Caucher Birkar's Work in Birational Algebraic Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Caucher Birkar's Work in Birational Algebraic Geometry P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (61–70) CAUCHER BIRKAR’S WORK IN BIRATIONAL ALGEBRAIC GEOMETRY C D. H Abstract On Wednesday, August 1st 2018, Caucher Birkar was awarded the Fields Medal for his contributions to the minimal model program and his proof of the bounded- ness of -log canonical Fano varieties. In this note I will discuss some of Birkar’s main achievements. Algebraic geometry studies the solution sets of systems of polynomial equations. A N complex projective variety is a subset of PC defined by homogeneous equations N X = V (P1;:::;Pr ) P C where Pi C[x0; : : : ; xN ] are homogeneous polynomials of degree di . Here 2 V (P1;:::;Pr ) is the vanishing set of the polynomials Pi and N N +1 P := C (0;:::; 0) /C C n f g is N -dimensional complex projective space. Two non-zero vectors c;¯ c¯ CN +1 0 2 n (0;:::; 0) are equivalent c¯ ∼ c¯ if there is a non-zero constant C such that f g 0 2 c¯ = c¯0. If c¯ = (c0; : : : ; cN ), then the corresponding equivalence class is denoted N by [c0 : ::: : cN ] P . Typically we assume that X is irreducible (i.e. not the 2 C union of two proper subvarieties) and reduced so that if P C[x0; : : : ; xN ] is an ho- 2 mogeneous polynomial vanishing along X, then P belongs to the ideal (P1;:::;Pr ) C[x0; : : : ; xN ]. We say that a variety is non-singular (of dimension d) at a point x X 2 if locally analytically it is isomorphic to an open subset of Cd . A variety X is smooth if it is non-singular at all of its points. In this case we can view X as a complex manifold. It is natural to try to classify smooth complex projective varieties up to isomorphism. The most natural invariant to consider is the dimension of a given variety. If dim X = 0, then X is a point, so the first interesting case to consider is when dim X = 1. In this case we say that X is a curve. Curves are compact orientable Riemann surfaces which 0 1 are topologically classified by their genus g = dim H (ΩX ). There are 3 main cases to consider: • g = 0: In this case X P 1 . Š C MSC2010: 14E30. Keywords: Minimal model program, flips, Fano varieties, canonical ring. 61 62 CHRISTOPHER D. HACON • g = 1: In this case X is an elliptic curve, belonging to a 1 parameter family 2 2 X = V (x(x z)(x z) zy ) P where C 0; 1 . C 2 n f g • g 2: In this case we say that X is a curve of general type. For fixed g there is a 3g 3-dimensional algebraic family of these curves. Interestingly, the above subdivision in to 3 cases captures many of the properties of curves in a variety of contexts such as topology, differential geometry, and number the- ory. Naturally, one would like to extend these classification results to higher dimensions. One of the main tools used in the study of projective varieties is the canonical line bundle dimX !X = (T _): ^ X 1 0 Note that if dim X = 1, then !X = ΩX and so dim H (!X ) = g recovers the genus of the curve X. In higher dimensions it is better to consider the canonical ring 0 m R(!X ) := M H (!X˝ ): m 0 0 m For any m > 0 such that H (!˝ ) 0 we obtain a rational map X ¤ N m : X Ü P ; x Ü [s0(x): ::: : sN (x)] 0 m where s0; : : : ; sN is a basis of H (!X˝ ) and the map is defined at every point such that si (x) 0 for some 0 i N . ¤ Ä Ä When dim X = 1 we have that: • g = 0: !X = !P 1 OP 1 ( 2) so that R(!X ) C. C Š C Š • g = 1: !X OX so that R(!X ) C[t]. Š Š k • g 2: !X is a line bundle of degree 2g 2 > 0 and in fact !X˝ is very ample N for k 3 which means that k : X, P is an embedding. ! C Not surprisingly, in higher dimensions, dim X 2, there are many additional diffi- culties. One important issue is that given any smooth variety X and any smooth subva- riety Z X of codimension 2, one can define f : X := blZ(X) X the blow up 0 ! of X along Z which is an isomorphism over X Z and n 1 E := f (Z) P(NZX) Z Š ! c is a fiber space whose fibers are projective spaces P of dimension c = codimX (Z) 1. C We say that E is an exceptional divisor, i.e. a codimension 1 subvariety contained in the locus where f is not an isomorphism. Note that X and blZ(X) share many important geometric properties. For example, it is easy to see that they have isomorphic canonical rings R(!X ) R(!X ) and fundamental groups 1(X) 1(X ), however they are Š 0 Š 0 not homeomorphic. For this reason, it is natural to consider the equivalence relation generated by this operation. We say that two varieties X and X 0 are birational if they CAUCHER BIRKAR’S WORK IN BIRATIONAL ALGEBRAIC GEOMETRY 63 have isomorphic (non-empty) open subsets U X and U X such that U U . 0 0 Š 0 Equivalently one sees that X and X 0 are birational if and only if they have isomorphic fields of rational functions C(X) C(X ). The main goal of birational geometry is to Š 0 classify projective varieties up to birational isomorphism. The strategy is as follows. Starting with a (irreducible and reduced) variety X P N of dimension d := dim X, by Hironaka’s theorem, there exists X X a finite C 0 ! sequence of blow ups along smooth centers of X, such that X 0 is smooth and birational to X. Thus we may assume that X is smooth and consider the canonical ring R(!X ) = 0 m Lm 0 H (!X˝ ): The Kodaira dimension of X is given by Ä(X) := tr:deg: R(!X ) 1 1; 0; 1;:::; dim X : C 2 f g Equivalently, we have that Ä(X) is the maximum dimension of the image of X under the pluricanonical maps k for k N. For example if dim X = 1, then Ä(X) = 1; 0; 2 or 1 is equivalent to g(X) = 0; 1, or 2, which recovers the above subdivision in to three separate cases. N For a simple higher dimensional example, consider Xk PC a smooth hypersurface N of degree k. Then !Xk OP N (k N 1) Xk where OP N (l) is the line bundle on P Š C j C C corresponding to homogeneous polynomials of degree l and OP N (l) X is its restriction C j to a subvariety X P N . It is then easy to see that there are three cases depending on C whether !X is negative, zero or positive. • k N : we have R(!X ) C so that Ä(X) = 1, Ä k Š • k = N + 1: we have R(!X ) C[t] so that Ä(X) = 0, and k Š • k > N + 1: then !Xk is very ample so that Ä(X) = dim X. Further examples that include all possible values of the Kodaira dimension Ä(X) 2 1; 0; 1;:::; dim X can be easily constructed by considering the product of two vari- f g eties X Y . If min Ä(X);Ä(Y ) = 1, then Ä(X Y ) = 1. Otherwise, Ä(X Y ) = f g Ä(X) + Ä(Y ). One of the most natural and important questions in birational algebraic geometry is, for any birational equivalence class, to produce a distinguished representative with good geometric properties. In dimension 2 this was achieved by the Italian school of algebraic geometry at the beginning of the 20-th century and in dimension 3 it was finally proven by S. Mori and others in the 1980’s Mori [1988]. Around the same time the minimal model program (MMP) was established by work of Y. Kawamata, J. Kollár, S. Mori, M. Reid, V. Shokurov and others. The MMP is a general framework that aims to extend the birational classification results in dimension 2 and 3 to all dimensions. This program has not been completed in full generality, but there has been some recent spectacular progress. Perhaps the most exciting result in this direction is the following result on the finite generation of canonical rings. Theorem 1 (Birkar, Cascini, Hacon, and McKernan [2010], Hacon and McKernan [2010], and Siu [2008]). If X is a smooth complex projective variety, then its canonical ring R(!X ) is finitely generated. 64 CHRISTOPHER D. HACON Of course this answers one of the most natural questions about the canonical ring, but it also has a number of important consequences that have greatly improved our understanding of birational geometry. For example we have the following. Corollary 2 (Birkar, Cascini, Hacon, and McKernan [2010]). If X is a smooth complex projective variety of general type (so that Ä(X) = dim X), then X has a canonical model Xcan and a minimal model Xmin. The canonical model is a unique distinguished representative of the birational equiv- alence class of X which is given by Xcan := ProjR(!X ): One can think of Xcan as being defined by the generators and relations of the canonical ring R(!X ): Unfortunately, there are many examples where Xcan is (mildly) singular.
Recommended publications
  • Recent Results in Higher-Dimensional Birational Geometry
    Complex Algebraic Geometry MSRI Publications Volume 28, 1995 Recent Results in Higher-Dimensional Birational Geometry ALESSIO CORTI ct. Abstra This note surveys some recent results on higher-dimensional birational geometry, summarising the views expressed at the conference held at MSRI in November 1992. The topics reviewed include semistable flips, birational theory of Mori fiber spaces, the logarithmic abundance theorem, and effective base point freeness. Contents 1. Introduction 2. Notation, Minimal Models, etc. 3. Semistable Flips 4. Birational theory of Mori fibrations 5. Log abundance 6. Effective base point freeness References 1. Introduction The purpose of this note is to survey some recent results in higher-dimensional birational geometry. A glance to the table of contents may give the reader some idea of the topics that will be treated. I have attempted to give an informal presentation of the main ideas, emphasizing the common grounds, addressing a general audience. In 3, I could not resist discussing some details that perhaps § only the expert will care about, but hopefully will also introduce the non-expert reader to a subtle subject. Perhaps the most significant trend in Mori theory today is the increasing use, more or less explicit, of the logarithmic theory. Let me take this opportunity This work at the Mathematical Sciences Research Institute was supported in part by NSF grant DMS 9022140. 35 36 ALESSIO CORTI to advertise the Utah book [Ko], which contains all the recent software on log minimal models. Our notation is taken from there. I have kept the bibliography to a minimum and made no attempt to give proper credit for many results.
    [Show full text]
  • Caucher Birkar — from Asylum Seeker to Fields Medal Winner at Cambridge
    MATHS, 1 Caucher Birkar, 41, at VERSION Cambridge University, photographed by Jude Edginton REPR O OP HEARD THE ONE ABOUT THE ASYLUM SEEKER SUBS WHO WANDERED INTO A BRITISH UNIVERSITY... A RT AND CAME OUT A MATHS SUPERSTAR? PR ODUCTION CLIENT Caucher Birkar grew up in a Kurdish peasant family in a war zone and arrived in Nottingham as a refugee – now he has received the mathematics equivalent of the Nobel prize. By Tom Whipple BLACK YELLOW MAGENTA CYAN 91TTM1940232.pgs 01.04.2019 17:39 MATHS, 2 VERSION ineteen years ago, the mathematics Caucher Birkar in Isfahan, Receiving the Fields Medal If that makes sense, congratulations: you department at the University of Iran, in 1999 in Rio de Janeiro, 2018 now have a very hazy understanding of Nottingham received an email algebraic geometry. This is the field that from an asylum seeker who Birkar works in. wanted to talk to someone about The problem with explaining maths is REPR algebraic geometry. not, or at least not always, the stupidity of his They replied and invited him in. listeners. It is more fundamental than that: O OP N So it was that, shortly afterwards, it is language. Mathematics is not designed Caucher Birkar, the 21-year-old to be described in words. It is designed to be son of a Kurdish peasant family, described in mathematics. This is the great stood in front of Ivan Fesenko, a professor at triumph of the subject. It was why a Kurdish Nottingham, and began speaking in broken asylum seeker with bad English could convince SUBS English.
    [Show full text]
  • Introduction to Birational Geometry of Surfaces (Preliminary Version)
    INTRODUCTION TO BIRATIONAL GEOMETRY OF SURFACES (PRELIMINARY VERSION) JER´ EMY´ BLANC (Very) quick introduction Let us recall some classical notions of algebraic geometry that we will need. We recommend to the reader to read the first chapter of Hartshorne [Har77] or another book of introduction to algebraic geometry, like [Rei88] or [Sha94]. We fix a ground field k. All results of the first 4 sections work over any alge- braically closed field, and a few also on non-closed fields. In the last section, the case of all perfect fields will be discussed. For our purpose, the characteristic is not important. n n 0.1. Affine varieties. The affine n-space Ak, or simply A , is the set of n-tuples n of elements of k. Any point x 2 A can be written as x = (x1; : : : ; xn), where x1; : : : ; xn 2 k are the coordinates of x. An algebraic set X ⊂ An is the locus of points satisfying a set of polynomial equations: n X = (x1; : : : ; xn) 2 A f1(x1; : : : ; xn) = ··· = fk(x1; : : : ; xn) = 0 where each fi 2 k[x1; : : : ; xn]. We denote by I(X) ⊂ k[x1; : : : ; xn] the set of polynomials vanishing along X, it is an ideal of k[x1; : : : ; xn], generated by the fi. We denote by k[X] or O(X) the set of algebraic functions X ! k, which is equal to k[x1; : : : ; xn]=I(X). An algebraic set X is said to be irreducible if any writing X = Y [ Z where Y; Z are two algebraic sets implies that Y = X or Z = X.
    [Show full text]
  • Birational Geometry of Algebraic Varieties
    Proc. Int. Cong. of Math. – 2018 Rio de Janeiro, Vol. 1 (563–588) BIRATIONAL GEOMETRY OF ALGEBRAIC VARIETIES Caucher Birkar 1 Introduction This is a report on some of the main developments in birational geometry in recent years focusing on the minimal model program, Fano varieties, singularities and related topics, in characteristic zero. This is not a comprehensive survey of all advances in birational geometry, e.g. we will not touch upon the positive characteristic case which is a very active area of research. We will work over an algebraically closed field k of characteristic zero. Varieties are all quasi-projective. Birational geometry, with the so-called minimal model program at its core, aims to classify algebraic varieties up to birational isomorphism by identifying “nice” elements in each birational class and then classifying such elements, e.g study their moduli spaces. Two varieties are birational if they contain isomorphic open subsets. In dimension one, a nice element in a birational class is simply a smooth and projective element. In higher dimension though there are infinitely many such elements in each class, so picking a rep- resentative is a very challenging problem. Before going any further lets introduce the canonical divisor. 1.1 Canonical divisor. To understand a variety X one studies subvarieties and sheaves on it. Subvarieties of codimension one and their linear combinations, that is, divisors play a crucial role. Of particular importance is the canonical divisor KX . When X is smooth this is the divisor (class) whose associated sheaf OX (KX ) is the canonical sheaf !X := det ΩX where ΩX is the sheaf of regular differential forms.
    [Show full text]
  • Kähler-Einstein Metrics and Algebraic Geometry
    Current Developments in Mathematics, 2015 K¨ahler-Einstein metrics and algebraic geometry Simon Donaldson Abstract. This paper is a survey of some recent developments in the area described by the title, and follows the lines of the author’s lecture in the 2015 Harvard Current Developments in Mathematics meeting. The main focus of the paper is on the Yau conjecture relating the ex- istence of K¨ahler-Einstein metrics on Fano manifolds to K-stability. We discuss four different proofs of this, by different authors, which have ap- peared over the past few years. These involve an interesting variety of approaches and draw on techniques from different fields. Contents 1. Introduction 1 2. K-stability 3 3. Riemannian convergence theory and projective embeddings 6 4. Four proofs 11 References 23 1. Introduction General existence questions involving the Ricci curvature of compact K¨ahler manifolds go back at least to work of Calabi in the 1950’s [11], [12]. We begin by recalling some very basic notions in K¨ahler geometry. • All the K¨ahler metrics in a given cohomology class can be described in terms of some fixed reference metric ω0 and a potential function, that is (1) ω = ω0 + i∂∂φ. • A hermitian holomorphic line bundle over a complex manifold has a unique Chern connection compatible with both structures. A Her- −1 n mitian metric on the anticanonical line bundle KX =Λ TX is the same as a volume form on the manifold. When this volume form is derived from a K¨ahler metric the curvature of the Chern connection c 2016 International Press 1 2 S.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Cox Rings and Partial Amplitude Permalink https://escholarship.org/uc/item/7bs989g2 Author Brown, Morgan Veljko Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Cox Rings and Partial Amplitude by Morgan Veljko Brown A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, BERKELEY Committee in charge: Professor David Eisenbud, Chair Professor Martin Olsson Professor Alistair Sinclair Spring 2012 Cox Rings and Partial Amplitude Copyright 2012 by Morgan Veljko Brown 1 Abstract Cox Rings and Partial Amplitude by Morgan Veljko Brown Doctor of Philosophy in Mathematics University of California, BERKELEY Professor David Eisenbud, Chair In algebraic geometry, we often study algebraic varieties by looking at their codimension one subvarieties, or divisors. In this thesis we explore the relationship between the global geometry of a variety X over C and the algebraic, geometric, and cohomological properties of divisors on X. Chapter 1 provides background for the results proved later in this thesis. There we give an introduction to divisors and their role in modern birational geometry, culminating in a brief overview of the minimal model program. In chapter 2 we explore criteria for Totaro's notion of q-amplitude. A line bundle L on X is q-ample if for every coherent sheaf F on X, there exists an integer m0 such that m ≥ m0 implies Hi(X; F ⊗ O(mL)) = 0 for i > q.
    [Show full text]
  • Arxiv:1705.02740V4 [Math.AG] 18 Dec 2018 Iease Oaqeto Se Yyce I Uigteamwo AIM the During 2017
    BOUNDEDNESS OF Q-FANO VARIETIES WITH DEGREES AND ALPHA-INVARIANTS BOUNDED FROM BELOW CHEN JIANG Abstract. We show that Q-Fano varieties of fixed dimension with anti-canonical degrees and alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable Q-Fano varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family. 1. Introduction Throughout the article, we work over an algebraically closed field of char- acteristic zero. A Q-Fano variety is defined to be a normal projective variety X with at most klt singularities such that the anti-canonical divisor KX is an ample Q-Cartier divisor. − When the base field is the complex number field, an interesting prob- lem for Q-Fano varieties is the existence of K¨ahler–Einstein metrics which is related to K-(semi)stability of Q-Fano varieties. It has been known that a Fano manifold X (i.e., a smooth Q-Fano variety over C) admits K¨ahler–Einstein metrics if and only if X is K-polystable by the works [DT92, Tia97, Don02, Don05, CT08, Sto09, Mab08, Mab09, Ber16] and [CDS15a, CDS15b, CDS15c, Tia15]. K-stability is stronger than K-polystability, and K-polystability is stronger than K-semistability. Hence K-semistable Q- Fano varieties are interesting for both differential geometers and algebraic geometers. It also turned out that K¨ahler–Einstein metrics and K-stability play cru- cial roles for construction of nice moduli spaces of certain Q-Fano varieties. For example, compact moduli spaces of smoothable K¨ahler–Einstein Q-Fano varieties have been constructed (see [OSS16] for dimension two case and [LWX14, SSY16, Oda15] for higher dimensional case).
    [Show full text]
  • Birational Geometry of the Moduli Spaces of Curves with One Marked Point
    The Dissertation Committee for David Hay Jensen Certi¯es that this is the approved version of the following dissertation: BIRATIONAL GEOMETRY OF THE MODULI SPACES OF CURVES WITH ONE MARKED POINT Committee: Sean Keel, Supervisor Daniel Allcock David Ben-Zvi Brendan Hassett David Helm BIRATIONAL GEOMETRY OF THE MODULI SPACES OF CURVES WITH ONE MARKED POINT by David Hay Jensen, B.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Ful¯llment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN May 2010 To Mom, Dad, and Mike Acknowledgments First and foremost, I would like to thank my advisor, Sean Keel. His sug- gestions, perspective, and ideas have served as a constant source of support during my years in Texas. I would also like to thank Gavril Farkas, Joe Harris, Brendan Hassett, David Helm and Eric Katz for several helpful conversations. iv BIRATIONAL GEOMETRY OF THE MODULI SPACES OF CURVES WITH ONE MARKED POINT Publication No. David Hay Jensen, Ph.D. The University of Texas at Austin, 2010 Supervisor: Sean Keel We construct several rational maps from M g;1 to other varieties for 3 · g · 6. These can be thought of as pointed analogues of known maps admitted by M g. In particular, they contract pointed versions of the much- studied Brill-Noether divisors. As a consequence, we show that a pointed 1 Brill-Noether divisor generates an extremal ray of the cone NE (M g;1) for these speci¯c values of g.
    [Show full text]
  • Effective Bounds for the Number of MMP-Series of a Smooth Threefold
    EFFECTIVE BOUNDS FOR THE NUMBER OF MMP-SERIES OF A SMOOTH THREEFOLD DILETTA MARTINELLI Abstract. We prove that the number of MMP-series of a smooth projective threefold of positive Kodaira dimension and of Picard number equal to three is at most two. 1. Introduction Establishing the existence of minimal models is one of the first steps towards the birational classification of smooth projective varieties. More- over, starting from dimension three, minimal models are known to be non-unique, leading to some natural questions such as: does a variety admit a finite number of minimal models? And if yes, can we fix some parameters to bound this number? We have to be specific in defining what we mean with minimal mod- els and how we count their number. A marked minimal model of a variety X is a pair (Y,φ), where φ: X 99K Y is a birational map and Y is a minimal model. The number of marked minimal models, up to isomorphism, for a variety of general type is finite [BCHM10, KM87]. When X is not of general type, this is no longer true, [Rei83, Example 6.8]. It is, however, conjectured that the number of minimal models up to isomorphism is always finite and the conjecture is known in the case of threefolds of positive Kodaira dimension [Kaw97]. In [MST16] it is proved that it is possible to bound the number of marked minimal models of a smooth variety of general type in terms of the canonical volume. Moreover, in dimension three Cascini and Tasin [CT18] bounded the volume using the Betti numbers.
    [Show full text]
  • Vanishing Theorems and Syzygies for K3 Surfaces and Fano Varieties
    VANISHING THEOREMS AND SYZYGIES FOR K3 SURFACES AND FANO VARIETIES F. J. Gallego and B. P. Purnaprajna May 26, 1996 Abstract. In this article we prove some strong vanishing theorems on K3 surfaces. As an application of them, we obtain higher syzygy results for K3 surfaces and Fano varieties. 1. Introduction In this article we prove some vanishing theorems on K3 surfaces. An application of the vanishing theorems is a result on higher syzygies for K3 surfaces and Fano varieties. One part of our results fits a meta-principle stating that if L is a line bundle that is a product of (p+1) ample and base point free line bundles satisfying certain conditions, then L satisfies the condition Np ( a condition on the free resolution of the homogeneous coordinate ring of X embedded by L). Other illustrations of this meta-principle have been given in [GP1], [GP2] and [GP3]. The condition Np may be interpreted, through Koszul cohomology, as a vanishing condition on a certain vector bundle. arXiv:alg-geom/9608008v1 7 Aug 1996 The other part of our results provides strong vanishing theorems that imply, in particular, the vanishing needed for Np. We also prove stronger variants of the principle stated above for K3 surfaces and Fano varieties. Before stating our results in detail, we recall some key results in this area, namely the normal generation and normal presentation on K3 surfaces due to Mayer and St.Donat. Mayer and St. Donat proved that if L is a globally generated line bundle on a K3 surface X such that the general member in the linear system is a non hyperelliptic curve of genus g ≥ 3, then L is normally generated (in other words, the homogeneous coordinate ring of X in projective space P(H0(L)) is projectively normal).
    [Show full text]
  • Positivity in Algebraic Geometry I
    Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 48 Positivity in Algebraic Geometry I Classical Setting: Line Bundles and Linear Series Bearbeitet von R.K. Lazarsfeld 1. Auflage 2004. Buch. xviii, 387 S. Hardcover ISBN 978 3 540 22533 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 1650 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Introduction to Part One Linear series have long stood at the center of algebraic geometry. Systems of divisors were employed classically to study and define invariants of pro- jective varieties, and it was recognized that varieties share many properties with their hyperplane sections. The classical picture was greatly clarified by the revolutionary new ideas that entered the field starting in the 1950s. To begin with, Serre’s great paper [530], along with the work of Kodaira (e.g. [353]), brought into focus the importance of amplitude for line bundles. By the mid 1960s a very beautiful theory was in place, showing that one could recognize positivity geometrically, cohomologically, or numerically. During the same years, Zariski and others began to investigate the more complicated be- havior of linear series defined by line bundles that may not be ample.
    [Show full text]
  • Resolutions of Quotient Singularities and Their Cox Rings Extended Abstract
    RESOLUTIONS OF QUOTIENT SINGULARITIES AND THEIR COX RINGS EXTENDED ABSTRACT MAKSYMILIAN GRAB The resolution of singularities allows one to modify an algebraic variety to obtain a nonsingular variety sharing many properties with the original, singular one. The study of nonsingular varieties is an easier task, due to their good geometric and topological properties. By the theorem of Hironaka [29] it is always possible to resolve singularities of a complex algebraic variety. The dissertation is concerned with resolutions of quotient singularities over the field C of complex numbers. Quotient singularities are the singularities occuring in quotients of algebraic varieties by finite group actions. A good local model of such a singularity n is a quotient C /G of an affine space by a linear action of a finite group. The study of quotient singularities dates back to the work of Hilbert and Noether [28], [40], who proved finite generation of the ring of invariants of a linear finite group action on a ring of polynomials. Other important classical result is due to Chevalley, Shephard and Todd [10], [46], who characterized groups G that yield non-singular quotients. Nowa- days, quotient singularities form an important class of singularities, since they are in some sense typical well-behaved (log terminal) singularities in dimensions two and three (see [35, Sect. 3.2]). Methods of construction of algebraic varieties via quotients, such as the classical Kummer construction, are being developed and used in various contexts, including higher dimensions, see [1] and [20] for a recent example of application. In the well-studied case of surfaces every quotient singularity admits a unique minimal resolution.
    [Show full text]