Rigidity Properties of Fano Varieties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kähler-Einstein Metrics and Algebraic Geometry
Current Developments in Mathematics, 2015 K¨ahler-Einstein metrics and algebraic geometry Simon Donaldson Abstract. This paper is a survey of some recent developments in the area described by the title, and follows the lines of the author’s lecture in the 2015 Harvard Current Developments in Mathematics meeting. The main focus of the paper is on the Yau conjecture relating the ex- istence of K¨ahler-Einstein metrics on Fano manifolds to K-stability. We discuss four different proofs of this, by different authors, which have ap- peared over the past few years. These involve an interesting variety of approaches and draw on techniques from different fields. Contents 1. Introduction 1 2. K-stability 3 3. Riemannian convergence theory and projective embeddings 6 4. Four proofs 11 References 23 1. Introduction General existence questions involving the Ricci curvature of compact K¨ahler manifolds go back at least to work of Calabi in the 1950’s [11], [12]. We begin by recalling some very basic notions in K¨ahler geometry. • All the K¨ahler metrics in a given cohomology class can be described in terms of some fixed reference metric ω0 and a potential function, that is (1) ω = ω0 + i∂∂φ. • A hermitian holomorphic line bundle over a complex manifold has a unique Chern connection compatible with both structures. A Her- −1 n mitian metric on the anticanonical line bundle KX =Λ TX is the same as a volume form on the manifold. When this volume form is derived from a K¨ahler metric the curvature of the Chern connection c 2016 International Press 1 2 S. -
MMP) Is One of the Cornerstones in the Clas- Sification Theory of Complex Projective Varieties
MINIMAL MODELS FOR KÄHLER THREEFOLDS ANDREAS HÖRING AND THOMAS PETERNELL Abstract. Let X be a compact Kähler threefold that is not uniruled. We prove that X has a minimal model. 1. Introduction The minimal model program (MMP) is one of the cornerstones in the clas- sification theory of complex projective varieties. It is fully developed only in dimension 3, despite tremendous recent progress in higher dimensions, in particular by [BCHM10]. In the analytic Kähler situation the basic methods from the MMP, such as the base point free theorem, fail. Nevertheless it seems reasonable to expect that the main results should be true also in this more general context. The goal of this paper is to establish the minimal model program for Kähler threefolds X whose canonical bundle KX is pseudoeffective. To be more specific, we prove the following result: 1.1. Theorem. Let X be a normal Q-factorial compact Kähler threefold with at most terminal singularities. Suppose that KX is pseudoeffective or, equivalently, that X is not uniruled. Then X has a minimal model, i.e. there exists a MMP X 99K X′ such that KX′ is nef. In our context a complex space is said to be Q-factorial if every Weil ⊗m ∗∗ divisor is Q-Cartier and a multiple (KX ) of the canonical sheaf KX is locally free. If X is a projective threefold, Theorem 1.1 was estab- lished by the seminal work of Kawamata, Kollár, Mori, Reid and Shokurov [Mor79, Mor82, Rei83, Kaw84a, Kaw84b, Kol84, Sho85, Mor88, KM92]. Based on the deformation theory of rational curves on smooth threefolds [Kol91b, Kol96], Campana and the second-named author started to inves- tigate the existence of Mori contractions [CP97, Pet98, Pet01]. -
MINIMAL MODEL THEORY of NUMERICAL KODAIRA DIMENSION ZERO Contents 1. Introduction 1 2. Preliminaries 3 3. Log Minimal Model Prog
MINIMAL MODEL THEORY OF NUMERICAL KODAIRA DIMENSION ZERO YOSHINORI GONGYO Abstract. We prove the existence of good minimal models of numerical Kodaira dimension 0. Contents 1. Introduction 1 2. Preliminaries 3 3. Log minimal model program with scaling 7 4. Zariski decomposition in the sense of Nakayama 9 5. Existence of minimal model in the case where º = 0 10 6. Abundance theorem in the case where º = 0 12 References 14 1. Introduction Throughout this paper, we work over C, the complex number ¯eld. We will make use of the standard notation and de¯nitions as in [KM] and [KMM]. The minimal model conjecture for smooth varieties is the following: Conjecture 1.1 (Minimal model conjecture). Let X be a smooth pro- jective variety. Then there exists a minimal model or a Mori ¯ber space of X. This conjecture is true in dimension 3 and 4 by Kawamata, Koll¶ar, Mori, Shokurov and Reid (cf. [KMM], [KM] and [Sho2]). In the case where KX is numerically equivalent to some e®ective divisor in dimen- sion 5, this conjecture is proved by Birkar (cf. [Bi1]). When X is of general type or KX is not pseudo-e®ective, Birkar, Cascini, Hacon Date: 2010/9/21, version 4.03. 2000 Mathematics Subject Classi¯cation. 14E30. Key words and phrases. minimal model, the abundance conjecture, numerical Kodaira dimension. 1 2 YOSHINORI GONGYO and McKernan prove Conjecture 1.1 for arbitrary dimension ([BCHM]). Moreover if X has maximal Albanese dimension, Conjecture 1.1 is true by [F2]. In this paper, among other things, we show Conjecture 1.1 in the case where º(KX ) = 0 (for the de¯nition of º, see De¯nition 2.6): Theorem 1.2. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Cox Rings and Partial Amplitude Permalink https://escholarship.org/uc/item/7bs989g2 Author Brown, Morgan Veljko Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Cox Rings and Partial Amplitude by Morgan Veljko Brown A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, BERKELEY Committee in charge: Professor David Eisenbud, Chair Professor Martin Olsson Professor Alistair Sinclair Spring 2012 Cox Rings and Partial Amplitude Copyright 2012 by Morgan Veljko Brown 1 Abstract Cox Rings and Partial Amplitude by Morgan Veljko Brown Doctor of Philosophy in Mathematics University of California, BERKELEY Professor David Eisenbud, Chair In algebraic geometry, we often study algebraic varieties by looking at their codimension one subvarieties, or divisors. In this thesis we explore the relationship between the global geometry of a variety X over C and the algebraic, geometric, and cohomological properties of divisors on X. Chapter 1 provides background for the results proved later in this thesis. There we give an introduction to divisors and their role in modern birational geometry, culminating in a brief overview of the minimal model program. In chapter 2 we explore criteria for Totaro's notion of q-amplitude. A line bundle L on X is q-ample if for every coherent sheaf F on X, there exists an integer m0 such that m ≥ m0 implies Hi(X; F ⊗ O(mL)) = 0 for i > q. -
Arxiv:1705.02740V4 [Math.AG] 18 Dec 2018 Iease Oaqeto Se Yyce I Uigteamwo AIM the During 2017
BOUNDEDNESS OF Q-FANO VARIETIES WITH DEGREES AND ALPHA-INVARIANTS BOUNDED FROM BELOW CHEN JIANG Abstract. We show that Q-Fano varieties of fixed dimension with anti-canonical degrees and alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable Q-Fano varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family. 1. Introduction Throughout the article, we work over an algebraically closed field of char- acteristic zero. A Q-Fano variety is defined to be a normal projective variety X with at most klt singularities such that the anti-canonical divisor KX is an ample Q-Cartier divisor. − When the base field is the complex number field, an interesting prob- lem for Q-Fano varieties is the existence of K¨ahler–Einstein metrics which is related to K-(semi)stability of Q-Fano varieties. It has been known that a Fano manifold X (i.e., a smooth Q-Fano variety over C) admits K¨ahler–Einstein metrics if and only if X is K-polystable by the works [DT92, Tia97, Don02, Don05, CT08, Sto09, Mab08, Mab09, Ber16] and [CDS15a, CDS15b, CDS15c, Tia15]. K-stability is stronger than K-polystability, and K-polystability is stronger than K-semistability. Hence K-semistable Q- Fano varieties are interesting for both differential geometers and algebraic geometers. It also turned out that K¨ahler–Einstein metrics and K-stability play cru- cial roles for construction of nice moduli spaces of certain Q-Fano varieties. For example, compact moduli spaces of smoothable K¨ahler–Einstein Q-Fano varieties have been constructed (see [OSS16] for dimension two case and [LWX14, SSY16, Oda15] for higher dimensional case). -
The Minimal Model Program for B-Log Canonical Divisors and Applications
THE MINIMAL MODEL PROGRAM FOR B-LOG CANONICAL DIVISORS AND APPLICATIONS DANIEL CHAN, KENNETH CHAN, LOUIS DE THANHOFFER DE VOLCSEY,¨ COLIN INGALLS, KELLY JABBUSCH, SANDOR´ J KOVACS,´ RAJESH KULKARNI, BORIS LERNER, BASIL NANAYAKKARA, SHINNOSUKE OKAWA, AND MICHEL VAN DEN BERGH Abstract. We discuss the minimal model program for b-log varieties, which is a pair of a variety and a b-divisor, as a natural generalization of the minimal model program for ordinary log varieties. We show that the main theorems of the log MMP work in the setting of the b-log MMP. If we assume that the log MMP terminates, then so does the b- log MMP. Furthermore, the b-log MMP includes both the log MMP and the equivariant MMP as special cases. There are various interesting b-log varieties arising from different objects, including the Brauer pairs, or “non-commutative algebraic varieties which are finite over their centres”. The case of toric Brauer pairs is discussed in further detail. Contents 1. Introduction 1 2. Minimal model theory with boundary b-divisors 4 2.A. Recap on b-divisors 4 2.B. b-discrepancy 8 3. The Minimal Model Program for b-log varieties 11 3.A. Fundamental theorems for b-log varieties 13 4. Toroidal b-log varieties 15 4.A. Snc stratifications 15 4.B. Toric b-log varieties 17 4.C. Toroidal b-log varieties 19 5. Toric Brauer Classes 21 References 24 1. Introduction arXiv:1707.00834v2 [math.AG] 5 Jul 2017 Let k be an algebraically closed field of characteristic zero. Let K be a field, finitely generated over k. -
Effective Bounds for the Number of MMP-Series of a Smooth Threefold
EFFECTIVE BOUNDS FOR THE NUMBER OF MMP-SERIES OF A SMOOTH THREEFOLD DILETTA MARTINELLI Abstract. We prove that the number of MMP-series of a smooth projective threefold of positive Kodaira dimension and of Picard number equal to three is at most two. 1. Introduction Establishing the existence of minimal models is one of the first steps towards the birational classification of smooth projective varieties. More- over, starting from dimension three, minimal models are known to be non-unique, leading to some natural questions such as: does a variety admit a finite number of minimal models? And if yes, can we fix some parameters to bound this number? We have to be specific in defining what we mean with minimal mod- els and how we count their number. A marked minimal model of a variety X is a pair (Y,φ), where φ: X 99K Y is a birational map and Y is a minimal model. The number of marked minimal models, up to isomorphism, for a variety of general type is finite [BCHM10, KM87]. When X is not of general type, this is no longer true, [Rei83, Example 6.8]. It is, however, conjectured that the number of minimal models up to isomorphism is always finite and the conjecture is known in the case of threefolds of positive Kodaira dimension [Kaw97]. In [MST16] it is proved that it is possible to bound the number of marked minimal models of a smooth variety of general type in terms of the canonical volume. Moreover, in dimension three Cascini and Tasin [CT18] bounded the volume using the Betti numbers. -
Vanishing Theorems and Syzygies for K3 Surfaces and Fano Varieties
VANISHING THEOREMS AND SYZYGIES FOR K3 SURFACES AND FANO VARIETIES F. J. Gallego and B. P. Purnaprajna May 26, 1996 Abstract. In this article we prove some strong vanishing theorems on K3 surfaces. As an application of them, we obtain higher syzygy results for K3 surfaces and Fano varieties. 1. Introduction In this article we prove some vanishing theorems on K3 surfaces. An application of the vanishing theorems is a result on higher syzygies for K3 surfaces and Fano varieties. One part of our results fits a meta-principle stating that if L is a line bundle that is a product of (p+1) ample and base point free line bundles satisfying certain conditions, then L satisfies the condition Np ( a condition on the free resolution of the homogeneous coordinate ring of X embedded by L). Other illustrations of this meta-principle have been given in [GP1], [GP2] and [GP3]. The condition Np may be interpreted, through Koszul cohomology, as a vanishing condition on a certain vector bundle. arXiv:alg-geom/9608008v1 7 Aug 1996 The other part of our results provides strong vanishing theorems that imply, in particular, the vanishing needed for Np. We also prove stronger variants of the principle stated above for K3 surfaces and Fano varieties. Before stating our results in detail, we recall some key results in this area, namely the normal generation and normal presentation on K3 surfaces due to Mayer and St.Donat. Mayer and St. Donat proved that if L is a globally generated line bundle on a K3 surface X such that the general member in the linear system is a non hyperelliptic curve of genus g ≥ 3, then L is normally generated (in other words, the homogeneous coordinate ring of X in projective space P(H0(L)) is projectively normal). -
Resolutions of Quotient Singularities and Their Cox Rings Extended Abstract
RESOLUTIONS OF QUOTIENT SINGULARITIES AND THEIR COX RINGS EXTENDED ABSTRACT MAKSYMILIAN GRAB The resolution of singularities allows one to modify an algebraic variety to obtain a nonsingular variety sharing many properties with the original, singular one. The study of nonsingular varieties is an easier task, due to their good geometric and topological properties. By the theorem of Hironaka [29] it is always possible to resolve singularities of a complex algebraic variety. The dissertation is concerned with resolutions of quotient singularities over the field C of complex numbers. Quotient singularities are the singularities occuring in quotients of algebraic varieties by finite group actions. A good local model of such a singularity n is a quotient C /G of an affine space by a linear action of a finite group. The study of quotient singularities dates back to the work of Hilbert and Noether [28], [40], who proved finite generation of the ring of invariants of a linear finite group action on a ring of polynomials. Other important classical result is due to Chevalley, Shephard and Todd [10], [46], who characterized groups G that yield non-singular quotients. Nowa- days, quotient singularities form an important class of singularities, since they are in some sense typical well-behaved (log terminal) singularities in dimensions two and three (see [35, Sect. 3.2]). Methods of construction of algebraic varieties via quotients, such as the classical Kummer construction, are being developed and used in various contexts, including higher dimensions, see [1] and [20] for a recent example of application. In the well-studied case of surfaces every quotient singularity admits a unique minimal resolution. -
The Birational Geometry of Tropical Compactifications
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2010 The Birational Geometry of Tropical Compactifications Colin Diemer University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Algebraic Geometry Commons Recommended Citation Diemer, Colin, "The Birational Geometry of Tropical Compactifications" (2010). Publicly Accessible Penn Dissertations. 96. https://repository.upenn.edu/edissertations/96 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/96 For more information, please contact [email protected]. The Birational Geometry of Tropical Compactifications Abstract We study compactifications of subvarieties of algebraic tori using methods from the still developing subject of tropical geometry. Associated to each ``tropical" compactification is a polyhedral object called a tropical fan. Techniques developed by Hacking, Keel, and Tevelev relate the polyhedral geometry of the tropical variety to the algebraic geometry of the compactification. eW compare these constructions to similar classical constructions. The main results of this thesis involve the application of methods from logarithmic geometry in the sense of Iitaka \cite{iitaka} to these compactifications. eW derive a precise formula for the log Kodaira dimension and log irregularity in terms of polyhedral geometry. We then develop a geometrically motivated theory of tropical morphisms and discuss the induced map on tropical fans. Tropical fans with similar structure in this sense are studied, and we show that certain natural operations on a tropical fan correspond to log flops in the sense of birational geometry. These log flops are then studied via the theory of secondary polytopes developed by Gelfand, Kapranov, and Zelevinsky to obtain polyhedral analogues of some results from logarithmic Mori theory. -
Lines, Conics, and All That Ciro Ciliberto, M Zaidenberg
Lines, conics, and all that Ciro Ciliberto, M Zaidenberg To cite this version: Ciro Ciliberto, M Zaidenberg. Lines, conics, and all that. 2020. hal-02318018v3 HAL Id: hal-02318018 https://hal.archives-ouvertes.fr/hal-02318018v3 Preprint submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LINES, CONICS, AND ALL THAT C. CILIBERTO, M. ZAIDENBERG To Bernard Shiffman on occasion of his seventy fifths birthday Abstract. This is a survey on the Fano schemes of linear spaces, conics, rational curves, and curves of higher genera in smooth projective hypersurfaces, complete intersections, Fano threefolds, on the related Abel-Jacobi mappings, etc. Contents Introduction 1 1. Counting lines on surfaces 2 2. The numerology of Fano schemes 3 3. Geometry of the Fano scheme 6 4. Counting conics in complete intersection 8 5. Lines and conics on Fano threefolds and the Abel-Jacobi mapping 11 5.1. The Fano-Iskovskikh classification 11 5.2. Lines and conics on Fano threefolds 12 5.3. The Abel-Jacobi mapping 14 5.4. The cylinder homomorphism 16 6. Counting rational curves 17 6.1. Varieties of rational curves in hypersurfaces 17 6.2. -
All Complete Intersection Varieties Are Fano Visitors 3
ALL COMPLETE INTERSECTION VARIETIES ARE FANO VISITORS YOUNG-HOON KIEM, IN-KYUN KIM, HWAYOUNG LEE, AND KYOUNG-SEOG LEE Abstract. We prove that the derived category of a smooth complete inter- section variety is equivalent to a full subcategory of the derived category of a smooth projective Fano variety. This enables us to define some new invariants of smooth projective varieties and raise many interesting questions. 1. Introduction In recent years, derived categories of projective varieties attracted tremendous interest among algebraic geometers as well as physicists. Fano varieties in particular have been most intensively studied because their derived categories (1) determine the varieties completely due to the reconstruction theorem of Bondal and Orlov and (2) have canonical semiorthogonal decompositions by canonical exceptional collections of line bundles by the Kodaira vanishing theorem. Moreover, the de- rived categories of many Fano varieties of low dimension have been calculated quite explicitly. Often the derived categories of Fano varieties are big enough to contain interest- ing subcategories. For example, the derived categories of hyperelliptic curves are full subcategories of the derived categories of intersections of two quadrics (cf. [6]) and the derived categories of some special cubic 4-folds contain the derived cate- gories of K3 surfaces (cf. [17]). These results provide derived category theoretic explanations for the corresponding geometric results of [10, 27] and [3]. Analysis of derived categories may tell us where to dig (or where not to dig) when we are searching for a specific type of varieties. In 2011, Bondal raised the following question (cf. [5]). Question 1.1. (Fano visitor problem) arXiv:1503.00125v2 [math.AG] 29 Apr 2015 Let Y be a smooth projective variety.