Geometry of Fano Varieties : Subsheaves of the Tangent Bundle and Fundamental Divisor Jie Liu

Total Page:16

File Type:pdf, Size:1020Kb

Geometry of Fano Varieties : Subsheaves of the Tangent Bundle and Fundamental Divisor Jie Liu Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor Jie Liu To cite this version: Jie Liu. Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisor. Algebraic Geometry [math.AG]. Université Côte d’Azur, 2018. English. NNT : 2018AZUR4038. tel-02000801 HAL Id: tel-02000801 https://tel.archives-ouvertes.fr/tel-02000801 Submitted on 1 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. G F : Jie L Laboratoire de Mathématiques J. A. Dieudonné Présentée en vue de l’obtention Devant le jury, composé de : du grade de docteur en Mathématiques Cinzia Casagrande PR Examinatrice de l'Université Côte d'Azur Pierre-Emmanuel Chaput PR Examinateur Stéphane Druel CR Rapporteur Dirigée par : Andreas Höring et Christophe Mourougane Andreas Höring PR Co-directeur Christophe Mourougane PR Co-directeur Soutenue le : juin Christian Pauly PR Examinateur Laboratoire de Mathématiques J. A. Dieudonné UMR n° CNRS UCA Université Côte d'Azur Parc Valrose Nice Cedex France Résumé Cee thèse est consacrée à l'étude de la géométrie des variétés de Fano complexes en utilisant les propriétés des sous-faisceaux du fibré tangent et la géométrie du diviseur fondamental. Les résultats principaux compris dans ce texte sont : (i) Une généralisation de la conjecture de Hartshorne : une variété lisse projective est isomorphe à un espace projectif si et seulement si son fibré tangent contient un sous-faisceau ample. (ii) Stabilité du fibré tangent des variétés de Fano lisses de nombre de Picard un : à l'aide de het- héorèmes d'annulation sur les espaces hermitiens symétriques irréductibles de type compact M, nous montrons que pour presque toute intersection complète générale dans M, le fibré tangent est stable. La même méthode nous permet de donner une réponse sur la stabilité de la restriction du fibré tangent de l'intersection complète à une hypersurface générale. (iii) Non-annulation effective pour des variétés de Fano et ses applications : nous étudions la positivité de la seconde classe de Chern des variétés de Fano lisses de nombre de Picard un. Ceci nous permet de montrer un théorème de non-annulation pour les variétés de Fano lisses de dimension n et d'indice n − 3. Comme application, nous étudions la géométrie anticanonique des variétés de Fano et nous calculons les constantes de Seshadri des diviseurs anticanoniques des variétés de Fano d'indice grand. (iv) Diviseurs fondamentaux des variétés de Moishezon lisses de dimension trois et de nombre de Picard un : nous montrons l'existence d'un diviseur lisse dans le système fondamental dans certain cas particulier. Mots clés : Variétés de Fano, espaces projectifs, faisceaux amples, feuilletages, stabilité, espaces her- mitiens symétriques, théorèmes d'annulation, intersections complètes, propriétés de Lefschetz, non- annulation, seconde classe de Chern, birationalité, diviseurs fondamentaux, constante de Seshadri, var- iétés de Moishezon, singularités, courbes rationnelles, théorie de Mori Abstract is thesis is devoted to the study of complex Fano varieties via the properties of subsheaves of the tangent bundle and the geometry of the fundamental divisor. e main results contained in this text are : (i) A generalization of Hartshorne's conjecture : a projective manifold is isomorphic to a projective space if and only if its tangent bundle contains an ample subsheaf. (ii) Stability of tangent bundles of Fano manifolds with Picard number one : by proving vanishing theorems on the irreducible Hermitian symmetric spaces of compact type M, we establish that the tangent bundles of almost all general complete intersections in M are stable. Moreover, the same method also gives an answer to the problem of stability of the restriction of the tangent bundle of a complete intersection on a general hypersurface. (iii) Effective non-vanishing for Fano varieties and its applications : we study the positivity of the second Chern class of Fano manifolds with Picard number one, this permits us to prove a non- vanishing result for n-dimensional Fano manifolds with index n − 3. As an application, we study the anticanonical geometry of Fano varieties and calculate the Seshadri constants of anticanonical divisors of Fano manifolds with large index. (iv) Fundamental divisors of smooth Moishezon threefolds with Picard number one : we prove the existence of a smooth divisor in the fundamental linear system in some special cases. Key words : Fano varieties, projective spaces, ample sheaves, foliations, stability, Hermitian symmetric spaces, vanishing theorems, complete intersects, Lefschetz properties, non-vanishing, second Chern class, birationality, fundamental divisors, Seshadri constants, Moishezon manifolds, singularities, ra- tional curves, Mori theory MSC classifications : B, C, E, E, F, J, J, J, J, J, J, J, J, M, C, G, J, J, L, L, M, M, Q, Q Remerciements En premier lieu, un grand merci à mes directeurs, Christophe Mourougane et Andreas Höring, pour leur grande patience, pour leur aide, leur générosité, leur soutien, leurs explications méticuleuses, leurs exemples et leurs idées. Leurs contributions à ce manuscrit sont aussi profondes que nombreuses. Tout au long de ces années, j'ai été très sensible à la grande liberté qu'ils m'ont octroyée pour mener à bien mon travail. Ils ont écouté mes idées avec aention et sans complaisance et ont né mon goût pour les mathématiques. En particulier, nos conversations enrichissantes et divertissantes ont largement influencé le présent mémoire. Je leur en serai toujours reconnaissante. Les travaux de Stéphane Druel et Jarosław A. Wiśniewski ont été une grande source d'inspiration pour ma thèse. J'aimerais les remercier d'avoir accepté de rapporter celle-ci, c'est un honneur et un plaisir pour moi qu'ils aient pris le temps de lire mon manuscrit. Merci en particulier à Stéphane Druel pour m'avoir permis, via ses remarques et suggestions, d'améliorer le manuscrit. Il a fait son travail de rap- porteur de façon remarquable et a consacré énormément de temps à cee thèse. C'est une grande joie pour moi que de compter Cinzia Casagrande et Pierre-Emmanuel Chaput parmi mon jury de thèse. Les conversations que j'ai pu avoir avec l'un et l'autre m'ont beaucoup apporté. Merci également à Christian Pauly d'avoir bien voulu faire partie du jury. Tout au long de ma scolarité, j'ai été disciple d'enseignants merveilleux auxquels je dois beaucoup. A l'université de Wuhan, les conseils de Yuping Tu, Zhenhan Tu, anhua Xu et Wanke Yin m'ont été pré- cieux. En particulier, je tiens à exprimer ma reconnaissance à Yuping Tu et Qi Zhang pour leurs cours et conseils qui ont suscité mon intérêt pour la géométrie birationnelle. De mes études à l'université de Rennes , j'ai eu la chance de trouver la beauté du calcul de Schubert sous la direction de Michele Bolog- nesi. Sébastien Boucksom m'a initié au monde de la recherche et à la géométrie complexe lors de mon Master. Il m'a enseigné avec beaucoup de sympathie de très belles mathématiques, et les discussions que j’ai eues avec lui ont toujours été des plus enrichissantes. J'ai eu la chance de discuter avec nombreux autres chercheurs durant mon doctorat. J'ai déjà mentionné certains plus haut auxquels j'ajoute volontier Arnaud Beauville, Amaël Broustet, Serge Cantat, Junyan Cao, Benoît Claudon, Alexandru Dimca, Sorin Dumitrescu, Enrica Floris, Jun-Muk Hwang, Frank Loray, Daniel Li, Steven Lu, Adam Parusiński, Boris Pasquier, omas Peternell, Zhiyu Tian, Frédéric Touzet, Junyi Xie, Chenyang Xu, et bien d'autres. Je remercie aussi les autres doctorants avec qui j'ai parlé de géométrie, et ce fut très intéressant de les croiser au fil des évènements mathématiques : Vladimiro Benedei, Benoît Cadorel, Jean-Baptiste Campesato, Jiaming Chen, Lionel Darondeau, ibaut Delcroix, Ya Deng, Yanbo Fang, Wei-Guo Foo, Alexis Garcia, Zhizhong Huang, Louis-Clément Leèvre, Hsueh-Yung Lin, Binxiao Liu, Federico Lo Bianco, Chen Jiang, Pedro Montero, Olivier om, Nestor Fernandez Vargas, Xiaozong Wang, Zhenjian Wang, Jian Xiao, Songyan Xie, Chenglong Yu, Shengyuan Zhao, et bien d'atures. En particulier, je tiens à remercier ma grande sœur Liana Heuberger, mon petit frère Yanis Mabed et mon grand frère Basile Pillet pour toutes ces discussions mathématiques et aussi les pausses très agréables que nous avons partagés, et j’ai eu la chance d'accueillir ma petite sœur Zhixin Xie pendant la dernière année. Et maintenant arrive le moment de remercier tous mes collègues doctorants et ex-doctorants. L'am- biance entre doctorants au laboratoire fait ma vie à Nice très agréable. En particulier, je remercie Alexis Gilles et Mehdi Zaidi d'avoir aidé à corriger les fautes de français. Un merci particulier est réservé aux habitants du bureau (à Nice) avec Ayoub Badia, Eduard Balzin, Marcella Bonazzoli, Charles Col- lot, Alexis Gilles et Pengfei Huang. Merci aussi à mes cobureaux du (à Rennes) Yuliang Huang et Andres Sarrazola Alzate. Un autre merci groupé pour mes amis à Nice, même si ce groupe a une forte intersection avec le groupe précédent. Vous avez eu, avez et aurez toujours une place importante dans ma vie. Je remercie le LJAD pour la bonne qualité des conditions de la recherche. Je tiens à remercier aussi l'IRMAR qui m'ont toujours très bien accueillie après je suis arrivé en France. Le personnel admin- istratif m'a rendu la vie à le LJAD et l'IRMAR très aisée en faisant un travail remarquable et je les en remercie.
Recommended publications
  • Kähler-Einstein Metrics and Algebraic Geometry
    Current Developments in Mathematics, 2015 K¨ahler-Einstein metrics and algebraic geometry Simon Donaldson Abstract. This paper is a survey of some recent developments in the area described by the title, and follows the lines of the author’s lecture in the 2015 Harvard Current Developments in Mathematics meeting. The main focus of the paper is on the Yau conjecture relating the ex- istence of K¨ahler-Einstein metrics on Fano manifolds to K-stability. We discuss four different proofs of this, by different authors, which have ap- peared over the past few years. These involve an interesting variety of approaches and draw on techniques from different fields. Contents 1. Introduction 1 2. K-stability 3 3. Riemannian convergence theory and projective embeddings 6 4. Four proofs 11 References 23 1. Introduction General existence questions involving the Ricci curvature of compact K¨ahler manifolds go back at least to work of Calabi in the 1950’s [11], [12]. We begin by recalling some very basic notions in K¨ahler geometry. • All the K¨ahler metrics in a given cohomology class can be described in terms of some fixed reference metric ω0 and a potential function, that is (1) ω = ω0 + i∂∂φ. • A hermitian holomorphic line bundle over a complex manifold has a unique Chern connection compatible with both structures. A Her- −1 n mitian metric on the anticanonical line bundle KX =Λ TX is the same as a volume form on the manifold. When this volume form is derived from a K¨ahler metric the curvature of the Chern connection c 2016 International Press 1 2 S.
    [Show full text]
  • Arxiv:1705.02740V4 [Math.AG] 18 Dec 2018 Iease Oaqeto Se Yyce I Uigteamwo AIM the During 2017
    BOUNDEDNESS OF Q-FANO VARIETIES WITH DEGREES AND ALPHA-INVARIANTS BOUNDED FROM BELOW CHEN JIANG Abstract. We show that Q-Fano varieties of fixed dimension with anti-canonical degrees and alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable Q-Fano varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family. 1. Introduction Throughout the article, we work over an algebraically closed field of char- acteristic zero. A Q-Fano variety is defined to be a normal projective variety X with at most klt singularities such that the anti-canonical divisor KX is an ample Q-Cartier divisor. − When the base field is the complex number field, an interesting prob- lem for Q-Fano varieties is the existence of K¨ahler–Einstein metrics which is related to K-(semi)stability of Q-Fano varieties. It has been known that a Fano manifold X (i.e., a smooth Q-Fano variety over C) admits K¨ahler–Einstein metrics if and only if X is K-polystable by the works [DT92, Tia97, Don02, Don05, CT08, Sto09, Mab08, Mab09, Ber16] and [CDS15a, CDS15b, CDS15c, Tia15]. K-stability is stronger than K-polystability, and K-polystability is stronger than K-semistability. Hence K-semistable Q- Fano varieties are interesting for both differential geometers and algebraic geometers. It also turned out that K¨ahler–Einstein metrics and K-stability play cru- cial roles for construction of nice moduli spaces of certain Q-Fano varieties. For example, compact moduli spaces of smoothable K¨ahler–Einstein Q-Fano varieties have been constructed (see [OSS16] for dimension two case and [LWX14, SSY16, Oda15] for higher dimensional case).
    [Show full text]
  • Vanishing Theorems and Syzygies for K3 Surfaces and Fano Varieties
    VANISHING THEOREMS AND SYZYGIES FOR K3 SURFACES AND FANO VARIETIES F. J. Gallego and B. P. Purnaprajna May 26, 1996 Abstract. In this article we prove some strong vanishing theorems on K3 surfaces. As an application of them, we obtain higher syzygy results for K3 surfaces and Fano varieties. 1. Introduction In this article we prove some vanishing theorems on K3 surfaces. An application of the vanishing theorems is a result on higher syzygies for K3 surfaces and Fano varieties. One part of our results fits a meta-principle stating that if L is a line bundle that is a product of (p+1) ample and base point free line bundles satisfying certain conditions, then L satisfies the condition Np ( a condition on the free resolution of the homogeneous coordinate ring of X embedded by L). Other illustrations of this meta-principle have been given in [GP1], [GP2] and [GP3]. The condition Np may be interpreted, through Koszul cohomology, as a vanishing condition on a certain vector bundle. arXiv:alg-geom/9608008v1 7 Aug 1996 The other part of our results provides strong vanishing theorems that imply, in particular, the vanishing needed for Np. We also prove stronger variants of the principle stated above for K3 surfaces and Fano varieties. Before stating our results in detail, we recall some key results in this area, namely the normal generation and normal presentation on K3 surfaces due to Mayer and St.Donat. Mayer and St. Donat proved that if L is a globally generated line bundle on a K3 surface X such that the general member in the linear system is a non hyperelliptic curve of genus g ≥ 3, then L is normally generated (in other words, the homogeneous coordinate ring of X in projective space P(H0(L)) is projectively normal).
    [Show full text]
  • Lines, Conics, and All That Ciro Ciliberto, M Zaidenberg
    Lines, conics, and all that Ciro Ciliberto, M Zaidenberg To cite this version: Ciro Ciliberto, M Zaidenberg. Lines, conics, and all that. 2020. hal-02318018v3 HAL Id: hal-02318018 https://hal.archives-ouvertes.fr/hal-02318018v3 Preprint submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LINES, CONICS, AND ALL THAT C. CILIBERTO, M. ZAIDENBERG To Bernard Shiffman on occasion of his seventy fifths birthday Abstract. This is a survey on the Fano schemes of linear spaces, conics, rational curves, and curves of higher genera in smooth projective hypersurfaces, complete intersections, Fano threefolds, on the related Abel-Jacobi mappings, etc. Contents Introduction 1 1. Counting lines on surfaces 2 2. The numerology of Fano schemes 3 3. Geometry of the Fano scheme 6 4. Counting conics in complete intersection 8 5. Lines and conics on Fano threefolds and the Abel-Jacobi mapping 11 5.1. The Fano-Iskovskikh classification 11 5.2. Lines and conics on Fano threefolds 12 5.3. The Abel-Jacobi mapping 14 5.4. The cylinder homomorphism 16 6. Counting rational curves 17 6.1. Varieties of rational curves in hypersurfaces 17 6.2.
    [Show full text]
  • All Complete Intersection Varieties Are Fano Visitors 3
    ALL COMPLETE INTERSECTION VARIETIES ARE FANO VISITORS YOUNG-HOON KIEM, IN-KYUN KIM, HWAYOUNG LEE, AND KYOUNG-SEOG LEE Abstract. We prove that the derived category of a smooth complete inter- section variety is equivalent to a full subcategory of the derived category of a smooth projective Fano variety. This enables us to define some new invariants of smooth projective varieties and raise many interesting questions. 1. Introduction In recent years, derived categories of projective varieties attracted tremendous interest among algebraic geometers as well as physicists. Fano varieties in particular have been most intensively studied because their derived categories (1) determine the varieties completely due to the reconstruction theorem of Bondal and Orlov and (2) have canonical semiorthogonal decompositions by canonical exceptional collections of line bundles by the Kodaira vanishing theorem. Moreover, the de- rived categories of many Fano varieties of low dimension have been calculated quite explicitly. Often the derived categories of Fano varieties are big enough to contain interest- ing subcategories. For example, the derived categories of hyperelliptic curves are full subcategories of the derived categories of intersections of two quadrics (cf. [6]) and the derived categories of some special cubic 4-folds contain the derived cate- gories of K3 surfaces (cf. [17]). These results provide derived category theoretic explanations for the corresponding geometric results of [10, 27] and [3]. Analysis of derived categories may tell us where to dig (or where not to dig) when we are searching for a specific type of varieties. In 2011, Bondal raised the following question (cf. [5]). Question 1.1. (Fano visitor problem) arXiv:1503.00125v2 [math.AG] 29 Apr 2015 Let Y be a smooth projective variety.
    [Show full text]
  • Chapter V. Fano Varieties
    Chapter V. Fano Varieties A variety X is called Fano if the anticanonical bundle of X is ample. Thus Fano surfaces are the same as Del pezzo surfaces. The importance of Fano varieties in the theory of higher dimensional varieties is similar to the sig­ nificance of Del Pezzo surfaces in the two dimensional theory. The interest in Fano varieties increased recently since Mori's program predicts that every uniruled variety is birational to a fiberspace whose general fiber is a Fano variety (with terminal singularities). From this point of view it is more important to study the general prop­ erties of Fano varieties with terminal singularities than to understand the properties of smooth Fano varieties. At the moment, however, we know much more about smooth Fano varieties, and their theory should serve as a guide to the more subtle questions of singular Fano varieties. Fano varieties also appear naturally as important examples of varieties. In characteristic zero every projective variety which is homogeneous under a linear algebraic group is Fano (1.4), and their study is indispensable for the theory of algebraic groups. Also, Fano varieties have a very rich internal geometry, which makes their study very rewarding. This is one of the reasons for the success of the theory of Fano threefolds. This is a beautiful subject, about which I say essentially nothing. Section 1 is devoted to presenting the basic examples of Fano varieties and to the study of low degree rational curves on them. The largest class of examples are weighted complete intersections (1.2-3); these are probably the most accessible by elementary methods.
    [Show full text]
  • THÈSE DE DOCTORAT L'université Paris-Saclay Sur Certains Aspects
    NNT : 2019SACLS144 THÈSE DE DOCTORAT de l’Université Paris-Saclay École doctorale de mathématiques Hadamard (EDMH, ED 574) Établissement d’inscription : Université Paris-Sud Laboratoire d’accueil : Laboratoire de mathématiques d’Orsay, UMR 8628 CNRS Spécialité de doctorat : Mathématiques fondamentales Salim TAYOU Sur certains aspects géométriques et arithmétiques des variétés de Shimura orthogonales Date de soutenance : 17 juin 2019 Fabrizio ANDREATTA (Université de Milan) Après avis des rapporteurs : Daniel HUYBRECHTS (Université de Bonn) Ekaterina AMERIK (Université Paris-Sud) Examinatrice François CHARLES (Université Paris-Sud) Directeur de thèse Gerard FREIXAS (Sorbonne université) Examinateur Jury de soutenance : Daniel HUYBRECHTS (Université de Bonn) Rapporteur Emmanuel ULLMO (IHES) Président Claire VOISIN (Collège de France) Examinatrice 2 Remerciements Ma gratitude va tout d’abord à mon directeur de thèse, François Charles. Au delà de sa disponibilité et de la générosité avec laquelle il partage ses idées, il a su me guider durant ces années de thèse avec ses encouragements, sa bienveillance, ses remarques et ses questions émanant d’une grande intuition mathématique. La limpidité et la clarté de ses exposés m’ont par ailleurs toujours impressionné. Ce fut pour moi un plaisir et un honneur d’être son étudiant. Je remercie Fabrizio Andreatta et Daniel Huybrechts qui ont accepté de relire cette thèse. Leurs remarques et leurs commentaires m’ont été précieux. Ekaterina Amerik, Gerard Freixas, Emmanuel Ullmo et Claire Voisin me font l’honneur de faire partie du jury, et je les remercie vivement pour cela. Ces années de thèse ont été très riches en discussions mathématiques et je tiens à remercier toutes les personnes, trop nombreuses pour être toutes citées ici, avec qui j’ai eu le plaisir de discuter.
    [Show full text]
  • Fano Varieties; Iskovskih's Classification
    Fano varieties; Iskovskih’s classification Ekaterina Amerik For details and extensive bibliography, we refer to [2], chapter V, and [1]. A Fano variety is a projective manifold X such that the anticanonical line bundle −1 p,0 0,p KX is ample. By Kodaira vanishing, the Hodge numbers h (X) = h (X) are zero for p 6= 0. Furthermore, Fano manifolds are simply connected (this is implied for example by their property to be rationally connected; see the main article on rational curves and uniruled varieties). Simplest examples are obtained by taking smooth complete intersections of type n (m1, m2, . , mk) in P . By adjunction formula, such a complete intersection is Fano P if and only if i mi ≤ n. A larger class of examples is that of complete intersections n+1 ∗ ∗ in a weighted projective space P(a0, a1, . , an) (this is (C − 0)/C , where C acts with weights a0, a1, . , an; it is singular when not isomorphic to a usual projective space, but we consider complete intersections avoiding the singularities) : the Fano P P condition amounts then to i mi < i ai. Rational homogeneous varieties G/H (G semisimple, H parabolic) are Fano, too. A Fano curve is, obviously, P1. If n = dim(X) = 2 and X is Fano, then X is called a Del Pezzo surface. Such surfaces have been classically studied, and it is well-known that any such X is isomorphic either to P2, or to P1 ×P1, or to P2 blown up in d points (1 ≤ d ≤ 8) in general position, ”general position” meaning here that no three points are on a line and no six on a conic.
    [Show full text]
  • Arxiv:1709.09238V3 [Math.AG] 5 Mar 2021 Xmlso Ahlgclvreisvoaigte N Osuytheir [Dcf15])
    KAWAMATA-VIEHWEG VANISHING FAILS FOR LOG DEL PEZZO SURFACES IN CHARACTERISTIC 3 FABIO BERNASCONI Abstract. We construct a klt del Pezzo surface in characteristic three violating the Kawamata-Viehweg vanishing theorem. As a consequence we show that there exists a Kawamata log terminal threefold singularity which is not Cohen-Macaulay in characteristic three. Contents 1. Introduction 1 2. Preliminaries 3 2.1. Notation 3 2.2. Frobenius splitting 5 2.3. A cone construction for Weil Q-Cartier divisors 6 3. A Keel-McKernan surface in characteristic three 9 3.1. Construction 9 3.2. Failure of the Kawamata-Viehweg vanishing theorem 12 4. A klt threefold singularity not CM in characteristic three 13 5. Kodaira-type vanishing for klt del Pezzo surfaces 15 References 19 arXiv:1709.09238v3 [math.AG] 5 Mar 2021 1. Introduction In characteristic zero one of the main technical tool used to estab- lish the Minimal Model Program (MMP for short) is the Kawamata- Viehweg vanishing theorem. Unfortunately, vanishing theorems are known to fail in general for varieties defined over fields of positive characteristic and a great amount of work has been done to construct examples of pathological varieties violating them and to study their geography (see for example [Ray78], [Eke88], [Muk13] and [dCF15]). 2020 Mathematics Subject Classification. 14E30, 14G17, 14J17, 14J45. Key words and phrases. Log del Pezzo surfaces, vanishing theorems, Kawamata log terminal singularities, positive characteristic. 1 2 FABIOBERNASCONI In this context, varieties of Fano type over perfect fields of charac- teristic p > 0 violating Kodaira-type vanishing theorems seem rather rare and in fact are conjectured to exist only for small primes in each dimension.
    [Show full text]
  • On the Birational Geometry of Singular Fano Varieties
    On the birational geometry of singular Fano varieties Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Ewan Johnstone under the supervision of Professor Aleksandr Pukhlikov Department of Mathematical Sciences University of Liverpool United Kingdom April 2017 2 Contents Abstract . .5 Acknowledgement . .6 Introduction . .7 1 Background 13 1 Varieties in projective space . 14 2 Rational maps on quasi-projective varieties . 17 3 Singularities of algebraic varieties . 23 4 Divisors and linear systems . 27 5 Fano varieties . 33 6 Algebraic cycles and intersection theory . 35 2 Methods 41 1 Birational Rigidity . 42 2 The Noether-Fano inequality . 47 3 The technique of counting multiplicities . 52 4 Inversion of adjunction . 61 5 The cone technique . 67 3 Birationally rigid singular double quadrics and cubics 71 1 Introduction . 72 2 Fano double quadrics . 74 3 Fano double cubics . 79 Conclusion and Further Work 85 3 4 Bibliography 89 On the birational geometry of singular Fano varieties Ewan Johnstone Abstract This thesis investigates the birational geometry of a class of higher dimen- sional Fano varieties of index 1 with quadratic hypersurface singularities. The main investigating question is, what structures of a rationally connected fibre space can these varieties have? Two cases are considered: double cov- ers over a hypersurface of degree two, known as double quadrics and double covers over a hypersurface of degree three, known as double cubics. This thesis extends the study of double quadrics and cubics, first studied in the non-singular case by Iskovskikh and Pukhlikov, by showing that these vari- eties have the property of birational superrigidity, under certain conditions on the singularities of the branch divisor.
    [Show full text]
  • Ad Honorem Claire Voisin Arnaud Beauville, Guest Editor
    Ad Honorem Claire Voisin Arnaud Beauville, Guest Editor For permission to reprint this article, please contact: [email protected]. DOI: http://dx.doi.org/10.1090/noti1665 390 Notices of the AMS Volume 65, Number 4 laire Voisin is a world leader in algebraic Ekaterina Amerik geometry. After a PhD thesis under Arnaud Beauville at Orsay, she entered CNRS, where she On Claire Voisin as a Role Model for My stayed until 2016, when she became professor Generation at the prestigious Collège de France. Upon the fall of the USSR, along with many other Russian CThe dominant theme of her work is Hodge theory, graduates who wanted to go on with scientific research, in particular, its application to concrete classical prob- I left Russia. One of the first things my thesis advisor, lems. She solved the Kodaira problem by constructing A. Van de Ven, of Leiden University, told me was, “At a compact Kähler manifold that cannot be obtained by some point you should go to Paris. To Claire Voisin.” deforming a projective manifold. In Noether-Lefschetz The prospect of going to Paris at some point was theory she proved existence results for subvarieties of terrific. Naturally, I thought of Claire Voisin as a a given projective variety. She made important advances venerable professor, possibly a bit younger than Van on the integral Hodge conjecture, leading to a break- de Ven himself, in his early sixties at the time, and through on the Lüroth problem on rationality questions. probably single: the common knowledge in Russia She proved the Green conjecture for a general curve and was that those very rare women who successfully deep results on hyperkähler manifolds.
    [Show full text]
  • The Degree of Irrationality of Hypersurfaces in Various Fano Varieties
    manuscripta math. 161, 377–408 (2020) © Springer-Verlag GmbH Germany, part of Springer Nature 2019 David Stapleton · Brooke Ullery The degree of irrationality of hypersurfaces in various Fano varieties Received: 3 May 2018 / Accepted: 21 December 2018 / Published online: 9 January 2019 Abstract. The purpose of this paper is to compute the degree of irrationality of hypersurfaces of sufficiently high degree in various Fano varieties: quadrics, Grassmannians, products of projective space, cubic threefolds, cubic fourfolds, and complete intersection threefolds of type (2,2). This extends the techniques of Bastianelli, De Poi, Ein, Lazarsfeld, and the second author who computed the degree of irrationality of hypersurfaces of sufficiently high degree in projective space. A theme in the paper is that the fibers of low degree rational maps from the hypersurfaces to projective space tend to lie on curves of low degree contained in the Fano varieties. This allows us to study these maps by studying the geometry of curves in these Fano varieties. Introduction The degree of irrationality of an n-dimensional algebraic variety X, denoted irr(X), is the minimal degree of a dominant rational map φ : XPn. The aim of this paper is to compute the degree of irrationality of hypersurfaces in various Fano varieties: quadrics, cubic threefolds, cubic fourfolds, complete intersection threefolds of type (2,2), Grassmannians, and products of projective spaces. Throughout we work with varieties over C. Recently there has been a great deal of interest in understanding different mea- sures of irrationality of higher dimensional varieties. Bastianelli, Cortini, and De Poi conjectured ([1, Conj. 1.5]) that if X is a very general d hypersurface n+1 X = Xd ⊂ P with d ≥ 2n + 1, then irr(X) = d − 1.
    [Show full text]