Scheme X of Finite Type Is Noetherian

Total Page:16

File Type:pdf, Size:1020Kb

Scheme X of Finite Type Is Noetherian MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 CIHAN_ BAHRAN 3.2.1. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f : X ! Y for the structure morphism which is assumed to be of finite type. To show that X is Noetherian, it suffices to show that it is quasi-compact and locally Noetherian. Since Y is quasi-compact, it can be covered by finitely many affine open subsets, say −1 −1 V1;:::;Vn. Then f (Vj)'s cover X. Now f is quasi-compact, so each f (Vj) is quasi- compact and hence their finite union X is quasi-compact. To show that every point in X has a Noetherian neighborhood, let x 2 X. Since Y is locally Noetherian, f(x) is contained in an affine open subset V = Spec B of Y such that B is Noetherian. Let U = Spec A be an affine neighborhood of x such that U ⊆ f −1(V ). Then since f is of finite-type, A is a finitely generated B-algebra, hence A is Noetherian. Moreover, in the above notation, if Y has finite dimension, then dim B < 1 and so by Corollary 2.5.17 the finitely generated B-algebra A has finite dimension. So every x 2 X has a neighborhood with finite dimension. Since X is quasi-compact, X itself has finite dimension. 3.2.2. Show that any open immersion into a localy Noetherian scheme is a mor- phism of finite type. Let f : X ! Y be an open immersion where Y is locally Noetherian. Let V be an affine open subscheme of Y . Then by Exercise 2.3.16 V is Noetherian. Let U = f −1(V ), then clearly the restriction fjU : U ! V is also an open immersion; hence by Proposition 2.3.46(a) U is Noetherian. By definition, U is then a finite union of affine open (hence quasi-compact) subschemes, therefore U = f −1(V ) is quasi-compact. This shows that f is quasi-compact. Let fVigi be an open covering of Y by affine open subsets. Via f, we can identify X as −1 an open subset of Y . For each i, f (Vi) is quasi-compact by above. Identifying X as −1 an open subscheme of Y , f (Vi) = Vi \X is an open subset of the affine scheme Vi and hence by quasi-compactness can be covered by finitely many principal open sets Uij of Vi. We can make the identifications Vi = Spec Ai for some ring Ai and Uij = D(gij) where gij 2 Ai. Observe that OY (Vi) = Ai and OX (Uij) = OY (Uij) = OVi (Uij) = (Ai)gij such that the induced map OY (Vi) !OX (Uij) is the localization Ai ! (Ai)gij . In general, if A is a ring and g 2 A, A[X] surjects on Ag by the A-algebra homo- morphism X 7! 1=g, so the localization A ! Ag makes Ag into a finitely generated A-algebra. Thus OX (Uij) is a finitely generated algebra over OY (Vi) for every j. Hence by Proposition 3.2.2 f is of finite type. 1 MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 2 3.2.3. An immersion of schemes is a morphism which is an open immersion followed by a closed immersion. (a) Let f : X ! Y be an immersion. Show that it can be decomposed into a closed immersion followed by an open immersion. (b) Show that the converse of (a) is true if f is moreover quasi-compact (e.g. if Y is locally Noetherian). Use the scheme-theoretic closure of f (Exercise 2.3.17). (c) Let f : X ! Y , g : Y ! Z be two immersions with g quasi-compact. Show that g ◦ f is an immersion. (a) Y has a closed subscheme C such that there is an open immersion h : X ! C such that when composed with the closed immersion i : C,! Y we get f, that is, f = i ◦ h. Identify X as an open subspace of C. Then Y has an open subset V such that X = C \ V . Since f(X) ⊆ V and V is open, f restricts to a scheme morphism g : X ! V , that is, if we write j : V,! Y for the open immersion, then f = j ◦ g. Since X is identified with the closed subspace C \ V of V via f, the morphism g is a closed immersion of schemes. So j ◦ g is a decomposition of the desired form. (b) LATER (c) Write g = a ◦ b and f = c ◦ d where b; d are open immersions and a; c are closed immersions. Since g is quasi-compact and a is an open immersion b is also quasi- compact. Also c, being an open immersion is quasi-compact. Thus the composite b ◦ c is quasi-compact. Now by (b), b ◦ c = b0 ◦ c0 where b0 is an open immersion and c0 is a closed immersion. Thus g ◦ f = (a ◦ b0) ◦ (c0 ◦ d) ?????????????????????????? 3.2.4. Let X; Y be schemes over a locally Noetherian scheme S, with Y of fi- nite type over S. Let x 2 X. Show that for any morphism of S-schemes fx : Spec OX;x ! Y , there exist an open subset U 3 x of X and a morphism of S-schemes f : U ! Y such that fx = f ◦ ix, where ix : Spec OX;x ! U is the canonical morphism (in other words, the morphism fx extends to an open neigh- borhood of x). We have a commutative diagram of schemes fx Spec OX;x / Y & S: where the diagonal morphism is given by the structure morphism h : X ! S Consider the image of x in S under the diagonal arrow and find an affine open neighborhood V around it. Then h−1(V ) is an open subset in X containing x so it contains an affine neighborhood U of x in X. Then since OX (U) maps to OX;x, Spec OX;x ! S factors through the restriction U ! V . That is, the diagonal arrow maps to an affine open subset of S. Then making the same argument for fx by taking an affine open W in Y which maps to V and shrinking U if necessary, we reduce to the case where all X, Y and S are affine. MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 3 Writing X = Spec A, Y = Spec B and S = Spec C and x = p 2 Spec A, the commu- tative diagram of (now affine) schemes above correspond to the following commutative diagram of rings: Ap o B c O C In addition to this, there is a ring homomorphism from C to A which is compatible with the above picture. So more compactly, both A and B are C-algebras and ' : B ! Ap is a C-algebra homomorphism. We want to find an f 2 Ar p such that ' factors through the canonical map Af ! Ap; because on the scheme level this amounts to extending the map from Spec OX;x to the principal open set D(f). Note that since C came from an affine open subset of a locally Noetherian scheme, we may assume C is Noetherian. And the finite type assumption ensures that B is a finitely generated C-algebra. So there exists n 2 N such that there is a surjective C-algebra homomorphism π : C[T1;:::;Tn] B say with kernel I. Because C is noetherian, so is C[T1;:::;Tn] (Hilbert basis theorem) therefore I is finitely generated. So I = (g1; : : : gr) for some polynomials g1; : : : ; gr 2 C[T1;:::;Tn]. ai Write π(Ti) = bi 2 B and '(bi) = 2 Ap (so ai 2 A and si 2 Ar p) for each si i = 1; : : : ; n. a1 an Fix j 2 f1; : : : ; mg. Now we know that gj(b1; : : : ; bn) = 0 in B, therefore gj( ;::: ) = s1 sn 0 in Ap. Clearing the denominators in the latter equation, we get a polynomial gej 2 A[T1;:::;Tn] such that g (a ; : : : ; a ) ej 1 n = 0 2 A 1 p hence there exists tj 2 Ar p such that tjgej(a1; : : : ; an) = 0 Qn in A (we may take gej = ( i=1 si) gj). Now let n m Y Y f = si · tj 2 Ar p : i=1 j=1 Since f is invertible in Af , every si is invertible in Af . So we can define a C-algebra homomorphism : C[T1;:::;Tn] ! Af −1 Ti 7! si ai : Now since every tj in Af , we have g (a ; : : : ; a ) ej 1 n = 0 2 A 1 f MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 4 so by decomposing back we get −1 −1 gj(s1 a1; : : : ; sn an) = 0 : Therefore the polynomial gj 2 C[T1;:::;Tn] lies in the kernel of . Since this is true for every j = 1; : : : ; m we get I ⊆ ker . Thus uniquely factors through B, that is, we get a C-algebra homomorphism B ! Af which by construction makes ' B / Ap O # Af commute. This is what we wanted. 3.2.5. Let S be a locally Noetherian scheme. Let X; Y be S-schemes of finite type. Let us fix s 2 S. Let ' : X ×S Spec OS;s ! Y ×S Spec OS;s be a morphism of S-schemes. Show that there exist an open set U 3 s and a morphism of S- schemes f : X ×S U ! Y ×S U such that ' is obtained from f by the base change Spec OS;s ! U.
Recommended publications
  • Arxiv:1108.5351V3 [Math.AG] 26 Oct 2012 ..Rslso D-Mod( on Results Introduction the to 0.2
    ON SOME FINITENESS QUESTIONS FOR ALGEBRAIC STACKS VLADIMIR DRINFELD AND DENNIS GAITSGORY Abstract. We prove that under a certain mild hypothesis, the DG category of D-modules on a quasi-compact algebraic stack is compactly generated. We also show that under the same hypothesis, the functor of global sections on the DG category of quasi-coherent sheaves is continuous. Contents Introduction 3 0.1. Introduction to the introduction 3 0.2. Results on D-mod(Y) 4 0.3. Results on QCoh(Y) 4 0.4. Ind-coherent sheaves 5 0.5. Contents of the paper 7 0.6. Conventions, notation and terminology 10 0.7. Acknowledgments 14 1. Results on QCoh(Y) 14 1.1. Assumptions on stacks 14 1.2. Quasi-coherent sheaves 15 1.3. Direct images for quasi-coherent sheaves 18 1.4. Statements of the results on QCoh(Y) 21 2. Proof of Theorems 1.4.2 and 1.4.10 23 2.1. Reducing the statement to a key lemma 23 2.2. Easy reduction steps 24 2.3. Devissage 24 2.4. Quotients of schemes by algebraic groups 26 2.5. Proof of Proposition 2.3.4 26 2.6. Proof of Theorem 1.4.10 29 arXiv:1108.5351v3 [math.AG] 26 Oct 2012 3. Implications for ind-coherent sheaves 30 3.1. The “locally almost of finite type” condition 30 3.2. The category IndCoh 32 3.3. The coherent subcategory 39 3.4. Description of compact objects of IndCoh(Y) 39 3.5. The category Coh(Y) generates IndCoh(Y) 42 3.6.
    [Show full text]
  • Boundary and Shape of Cohen-Macaulay Cone
    BOUNDARY AND SHAPE OF COHEN-MACAULAY CONE HAILONG DAO AND KAZUHIKO KURANO Abstract. Let R be a Cohen-Macaulay local domain. In this paper we study the cone of Cohen-Macaulay modules inside the Grothendieck group of finitely generated R-modules modulo numerical equivalences, introduced in [3]. We prove a result about the boundary of this cone for Cohen-Macaulay domain admitting de Jong’s alterations, and use it to derive some corollaries on finite- ness of isomorphism classes of maximal Cohen-Macaulay ideals. Finally, we explicitly compute the Cohen-Macaulay cone for certain isolated hypersurface singularities defined by ξη − f(x1; : : : ; xn). 1. Introduction Let R be a Noetherian local ring and G0(R) the Grothendieck group of finitely generated R-modules. Using Euler characteristic of perfect complexes with finite length homologies (a generalized version of Serre’s intersection multiplicity pair- ings), one could define the notion of numerical equivalence on G0(R) as in [17]. See Section 2 for precise definitions. When R is the local ring at the vertex of an affine cone over a smooth projective variety X, this notion can be deeply related to that of numerical equivalences on the Chow group of X as in [17] and [20]. Let G0(R) be the Grothendieck group of R modulo numerical equivalences. A simple result in homological algebra tells us that if M is maximal Cohen- Macaulay (MCM), the Euler characteristic function will always be positive. Thus, maximal Cohen-Macaulay modules all survive in G0(R), and it makes sense to talk about the cone of Cohen-Macaulay modules inside G (R) : 0 R X C (R) = [M] ⊂ G (R) : CM R≥0 0 R M:MCM The definition of this cone and some of its basic properties was given in [3].
    [Show full text]
  • Foundations of Algebraic Geometry Class 13
    FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 13 RAVI VAKIL CONTENTS 1. Some types of morphisms: quasicompact and quasiseparated; open immersion; affine, finite, closed immersion; locally closed immersion 1 2. Constructions related to “smallest closed subschemes”: scheme-theoretic image, scheme-theoretic closure, induced reduced subscheme, and the reduction of a scheme 12 3. More finiteness conditions on morphisms: (locally) of finite type, quasifinite, (locally) of finite presentation 16 We now define a bunch of types of morphisms. (These notes include some topics dis- cussed the previous class.) 1. SOME TYPES OF MORPHISMS: QUASICOMPACT AND QUASISEPARATED; OPEN IMMERSION; AFFINE, FINITE, CLOSED IMMERSION; LOCALLY CLOSED IMMERSION In this section, we'll give some analogues of open subsets, closed subsets, and locally closed subsets. This will also give us an excuse to define affine and finite morphisms (closed immersions are a special case). It will also give us an excuse to define some im- portant special closed immersions, in the next section. In section after that, we'll define some more types of morphisms. 1.1. Quasicompact and quasiseparated morphisms. A morphism f : X Y is quasicompact if for every open affine subset U of Y, f-1(U) is quasicompact. Equivalently! , the preimage of any quasicompact open subset is quasicom- pact. We will like this notion because (i) we know how to take the maximum of a finite set of numbers, and (ii) most reasonable schemes will be quasicompact. 1.A. EASY EXERCISE. Show that the composition of two quasicompact morphisms is quasicompact. 1.B. EXERCISE. Show that any morphism from a Noetherian scheme is quasicompact.
    [Show full text]
  • Fundamental Groups of Schemes
    Fundamental Groups of Schemes Master thesis under the supervision of Jilong Tong Lei Yang Universite Bordeaux 1 E-mail address: [email protected] Chapter 1. Introduction 3 Chapter 2. Galois categories 5 1. Galois categories 5 §1. Definition and elementary properties. 5 §2. Examples and the main theorem 7 §2.1. The topological covers 7 §2.2. The category C(Π) and the main theorem 7 2. Galois objects. 8 3. Proof of the main theorem 12 4. Functoriality of Galois categories 15 Chapter 3. Etale covers 19 1. Some results in scheme theory. 19 2. The category of étale covers of a connected scheme 20 3. Reformulation of functoriality 22 Chapter 4. Properties and examples of the étale fundamental group 25 1. Spectrum of a field 25 2. The first homotopy sequence. 25 3. More examples 30 §1. Normal base scheme 30 §2. Abelian varieties 33 §2.1. Group schemes 33 §2.2. Abelian Varieties 35 §3. Geometrically connected schemes of finite type 39 4. G.A.G.A. theorems 39 Chapter 5. Structure of geometric fundamental groups of smooth curves 41 1. Introduction 41 2. Case of characteristic zero 42 §1. The case k = C 43 §2. General case 43 3. Case of positive characteristic 44 (p0) §1. π1(X) 44 §1.1. Lifting of curves to characteristic 0 44 §1.2. the specialization theory of Grothendieck 45 §1.3. Conclusion 45 ab §2. π1 46 §3. Some words about open curves. 47 Bibliography 49 Contents CHAPTER 1 Introduction The topological fundamental group can be studied using the theory of covering spaces, since a fundamental group coincides with the group of deck transformations of the asso- ciated universal covering space.
    [Show full text]
  • MAPPING STACKS and CATEGORICAL NOTIONS of PROPERNESS Contents 1. Introduction 2 1.1. Introduction to the Introduction 2 1.2
    MAPPING STACKS AND CATEGORICAL NOTIONS OF PROPERNESS DANIEL HALPERN-LEISTNER AND ANATOLY PREYGEL Abstract. One fundamental consequence of a scheme being proper is that there is an algebraic space classifying maps from it to any other finite type scheme, and this result has been extended to proper stacks. We observe, however, that it also holds for many examples where the source is a geometric stack, such as a global quotient. In our investigation, we are lead naturally to certain properties of the derived category of a stack which guarantee that the mapping stack from it to any geometric finite type stack is algebraic. We develop methods for establishing these properties in a large class of examples. Along the way, we introduce a notion of projective morphism of algebraic stacks, and prove strong h-descent results which hold in the setting of derived algebraic geometry but not in classical algebraic geometry. Contents 1. Introduction 2 1.1. Introduction to the introduction2 1.2. Mapping out of stacks which are \proper enough"3 1.3. Techniques for establishing (GE) and (L)5 1.4. A long list of examples6 1.5. Comparison with previous results7 1.6. Notation and conventions8 1.7. Author's note 9 2. Artin's criteria for mapping stacks 10 2.1. Weil restriction of affine stacks 11 2.2. Deformation theory of the mapping stack 12 2.3. Integrability via the Tannakian formalism 16 2.4. Derived representability from classical representability 19 2.5. Application: (pGE) and the moduli of perfect complexes 21 3. Perfect Grothendieck existence 23 3.1.
    [Show full text]
  • 4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
    4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module.
    [Show full text]
  • Nakai–Moishezon Ampleness Criterion for Real Line Bundles
    NAKAI{MOISHEZON AMPLENESS CRITERION FOR REAL LINE BUNDLES OSAMU FUJINO AND KEISUKE MIYAMOTO Abstract. We show that the Nakai{Moishezon ampleness criterion holds for real line bundles on complete schemes. As applications, we treat the relative Nakai{Moishezon ampleness criterion for real line bundles and the Nakai{Moishezon ampleness criterion for real line bundles on complete algebraic spaces. The main ingredient of this paper is Birkar's characterization of augmented base loci of real divisors on projective schemes. Contents 1. Introduction 1 2. Preliminaries 2 3. Augmented base loci of R-divisors 3 4. Proof of Theorem 1.4 4 5. Proof of Theorem 1.3 5 6. Proof of Theorem 1.5 7 7. Proof of Theorem 1.6 8 References 9 1. Introduction Throughout this paper, a scheme means a separated scheme of finite type over an alge- braically closed field k of any characteristic. We call such a scheme a variety if it is reduced and irreducible. Let us start with the definition of R-line bundles. Definition 1.1 (R-line bundles). Let X be a scheme (or an algebraic space). An R-line bundle (resp. a Q-line bundle) is an element of Pic(X) ⊗Z R (resp. Pic(X) ⊗Z Q) where Pic(X) is the Picard group of X. Similarly, we can define R-Cartier divisors. Definition 1.2 (R-Cartier divisors). Let X be a scheme. An R-Cartier divisor (resp. a Q-Cartier divisor) is an element of Div(X)⊗Z R (resp. Div(X)⊗Z Q) where Div(X) denotes the group of Cartier divisors on X.
    [Show full text]
  • D-Modules on Infinite Dimensional Varieties
    D-MODULES ON INFINITE DIMENSIONAL VARIETIES SAM RASKIN Contents 1. Introduction 1 2. D-modules on prestacks 4 3. D-modules on schemes 7 4. Placidity 19 5. Holonomic D-modules 30 6. D-modules on indschemes 33 References 44 1. Introduction 1.1. The goal of this foundational note is to develop the D-module formalism on indschemes of ind-infinite type. 1.2. The basic feature that we struggle against is that there are two types of infinite dimensionality at play: pro-infinite dimensionality and ind-infinite dimensionality. That is, we could have an infinite dimensional variety S that is the union S “YiSi “ colimiSi of finite dimensional varieties, or T that is the projective limit T “ limj Tj of finite dimensional varieties, e.g., a scheme of infinite type. Any reasonable theory of D-modules will produce produce some kinds of de Rham homology and cohomology groups. We postulate as a basic principle that these groups should take values in discrete vector spaces, that is, we wish to avoid projective limits. Then, in the ind-infinite dimensional case, the natural theory is the homology of S: H˚pSq :“ colim H˚pSiq i while in the pro-infinite dimensional case, the natural theory is the cohomology of T : ˚ ˚ H pT q :“ colim H pTjq: j For indschemes that are infinite dimensional in both the ind and the pro directions, one requires a semi-infinite homology theory that is homology in the ind direction and cohomology in the pro direction. Remark 1.2.1. Of course, such a theory requires some extra choices, as is immediately seen by considering the finite dimensional case.
    [Show full text]
  • Math 632: Algebraic Geometry Ii Cohomology on Algebraic Varieties
    MATH 632: ALGEBRAIC GEOMETRY II COHOMOLOGY ON ALGEBRAIC VARIETIES LECTURES BY PROF. MIRCEA MUSTA¸TA;˘ NOTES BY ALEKSANDER HORAWA These are notes from Math 632: Algebraic geometry II taught by Professor Mircea Musta¸t˘a in Winter 2018, LATEX'ed by Aleksander Horawa (who is the only person responsible for any mistakes that may be found in them). This version is from May 24, 2018. Check for the latest version of these notes at http://www-personal.umich.edu/~ahorawa/index.html If you find any typos or mistakes, please let me know at [email protected]. The problem sets, homeworks, and official notes can be found on the course website: http://www-personal.umich.edu/~mmustata/632-2018.html This course is a continuation of Math 631: Algebraic Geometry I. We will assume the material of that course and use the results without specific references. For notes from the classes (similar to these), see: http://www-personal.umich.edu/~ahorawa/math_631.pdf and for the official lecture notes, see: http://www-personal.umich.edu/~mmustata/ag-1213-2017.pdf The focus of the previous part of the course was on algebraic varieties and it will continue this course. Algebraic varieties are closer to geometric intuition than schemes and understanding them well should make learning schemes later easy. The focus will be placed on sheaves, technical tools such as cohomology, and their applications. Date: May 24, 2018. 1 2 MIRCEA MUSTA¸TA˘ Contents 1. Sheaves3 1.1. Quasicoherent and coherent sheaves on algebraic varieties3 1.2. Locally free sheaves8 1.3.
    [Show full text]
  • Relative Affine Schemes
    Relative Affine Schemes Daniel Murfet October 5, 2006 The fundamental Spec(−) construction associates an affine scheme to any ring. In this note we study the relative version of this construction, which associates a scheme to any sheaf of algebras. The contents of this note are roughly EGA II §1.2, §1.3. Contents 1 Affine Morphisms 1 2 The Spec Construction 4 3 The Sheaf Associated to a Module 8 1 Affine Morphisms Definition 1. Let f : X −→ Y be a morphism of schemes. Then we say f is an affine morphism or that X is affine over Y , if there is a nonempty open cover {Vα}α∈Λ of Y by open affine subsets −1 Vα such that for every α, f Vα is also affine. If X is empty (in particular if Y is empty) then f is affine. Any morphism of affine schemes is affine. Any isomorphism is affine, and the affine property is stable under composition with isomorphisms on either end. Example 1. Any closed immersion X −→ Y is an affine morphism by our solution to (Ex 4.3). Remark 1. A scheme X affine over S is not necessarily affine (for example X = S) and if an affine scheme X is an S-scheme, it is not necessarily affine over S. However, if S is separated then an S-scheme X which is affine is affine over S. Lemma 1. An affine morphism is quasi-compact and separated. Any finite morphism is affine. Proof. Let f : X −→ Y be affine. Then f is separated since any morphism of affine schemes is separated, and the separatedness condition is local.
    [Show full text]
  • Arxiv:1807.03665V3 [Math.AG]
    DEMAILLY’S NOTION OF ALGEBRAIC HYPERBOLICITY: GEOMETRICITY, BOUNDEDNESS, MODULI OF MAPS ARIYAN JAVANPEYKAR AND LJUDMILA KAMENOVA Abstract. Demailly’s conjecture, which is a consequence of the Green–Griffiths–Lang con- jecture on varieties of general type, states that an algebraically hyperbolic complex projective variety is Kobayashi hyperbolic. Our aim is to provide evidence for Demailly’s conjecture by verifying several predictions it makes. We first define what an algebraically hyperbolic projective variety is, extending Demailly’s definition to (not necessarily smooth) projective varieties over an arbitrary algebraically closed field of characteristic zero, and we prove that this property is stable under extensions of algebraically closed fields. Furthermore, we show that the set of (not necessarily surjective) morphisms from a projective variety Y to a pro- jective algebraically hyperbolic variety X that map a fixed closed subvariety of Y onto a fixed closed subvariety of X is finite. As an application, we obtain that Aut(X) is finite and that every surjective endomorphism of X is an automorphism. Finally, we explore “weaker” notions of hyperbolicity related to boundedness of moduli spaces of maps, and verify similar predictions made by the Green–Griffiths–Lang conjecture on hyperbolic projective varieties. 1. Introduction The aim of this paper is to provide evidence for Demailly’s conjecture which says that a projective algebraically hyperbolic variety over C is Kobayashi hyperbolic. We first define the notion of an algebraically hyperbolic projective scheme over an alge- braically closed field k of characteristic zero which is not assumed to be C, and could be Q, for example. Then we provide indirect evidence for Demailly’s conjecture by showing that algebraically hyperbolic schemes share many common features with Kobayashi hyperbolic complex manifolds.
    [Show full text]
  • 3. Ample and Semiample We Recall Some Very Classical Algebraic Geometry
    3. Ample and Semiample We recall some very classical algebraic geometry. Let D be an in- 0 tegral Weil divisor. Provided h (X; OX (D)) > 0, D defines a rational map: φ = φD : X 99K Y: The simplest way to define this map is as follows. Pick a basis σ1; σ2; : : : ; σm 0 of the vector space H (X; OX (D)). Define a map m−1 φ: X −! P by the rule x −! [σ1(x): σ2(x): ··· : σm(x)]: Note that to make sense of this notation one has to be a little careful. Really the sections don't take values in C, they take values in the fibre Lx of the line bundle L associated to OX (D), which is a 1-dimensional vector space (let us assume for simplicity that D is Carier so that OX (D) is locally free). One can however make local sense of this mor- phism by taking a local trivialisation of the line bundle LjU ' U × C. Now on a different trivialisation one would get different values. But the two trivialisations differ by a scalar multiple and hence give the same point in Pm−1. However a much better way to proceed is as follows. m−1 0 ∗ P ' P(H (X; OX (D)) ): Given a point x 2 X, let 0 Hx = f σ 2 H (X; OX (D)) j σ(x) = 0 g: 0 Then Hx is a hyperplane in H (X; OX (D)), whence a point of 0 ∗ φ(x) = [Hx] 2 P(H (X; OX (D)) ): Note that φ is not defined everywhere.
    [Show full text]