three points are on a line and no six on a conic.
    [Show full text]
  • Arxiv:1709.09238V3 [Math.AG] 5 Mar 2021 Xmlso Ahlgclvreisvoaigte N Osuytheir [Dcf15])
    KAWAMATA-VIEHWEG VANISHING FAILS FOR LOG DEL PEZZO SURFACES IN CHARACTERISTIC 3 FABIO BERNASCONI Abstract. We construct a klt del Pezzo surface in characteristic three violating the Kawamata-Viehweg vanishing theorem. As a consequence we show that there exists a Kawamata log terminal threefold singularity which is not Cohen-Macaulay in characteristic three. Contents 1. Introduction 1 2. Preliminaries 3 2.1. Notation 3 2.2. Frobenius splitting 5 2.3. A cone construction for Weil Q-Cartier divisors 6 3. A Keel-McKernan surface in characteristic three 9 3.1. Construction 9 3.2. Failure of the Kawamata-Viehweg vanishing theorem 12 4. A klt threefold singularity not CM in characteristic three 13 5. Kodaira-type vanishing for klt del Pezzo surfaces 15 References 19 arXiv:1709.09238v3 [math.AG] 5 Mar 2021 1. Introduction In characteristic zero one of the main technical tool used to estab- lish the Minimal Model Program (MMP for short) is the Kawamata- Viehweg vanishing theorem. Unfortunately, vanishing theorems are known to fail in general for varieties defined over fields of positive characteristic and a great amount of work has been done to construct examples of pathological varieties violating them and to study their geography (see for example [Ray78], [Eke88], [Muk13] and [dCF15]). 2020 Mathematics Subject Classification. 14E30, 14G17, 14J17, 14J45. Key words and phrases. Log del Pezzo surfaces, vanishing theorems, Kawamata log terminal singularities, positive characteristic. 1 2 FABIOBERNASCONI In this context, varieties of Fano type over perfect fields of charac- teristic p > 0 violating Kodaira-type vanishing theorems seem rather rare and in fact are conjectured to exist only for small primes in each dimension.
    [Show full text]