Chapter V. Fano Varieties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kähler-Einstein Metrics and Algebraic Geometry
Current Developments in Mathematics, 2015 K¨ahler-Einstein metrics and algebraic geometry Simon Donaldson Abstract. This paper is a survey of some recent developments in the area described by the title, and follows the lines of the author’s lecture in the 2015 Harvard Current Developments in Mathematics meeting. The main focus of the paper is on the Yau conjecture relating the ex- istence of K¨ahler-Einstein metrics on Fano manifolds to K-stability. We discuss four different proofs of this, by different authors, which have ap- peared over the past few years. These involve an interesting variety of approaches and draw on techniques from different fields. Contents 1. Introduction 1 2. K-stability 3 3. Riemannian convergence theory and projective embeddings 6 4. Four proofs 11 References 23 1. Introduction General existence questions involving the Ricci curvature of compact K¨ahler manifolds go back at least to work of Calabi in the 1950’s [11], [12]. We begin by recalling some very basic notions in K¨ahler geometry. • All the K¨ahler metrics in a given cohomology class can be described in terms of some fixed reference metric ω0 and a potential function, that is (1) ω = ω0 + i∂∂φ. • A hermitian holomorphic line bundle over a complex manifold has a unique Chern connection compatible with both structures. A Her- −1 n mitian metric on the anticanonical line bundle KX =Λ TX is the same as a volume form on the manifold. When this volume form is derived from a K¨ahler metric the curvature of the Chern connection c 2016 International Press 1 2 S. -
Fundamental Groups of Schemes
Fundamental Groups of Schemes Master thesis under the supervision of Jilong Tong Lei Yang Universite Bordeaux 1 E-mail address: [email protected] Chapter 1. Introduction 3 Chapter 2. Galois categories 5 1. Galois categories 5 §1. Definition and elementary properties. 5 §2. Examples and the main theorem 7 §2.1. The topological covers 7 §2.2. The category C(Π) and the main theorem 7 2. Galois objects. 8 3. Proof of the main theorem 12 4. Functoriality of Galois categories 15 Chapter 3. Etale covers 19 1. Some results in scheme theory. 19 2. The category of étale covers of a connected scheme 20 3. Reformulation of functoriality 22 Chapter 4. Properties and examples of the étale fundamental group 25 1. Spectrum of a field 25 2. The first homotopy sequence. 25 3. More examples 30 §1. Normal base scheme 30 §2. Abelian varieties 33 §2.1. Group schemes 33 §2.2. Abelian Varieties 35 §3. Geometrically connected schemes of finite type 39 4. G.A.G.A. theorems 39 Chapter 5. Structure of geometric fundamental groups of smooth curves 41 1. Introduction 41 2. Case of characteristic zero 42 §1. The case k = C 43 §2. General case 43 3. Case of positive characteristic 44 (p0) §1. π1(X) 44 §1.1. Lifting of curves to characteristic 0 44 §1.2. the specialization theory of Grothendieck 45 §1.3. Conclusion 45 ab §2. π1 46 §3. Some words about open curves. 47 Bibliography 49 Contents CHAPTER 1 Introduction The topological fundamental group can be studied using the theory of covering spaces, since a fundamental group coincides with the group of deck transformations of the asso- ciated universal covering space. -
4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module. -
Arxiv:1705.02740V4 [Math.AG] 18 Dec 2018 Iease Oaqeto Se Yyce I Uigteamwo AIM the During 2017
BOUNDEDNESS OF Q-FANO VARIETIES WITH DEGREES AND ALPHA-INVARIANTS BOUNDED FROM BELOW CHEN JIANG Abstract. We show that Q-Fano varieties of fixed dimension with anti-canonical degrees and alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable Q-Fano varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family. 1. Introduction Throughout the article, we work over an algebraically closed field of char- acteristic zero. A Q-Fano variety is defined to be a normal projective variety X with at most klt singularities such that the anti-canonical divisor KX is an ample Q-Cartier divisor. − When the base field is the complex number field, an interesting prob- lem for Q-Fano varieties is the existence of K¨ahler–Einstein metrics which is related to K-(semi)stability of Q-Fano varieties. It has been known that a Fano manifold X (i.e., a smooth Q-Fano variety over C) admits K¨ahler–Einstein metrics if and only if X is K-polystable by the works [DT92, Tia97, Don02, Don05, CT08, Sto09, Mab08, Mab09, Ber16] and [CDS15a, CDS15b, CDS15c, Tia15]. K-stability is stronger than K-polystability, and K-polystability is stronger than K-semistability. Hence K-semistable Q- Fano varieties are interesting for both differential geometers and algebraic geometers. It also turned out that K¨ahler–Einstein metrics and K-stability play cru- cial roles for construction of nice moduli spaces of certain Q-Fano varieties. For example, compact moduli spaces of smoothable K¨ahler–Einstein Q-Fano varieties have been constructed (see [OSS16] for dimension two case and [LWX14, SSY16, Oda15] for higher dimensional case). -
Nakai–Moishezon Ampleness Criterion for Real Line Bundles
NAKAI{MOISHEZON AMPLENESS CRITERION FOR REAL LINE BUNDLES OSAMU FUJINO AND KEISUKE MIYAMOTO Abstract. We show that the Nakai{Moishezon ampleness criterion holds for real line bundles on complete schemes. As applications, we treat the relative Nakai{Moishezon ampleness criterion for real line bundles and the Nakai{Moishezon ampleness criterion for real line bundles on complete algebraic spaces. The main ingredient of this paper is Birkar's characterization of augmented base loci of real divisors on projective schemes. Contents 1. Introduction 1 2. Preliminaries 2 3. Augmented base loci of R-divisors 3 4. Proof of Theorem 1.4 4 5. Proof of Theorem 1.3 5 6. Proof of Theorem 1.5 7 7. Proof of Theorem 1.6 8 References 9 1. Introduction Throughout this paper, a scheme means a separated scheme of finite type over an alge- braically closed field k of any characteristic. We call such a scheme a variety if it is reduced and irreducible. Let us start with the definition of R-line bundles. Definition 1.1 (R-line bundles). Let X be a scheme (or an algebraic space). An R-line bundle (resp. a Q-line bundle) is an element of Pic(X) ⊗Z R (resp. Pic(X) ⊗Z Q) where Pic(X) is the Picard group of X. Similarly, we can define R-Cartier divisors. Definition 1.2 (R-Cartier divisors). Let X be a scheme. An R-Cartier divisor (resp. a Q-Cartier divisor) is an element of Div(X)⊗Z R (resp. Div(X)⊗Z Q) where Div(X) denotes the group of Cartier divisors on X. -
Vanishing Theorems and Syzygies for K3 Surfaces and Fano Varieties
VANISHING THEOREMS AND SYZYGIES FOR K3 SURFACES AND FANO VARIETIES F. J. Gallego and B. P. Purnaprajna May 26, 1996 Abstract. In this article we prove some strong vanishing theorems on K3 surfaces. As an application of them, we obtain higher syzygy results for K3 surfaces and Fano varieties. 1. Introduction In this article we prove some vanishing theorems on K3 surfaces. An application of the vanishing theorems is a result on higher syzygies for K3 surfaces and Fano varieties. One part of our results fits a meta-principle stating that if L is a line bundle that is a product of (p+1) ample and base point free line bundles satisfying certain conditions, then L satisfies the condition Np ( a condition on the free resolution of the homogeneous coordinate ring of X embedded by L). Other illustrations of this meta-principle have been given in [GP1], [GP2] and [GP3]. The condition Np may be interpreted, through Koszul cohomology, as a vanishing condition on a certain vector bundle. arXiv:alg-geom/9608008v1 7 Aug 1996 The other part of our results provides strong vanishing theorems that imply, in particular, the vanishing needed for Np. We also prove stronger variants of the principle stated above for K3 surfaces and Fano varieties. Before stating our results in detail, we recall some key results in this area, namely the normal generation and normal presentation on K3 surfaces due to Mayer and St.Donat. Mayer and St. Donat proved that if L is a globally generated line bundle on a K3 surface X such that the general member in the linear system is a non hyperelliptic curve of genus g ≥ 3, then L is normally generated (in other words, the homogeneous coordinate ring of X in projective space P(H0(L)) is projectively normal). -
Lines, Conics, and All That Ciro Ciliberto, M Zaidenberg
Lines, conics, and all that Ciro Ciliberto, M Zaidenberg To cite this version: Ciro Ciliberto, M Zaidenberg. Lines, conics, and all that. 2020. hal-02318018v3 HAL Id: hal-02318018 https://hal.archives-ouvertes.fr/hal-02318018v3 Preprint submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LINES, CONICS, AND ALL THAT C. CILIBERTO, M. ZAIDENBERG To Bernard Shiffman on occasion of his seventy fifths birthday Abstract. This is a survey on the Fano schemes of linear spaces, conics, rational curves, and curves of higher genera in smooth projective hypersurfaces, complete intersections, Fano threefolds, on the related Abel-Jacobi mappings, etc. Contents Introduction 1 1. Counting lines on surfaces 2 2. The numerology of Fano schemes 3 3. Geometry of the Fano scheme 6 4. Counting conics in complete intersection 8 5. Lines and conics on Fano threefolds and the Abel-Jacobi mapping 11 5.1. The Fano-Iskovskikh classification 11 5.2. Lines and conics on Fano threefolds 12 5.3. The Abel-Jacobi mapping 14 5.4. The cylinder homomorphism 16 6. Counting rational curves 17 6.1. Varieties of rational curves in hypersurfaces 17 6.2. -
All Complete Intersection Varieties Are Fano Visitors 3
ALL COMPLETE INTERSECTION VARIETIES ARE FANO VISITORS YOUNG-HOON KIEM, IN-KYUN KIM, HWAYOUNG LEE, AND KYOUNG-SEOG LEE Abstract. We prove that the derived category of a smooth complete inter- section variety is equivalent to a full subcategory of the derived category of a smooth projective Fano variety. This enables us to define some new invariants of smooth projective varieties and raise many interesting questions. 1. Introduction In recent years, derived categories of projective varieties attracted tremendous interest among algebraic geometers as well as physicists. Fano varieties in particular have been most intensively studied because their derived categories (1) determine the varieties completely due to the reconstruction theorem of Bondal and Orlov and (2) have canonical semiorthogonal decompositions by canonical exceptional collections of line bundles by the Kodaira vanishing theorem. Moreover, the de- rived categories of many Fano varieties of low dimension have been calculated quite explicitly. Often the derived categories of Fano varieties are big enough to contain interest- ing subcategories. For example, the derived categories of hyperelliptic curves are full subcategories of the derived categories of intersections of two quadrics (cf. [6]) and the derived categories of some special cubic 4-folds contain the derived cate- gories of K3 surfaces (cf. [17]). These results provide derived category theoretic explanations for the corresponding geometric results of [10, 27] and [3]. Analysis of derived categories may tell us where to dig (or where not to dig) when we are searching for a specific type of varieties. In 2011, Bondal raised the following question (cf. [5]). Question 1.1. (Fano visitor problem) arXiv:1503.00125v2 [math.AG] 29 Apr 2015 Let Y be a smooth projective variety. -
Notes on Automorphism Groups of Projective Varieties
NOTES ON AUTOMORPHISM GROUPS OF PROJECTIVE VARIETIES MICHEL BRION Abstract. These are extended and slightly updated notes for my lectures at the School and Workshop on Varieties and Group Actions (Warsaw, September 23{29, 2018). They present old and new results on automorphism groups of normal projective varieties over an algebraically closed field. Contents 1. Introduction 1 2. Some basic constructions and results 4 2.1. The automorphism group 4 2.2. The Picard variety 7 2.3. The lifting group 10 2.4. Automorphisms of fibrations 14 2.5. Big line bundles 16 3. Proof of Theorem 1 18 4. Proof of Theorem 2 20 5. Proof of Theorem 3 23 References 28 1. Introduction Let X be a projective variety over an algebraically closed field k. It is known that the automorphism group, Aut(X), has a natural structure of smooth k-group scheme, locally of finite type (see [Gro61, Ram64, MO67]). This yields an exact sequence 0 (1.0.1) 1 −! Aut (X) −! Aut(X) −! π0 Aut(X) −! 1; where Aut0(X) is (the group of k-rational points of) a smooth connected algebraic group, and π0 Aut(X) is a discrete group. To analyze the structure of Aut(X), one may start by considering the connected automorphism 0 group Aut (X) and the group of components π0 Aut(X) separately. It turns out that there is no restriction on the former: every smooth connected algebraic group is the connected automorphism group of some normal projective variety X (see [Bri14, Thm. 1]). In characteristic 0, we may further take X to be smooth by using equivariant resolution of singularities (see e.g. -
Some Structure Theorems for Algebraic Groups
Proceedings of Symposia in Pure Mathematics Some structure theorems for algebraic groups Michel Brion Abstract. These are extended notes of a course given at Tulane University for the 2015 Clifford Lectures. Their aim is to present structure results for group schemes of finite type over a field, with applications to Picard varieties and automorphism groups. Contents 1. Introduction 2 2. Basic notions and results 4 2.1. Group schemes 4 2.2. Actions of group schemes 7 2.3. Linear representations 10 2.4. The neutral component 13 2.5. Reduced subschemes 15 2.6. Torsors 16 2.7. Homogeneous spaces and quotients 19 2.8. Exact sequences, isomorphism theorems 21 2.9. The relative Frobenius morphism 24 3. Proof of Theorem 1 27 3.1. Affine algebraic groups 27 3.2. The affinization theorem 29 3.3. Anti-affine algebraic groups 31 4. Proof of Theorem 2 33 4.1. The Albanese morphism 33 4.2. Abelian torsors 36 4.3. Completion of the proof of Theorem 2 38 5. Some further developments 41 5.1. The Rosenlicht decomposition 41 5.2. Equivariant compactification of homogeneous spaces 43 5.3. Commutative algebraic groups 45 5.4. Semi-abelian varieties 48 5.5. Structure of anti-affine groups 52 1991 Mathematics Subject Classification. Primary 14L15, 14L30, 14M17; Secondary 14K05, 14K30, 14M27, 20G15. c 0000 (copyright holder) 1 2 MICHEL BRION 5.6. Commutative algebraic groups (continued) 54 6. The Picard scheme 58 6.1. Definitions and basic properties 58 6.2. Structure of Picard varieties 59 7. The automorphism group scheme 62 7.1. -
Fano Varieties; Iskovskih's Classification
Fano varieties; Iskovskih’s classification Ekaterina Amerik For details and extensive bibliography, we refer to [2], chapter V, and [1]. A Fano variety is a projective manifold X such that the anticanonical line bundle −1 p,0 0,p KX is ample. By Kodaira vanishing, the Hodge numbers h (X) = h (X) are zero for p 6= 0. Furthermore, Fano manifolds are simply connected (this is implied for example by their property to be rationally connected; see the main article on rational curves and uniruled varieties). Simplest examples are obtained by taking smooth complete intersections of type n (m1, m2, . , mk) in P . By adjunction formula, such a complete intersection is Fano P if and only if i mi ≤ n. A larger class of examples is that of complete intersections n+1 ∗ ∗ in a weighted projective space P(a0, a1, . , an) (this is (C − 0)/C , where C acts with weights a0, a1, . , an; it is singular when not isomorphic to a usual projective space, but we consider complete intersections avoiding the singularities) : the Fano P P condition amounts then to i mi < i ai. Rational homogeneous varieties G/H (G semisimple, H parabolic) are Fano, too. A Fano curve is, obviously, P1. If n = dim(X) = 2 and X is Fano, then X is called a Del Pezzo surface. Such surfaces have been classically studied, and it is well-known that any such X is isomorphic either to P2, or to P1 ×P1, or to P2 blown up in d points (1 ≤ d ≤ 8) in general position, ”general position” meaning here that no three points are on a line and no six on a conic. -
Arxiv:1709.09238V3 [Math.AG] 5 Mar 2021 Xmlso Ahlgclvreisvoaigte N Osuytheir [Dcf15])
KAWAMATA-VIEHWEG VANISHING FAILS FOR LOG DEL PEZZO SURFACES IN CHARACTERISTIC 3 FABIO BERNASCONI Abstract. We construct a klt del Pezzo surface in characteristic three violating the Kawamata-Viehweg vanishing theorem. As a consequence we show that there exists a Kawamata log terminal threefold singularity which is not Cohen-Macaulay in characteristic three. Contents 1. Introduction 1 2. Preliminaries 3 2.1. Notation 3 2.2. Frobenius splitting 5 2.3. A cone construction for Weil Q-Cartier divisors 6 3. A Keel-McKernan surface in characteristic three 9 3.1. Construction 9 3.2. Failure of the Kawamata-Viehweg vanishing theorem 12 4. A klt threefold singularity not CM in characteristic three 13 5. Kodaira-type vanishing for klt del Pezzo surfaces 15 References 19 arXiv:1709.09238v3 [math.AG] 5 Mar 2021 1. Introduction In characteristic zero one of the main technical tool used to estab- lish the Minimal Model Program (MMP for short) is the Kawamata- Viehweg vanishing theorem. Unfortunately, vanishing theorems are known to fail in general for varieties defined over fields of positive characteristic and a great amount of work has been done to construct examples of pathological varieties violating them and to study their geography (see for example [Ray78], [Eke88], [Muk13] and [dCF15]). 2020 Mathematics Subject Classification. 14E30, 14G17, 14J17, 14J45. Key words and phrases. Log del Pezzo surfaces, vanishing theorems, Kawamata log terminal singularities, positive characteristic. 1 2 FABIOBERNASCONI In this context, varieties of Fano type over perfect fields of charac- teristic p > 0 violating Kodaira-type vanishing theorems seem rather rare and in fact are conjectured to exist only for small primes in each dimension.