CORPS OF ENGINEERS. U. S. ARMY

SPILLWAY AND LOCK APPROACH

JIM WOODRUFF DAM ,

MODEL INVESTIGATION

TECHNICAL MEMORANDUM NO. 2-340

WATERWAYS EXPERIMENT STATION

VICKSBURG, MISSISSIPPI

ARMY·MRC VICKSBURG. MISS.

MAY 1952 .~;;~- -~ , : ~~~~e~~~:;~ ~~ ~~;~:~i~;~~i

--:=':'::':: :::==:== = :.::-_.- .__ . _ - -:-_==~~--=:;:=;.-

~ -::=..;=::--= -- .,... :.7"T::'i:T=--

I:Jb ~lII" ,. ~ .

FR ONTISPIECE . J im Woodruf f Dam i

PREFACE

Authority to conduct hydraulic model investigations of Jim

Woodruff Dam was granted by the Chief of Engineers in an indorsement dated 8 May 1946, to the District Engineer, Mobile District, CE. The studies were accomplished at the waterways Experiment Station during the period March 1948 - March 1949.

During the course of the tests Messrs. George Gaines, Co E. Bentzel,

R. P. Hobson, F. F. Escoffier, and G. F. Brown of the Mobile District, and Messrs. C. Po Lindner, G. H. Mittendorf, and R. W. Pierce of the

South Atlantic Division, visited the Waterways Experiment Station at frequent intervals to discuss test results and to correlate these re­ sults with design work concurrently under way in the District Office.

The investigations were conducted in the Hydraulics Division of the

Waterways Experiment Station by Messrs. E. S. Melsheimer, C. J. Powell, and C. W. Brasfeild, under the general supervision of Messrs. F. R. Brown and T. E. Murphy. iii

CONTENTS

FRONTISPIECE, Jim Woodruff Dam

PREFACE. i

SUMl\1ARY •• v

PART I: INTRODUCTION, 1

Design Features of Jim Woodruff Dam ...•••• •• 1 Need for Model Analysis .••••• 3

PART II: THE MODELS 5 Model-prototype Scale Relationships •. 5 Description •••••• 5

PART III: TESTS AND RESULTS 8

Upstream Lock Approach •••• 8 Forces on Barge TowS in Upper Lock Approach ••••••••• 15 Downstream Lock Approach •••• •• •, 16 Gated Spillway (Section Model) ••••••••'• 17 Open-crest Spillway (Section Model) • 25 Overflow Dike (Section Model) •• 28 Gated Spillway Operation 0 • • , . . 29 Cofferdam Stages •• 0 32 PART IV: DISCUSSION . . 34 TABLES 1-7

PLATES 1-72 v

SUMMARY

Model investigations of Jim Woodruff Dam were concerned with the hydraulic performance of the gated and open-crest spillways, the overflow dike, and navigation conditions in the upper and lower approaches to the locko Currents in the lock entrances and swell-head conditions at river stages overtopping the overflow dike were of particular interest. Four undistorted scale models were used in accompltshing the investigation:

(a) two section models vnlich reproduced to a scale of 1:30 a 30-ft portion of the open-crest spillway and a 30-ft section of the overflow dike, respectively; (b) a section model reproducing to a scale of 1:38.4 a 96-ft portion of the gated spillway; and (c) a comprehensive model which reproduced to a scale of 1:100 the two spillways and lock and a portion of the dikeo

It was determined from the model studies that certain alterations to the gated spillway and overflow dike appeared desirable in order to effect improvemepts in hydraulic performance and economies in construc- tiono The corrective features necessary to effectively and economically eliminate the hazardous cross currents existing in the upstream lock approach of original design were also determined from the model studies.

The alterations necessary for over-all improvement in performance of the

Jinl Woo~ruff Dam are summarized below~

a. A flat, broad-crested weir 12.5 ft wide with sloping upstream and downstream faces (type 2 design) to be used for the gated­ spillway sectiono Use of the type 2 weir also permits the end sill to 'be moved upstream 25 ft. This alteration furnished maximl@ spillway efficiency and considerable saving in con- struction costs.

bo A 10-ft-radius flip bucket to be added on the downstream face vi

of the overflow dike to prevent scouring attacks at the dike toe.

CQ Slotted guide walls with curtain walls in the slots located at elevation 68.0 and the area between the guide walls exca­ vated to elevation 5000 (type K approach) to be used in the upstream lock approach. SPILLVlAY AND LOCK APPROACH, JIM WOODRUFFDAM

APALACHICOLA RIVER , FLORI DA

Model Investigation

PART I : INTR ODUCTION

Design Features of Jim Woodr uf f Dam*

1 . Jim Woodr uf f Dam is under construction on the Apalachicola

River, appr oximat ely 1 , 000 ft downs tream from t he conf l uence of the

Chat t ahoochee and Fl i nt Rivers and about 0 .5 mi l es above Chattahoochee ,

Fl or ida. Figure 1 is a vi ci ni ty map of the area. The dam is one uni t of a compr ehensive plan to pr o- vide a 9-f t depth f or navigation on the Chat t ahoochee River f rom its mout h to Columbus , .

2 . The proposed structure wil l consist of a dam wi t h i t s axi s about nor mal t o t he river channel, providing at extreme :G UL F l ow f l ow a 33- f t pool di f f er en-

SCALE INMILES tial bet ween el evation 77 . 0 and 2 5 0 2 5 5 0 75 tO O 125 lJLX - -- 44 . 0**; and a r eservoi r ext ending Fig . 1 . Vicinit y map

* Inf or mat i on on the prot otype obtained from "Def i nite Pr oj ect Repor t , Jim Vloodr uf f Dam, Apalach icola River, Fl orida . "

** Al l elevati ons are i n f ee t above mean sea l evel. 2 up the to the vicinity of Columbia, Alabama, and up the to a point about 18 river miles above Bainbridge, Georgia.

The principal features of the dam from right to left bank are shown on plate 1 and consist of: (a) a conventional concrete gravity-type ogee overflow section with crest at elevation 79.0j (b) a single-lift lock 82 ft wide ·by 450 ft long with top of lock walls, guide and guard walls at elevation 82.0; (c) a gated spillway with crest at elevation 48.0, having sixteen 3005- by 40-ft split-leaf, vertical-lift gates operated by a gantry crane from a "bridge with deck at elevation 107.0; (d) a powerhouse for a 30,OOO-kw plant with intake section constituting a portion of the dam; (e) a grout-protected, riprapped, rolled-fill earth section with top at elevation 10700 adjoining the powerhouse to accommodate the high- tension switchyard and transmission substation; and (f) a grouted, riprap- protected rolled-fill overflow dike with crest at elevation 85.00

3. Alterations to the gated spillway were effected during the course of the model studies. Present plans call for the use of a flat broad-crested weir 1205 ft wide with sloping upstream and downstream faces.

Details of the spillway weir as modified are SL10wn on plate 2"

4. Data pertinent to the structural and hydraulic features of the

Jim Woodruff Dam, as originally designed, follow:

a o structural

Length of uncontrolled spillway 1584 ft Elevation of crest of uncontrolled spillway 79.0 Length of gated spillway (gross) 760 ft Length of gated spillway (net) 640 ft Elevation of crest of gated spillway 48.0 Elevation of spillway bucket (uncontrolled spillway) 69.4 Radius of spillway "bucket (uncontrolled spill~Tay) 8 ft 3

Elevation of stilling basin (gated spf.Ll.way) 15.0 Length of stilling basin (gated spillway) 38ft Size of lock 82 ft x 450 ft Lift (maximum) 33 ft Elevation top of lock walls 82.0 Elevation of lock floor 26.0

b • Hydraulic

Maxim~ estimated flood 1,210,000 cfs Maximum estimated head on crest (open-crest spillway) 34.9 ft Maximum estimated head on crest (gated spillway) 65.9 ft Maximum estimated flood stage (elev) 113-9 Maximum flood of record 273,000 cfs stage for maximum flood of record 83.1 Elevation of normal upper. lock pool 77.0 Elevation of normal lower lock pool 4400

Need for Model Analysis

5. The design of the Jim Woodruff Dam structures was based on sound theoretical design practice; however, concern was expressed as to flow conditions in the upper and lower lock approaches, and currents through the span of the existing highway bridge which crosses the river

channel about 0 0 4 mi below the dam 0 The difficulties and uncertainties inherent in an analytical solution of the effect of design features re- suited in model tests being accepted as the most reliable means of fore- casting the suitability of the individual designs for these elements.

A comprehensive model was constructed to investigate navigation condi- tions above and below the lock, and,to provide a basis for comparison between the current patterns created by the original design and those occurring with various alternate designs. Section model.s wer e used to study details of the various structures, particularly as they affected 4 energy dissipatton and discharge coefficients. The latter information was needed 'because available data on discharge coefficients for submerged flows such as will obtain at Jim Woodruff Dam were inconclusive. Also, discharge coefficients were particularly critical for the case at hand, since it was necessary to know the swell head at which the dike at elevation 85.0 will be overtopped in order to determine the amount of protection required for its downstream face. 5

PART II: THE MODELS

Model-prototype Scale Relationships

6. The accepted equations of hydraulic similitude, based on

Froude ls law, were used to express the mathematical relationships between dimensions and hydraulic quantities of the model and the prototype.

General relationships existing for the Jim Woodruff models are presented in the following table:

Comprehensive Dimension Ratio Model Section Models

Length Lr 1:100 1:30 1:38.4 L 2 Area ~ = r 1:10,000 1:900 1474.56 ~l/2 Velocity Vr = 1:10 1:5.477 1:6.197 5 2 Discharge Qr = Lr / 1:100,000 1.4929 1.9146

7. Measurements in the models of discharges, water-surface e1eva- tiona, velocities and pressures can be transferred quantitatively from model to prototype equivalents by means of the preceding scale relation- shf.ps , Evidences of scour, however, are to be considered as only quali- tatively reliable, since it has not been found possible to reproduce quantitatively in a model the resistance to erosion of a prototype 'bed material. Determination of the actual depth of scour to be expected in the prototype should be predicated upon magnitude of bottom velocities and the resistance to erosion of the prototype bed material.

Description

8. Four models were used in the investigation of the hydraulic 6 performance of Jim Woodruff Dam .One model was of the compre hensi ve t ype and r eproduced al l element s of the dam to permit investigation of general f low conditions. The three section models reproduced portions of the gated and open-crest spillways and over f l ow dike .

9. The comprehensive model wa s constructed t o a linear scale ratio of 1 :100 . I t was contained i n a reinforced concr ete flume , and repr oduced the l ock and dam structures, 2,000 f t of t he approach channel, 4 , 500 ft of the ex it channel, and sufficient overbank area to s imulate l ocal cond i t i ons affecting hydraul i c per f ormance of the structure (figs . 2 and 3). The portions of the model r epre senting the approach and exit channels , the spillway, and the over bank areas were molded i n cement mortar to sheet- metal t emplets. The sti l l ing basin, end s i l l, training wal ls, crest piers and powerhouse struct ure were mode led of wood and treated with a

Fig . 2. l :l OO-scal e comprehensive model . Direction of flow is from l eft t o right . 7 waterproof i ng compound to prevent expansion. The lock and guide walls were const r uc t ed of wood and sheet metal, set and grouted into the model channel . Those elements which represented concrete surfaces in the pro- totype were given a smooth finish, whi le the remaining fixed structures were given a brushed f i nish.

10 . The section model of the gated spil lway was constructed to a s cale of 1 : 38 . 4 and reproduced 400 ft of the approach area, one central gate bay and adjacent hal f bays, a 96-ft-,vide section of the stilling basin, and 600 f t of t he exit channel . The section models of the open- crest spi l l"IVay and overfl ow dike were both constructed to scales of 1 :30 and reproduced 350 f t of the approach area, 30-ft-wide sections of the spillway and overflow dike, respectively, and 500 ft of t he exit area.

Al l of the section models were contained in glass-sided flumes which made observation of subsurface currents possible.

_ ~ . _ ' ;';;; :c ' · '·'·~:7" ; ~{/

Fig . 3 . Spillway, lock and powerhouse in l:lOO-scale model 8

PART III: TESTS AIID RESULTS

11. The complete investigation of Jinl Woodruff .. Dam involved anal­

ysis of data from the three section models and the comprehensive modelo

Tests on the section models were concerned with discharge coefficients,

energy dissipation and flow conditions in the immediate vicinity of the

structures, whereas tests on the comprehensive model were concerned with

over-all flow conditions over the spillway and upstream and downstream

therefrom for discharges permitting navigation pool elevations less than

82.00 It was felt that discharge coefficients could not be established

accurately on the comprehensive model because of its small scale; however,

spot checks indicated that the headwater-tailwater relationship on the

comprehensive model approximated that computed by the Mobile District.

Several hours were required to establish stable flow conditions 'because

of the large area involved in the headbay and tailbay of the comprehen­

sive model. Thus, during the tests, a constant upper and lower pool

were maintained without regard to the discharge entering the model.

This method is believed to be sufficiently accurate for the purpose of

the model study since the data obtained consisted chiefly of flow patterns

and velocities.

Upstream Lock Approach

12. The investigation of the lock approaches was concerned mainly with flow conditions in the upstream approach area, as preliminary obser­ vations indicated that no unsatisfactory conditions existed in the area

of the downstream entrance to the lock. The model research included, in 9 addition to the tests made with the structure of original design, the investigation of eleven alternate designs proposed for improvement of navigation conditions in the upper lock approach (figo 4, page 10)0 The performances afvarious designs were examined in the model, first, with regard to their hydraulic effect, and second, with regard to other prac- tical considerations that influenced the selection of the final design.

A brief description of the original and alternate approaches follows:

a o Type A (original design) -- guide walls slotted, left wall 386 ft in length, right wall 376 ft in length. Bottom area between walls at elevation 56.0.

b , Type B -- left guide wall solid, 386 ft in Lengt.h , right guide wall slotted, 376 ft in,length. Bottom area between walls at elevation 56000

Co Type C -- similar to type A, with high riverbank adjacent to left guide wall excavated to elevation 40.00

d. Type D -- similar to type A., with a 300-ft dike extending from the left guide wall at an angle of 45 degrees towards the river channel.

e. Type E -- left guide wall solid, 386 ft in length with 300-ft dike extending from this wall at an angle of 45 degrees towards the river channel; right guide wall slotted, 376 ft in length. Bottom area between walls at elevation 56.0.

'fo Type F -- left guide wall solid, 586 ft in length; right guide wall slotted, 376 ft in length. Bottom area between walls at elevation 56.0.

&0 Type G -- left guide wall 586 ft in length with 386 ft of wall nearest the lock slotted, remaining 200 ft of wall solid; right guide wall slotted, 376 ft in length. Bottom area between walls at elevation 56.0.

ho Type H -- left guide wall solid with the exception of a single opening where the wall joins the lock proper, 586 ft in length; right guide wall slotted, 376 ft in length. Bottom area between walls at elevati6n 56.0.

io Type J -- left guide wall slotted, 506 ft in length; right

guide wall slotted, 316 ft in length 0 Bottom area between walls at elevation 56.00 --

..$-­ / 6) _____ CI'~386.0 /' / ~~3~86~.OI~~_ ~ ;' ItI)lc~~, ~ /n9J/ ' / ~ 16 /¥/{ 3 °1 /I rI 1",\/6/ II ----/ / }~t ' /' / II I I 1;1 I I II TYPE A APPROACH TYPE 'C APPROACH (ORIGINAL DESIGN)

_____~ =--~,--4I---

TYPE F APPROACH TYPE J APPROACH

TEST CONDITIONS NOTE: BOTTOM OF CURTAIN WALL FOR TYPES A)B)C,D, E,F,G..H AND JAPPROACHES AT ELEVATION 70.0. DISCHARGE 178,000 CFS BOTTOM OF CURTAIN WALL FOR TYPES K,L AND POOL ELEV 77.0 M APPROACHES AT ELEVATION 68.0 TAILWATER ELEV 74.9

LEGEND SOLID WALL SLOTTED WALL Fig. 4. Alterations to upstream VELOCITY STATION lock approach 11

Type K -- left guide wall slotted, 506 ft in length; right guide wall slotted, 166 ft in lengtho Bottom area between walls excavated to elevation 5000.

k. Type L -- left guide wall slotted, 506 ft in lengthj right guide wall slotted, 166 ft in length. Bottom area 'between walls ~xcavated to elevation 40.00

Type M -- left g11ide wall slotted, 506 ftin length; right guide wall slotted, 166 ft in length. Bottom area between walls and high riverbank adjacent to left guide wall exca­ vated to elevation 40.0.

13. Fig. 4 and plates 3-13 show surface currents and velocities for the 12 types of lock approaches investigated. These data indicate that, with the exception of type-C approach in which a maximum velocity of 3.6 ft per sec resulted from excavating the riverbank adjacent to the left lock wall (fig. 4), the approaches involving the us~ of slotted walls (A, J, K, Land M) were superior in performance to approaches D, G and H wit.h partially slotted walls, or approaches B,E and F wher-e the entire left guide wall was solid. Use of partially slotted walls or solid walls, while reducing velocities in the lock approach, intensified lateral flow passing around the upstream end of the left lock wall.

14. The relative merits of slotted and solid walls were further investigated by observing the behavior in the upper lock approach of a model barge tow (9 barges, 3 abreast, each 140 ft long, 25 ft wide, and loaded to a draft of 9 ft) in t.he quarter-mile reach of river above the lock. These tests were accomplished with the type-J approach installed and provisions were made whereby the slots in the guide walls could be opened or closed. Results clearly indicated the superiority of the slotted walls in the lock approach as compared to the solid walls (see figs. 5 and 6). No initial velocity was applied to the tow because of Guide wa l l slots ope n

Upper spillway gates open 2.5 ft , t ailwater elev 56.4

Guide wall slots closed

Gu ide wall slots open

Uppe r spil lway gat e s open 6. 0 f t , t a i lwat er elev 63.9

Guide wal l sl ots closed

Guide wall slots open

Upper sp illway gat e s out t ailwat er elev 69·4

Gu i de wall slots closed

Fig. 5. Barge t ow b ehavi or, type - J approach . Pool elevation 77·0 Guide wal l sl ot s open

Lower spillway gates open 20 .0 ft, t ail water elev 72 .4j pool 77 ·0

Guide wall slots closed

Guide wall slots open

Spillway gates removed, tail­ water elev 74 .9; pool 77 . 0

Guide wall slots closed

Guide wall sl ots open

Spillway gate s removed, t ail­ water elev 76.6; pool 79 . 0

Guide wal l slots c losed

Fig . 6. Barge tow•behavior, type-J appr oach . Pool elevation 77 . 0 and 79 . 0 14 the difficulty of reproducing this velocity from test to test. However, for each test a starting point some 1200 ft upstream was selected and the barge tow allowed to drift into the lock approach from this point.. Small

lights on the bow and stern of the tow permitted the path of the tow to

be recorded pictorially 0 The approach using slotted guide walls was more

satisfactory for all conditions tested, except ~hat in which flow over the

gated spillway was so small as to h~ve no effect on surface currents in

the upper pool. Use of solid guide walls intensified lateral currents in

the lock approach which forced the model tow against the left guide wall with considerable impact, then shunted it around the lock entrance to

crash into the crest piers of the gated spillway.

15. The results of these tests eliminated the use of solid walls,

and additional tests were conducted to determine whether flow conditions

at the upstream lock entrance could be improved by revisions to the

slotted guide-wall approaches. These revisions involved the reduction

in elevation of the 'bed of the lock approach to elevation 50.0 and then

to elevation 4000, lowering the curtain walls between the supports in

the guide walls 2 ft to elevation 68.0, and excavating the riverbank adjacent to' the left guide wall to elevation 40.0. The reduction in elevation of the 'bed of the loc.k approach, while not affecting velocities, did reduce lateral flow at the lock walls. Lowering the curtain walls eliminated the tendency of flow passing through the slots in the left guide wall to anchor the model tow against this wall as had been noted during previous tests involving slotted walls. Excavating the riverbank adjacent to the left guide wall in the type-IV! approach had little effect on conditions in the lock approach. 15

16. The most satisfact ory approaches t e st ed were types K and L

wherein the bottom area between the guide walls was excavated to eleva­

tions 50.0 and 40.0, r espect i vely, and the curtain wal ls in the l eft

gu ide wal l l ower ed to elevat i on 68.0. The hydraul ic per formance of both

approaches was satisfactory ; t herefor e, the adopted de si gn should be

based on economy of const r ucti on. Ac cor dingl y, i t i s r ecommended t hat

t he t ype -K approac h be incor por at ed i n t he final de s i gn .

Forces on Barge Tows i n Upper Lock Appr oach

17. Dur ing t he invest igation of the upper l ock approac h, the ques­

tion arose a s t o the f orce exerted on barge tows whi le anchored along the

l eft gui de wall awaiti ng l ockage .The se for ces and the effect of varia­

t ion of t he cur tain wal l elevati on upon thenl were determined by use of

the appar atus shorm in f ig. 7. Metal f ilings were dr opped i nt o t he cup unt i l the bar ge tow was pulled away from t he wal l. The wei ght of metal fil i ngs, correct ed f or f r ictional r es i st ance i n the appar at us, was taken

Fi g. 7. Apparatus f or measuring hydraulic forces aga i nst barge tow 16 as the forces in, question. Tests were made with all spillway gates out and with the pool at elevation 77.0. Velocities through the openings in the guide wall were measured with a small pitot tube at the midpoint of each opening.

18. The plotted curve shown on plate 14 illustrates the relation­ ship of drag on the barge tow with respect to the bottom elevation of the curtain wallo The hydraulic forces acting'on the barge tow appear to vary directly with the bottom elevation of the curtain wall. The force acting on the barge tow was 65,000 lb with the curtain wall as originally de­ signed (elev 70.0). This ,force was reduced to 55,000 lb for the recom­ nlended curtain-wall elevation (68.0). Further lowering of the curtain wall, while reducing hydraulic forces on the barge tow, increased lateral flow passing around the end of the guide wall, .thereby increasing the hazard of entering the lock. Velocities measured through the slots in the guide wall with curtain wall at elevation 68.0 varied from 1.0 ft per sec in the slot nearest the end of the guide wall to 4.5 ft per sec in the slot nearest the lock gates.

19. It is believed that, on the basis of the above tests, the cur­ tain wall of Jim WoodrUff Dam should 'be located at elevation 68.0. If t.here is a possibility of the normal poo.l, beLng reduced below elevation

77.0, the curtain wall should 'be lowered accordinglyo Any further reduc­ tion in the curtain-wall elevation, while maintaining the pool at elevation

77 .0, should be based on the maximum allowable force that couLd be over­ come by a towboat.

Downstream Lock Approach

20. Tests of flow conditions in the lower lock approach and through 17 the drawspan of the highway bridge below the dam revealed that naviga­ tion conditions were no problem in these areas. Flow characteristics were excellent for all conditions of free and controlled flow (plates

3-13 and 15-18). The maximum velocity recorded through the drawspan of the highway bridge was 10.0 ft per sec for a river stage below the dam of 76.6 ft. Velocities in the vicinity of the lock approach ranged from 1.0 to 205 ft per sec. Current patterns and velocities in these areas were such as to cause little concern, even for conditions of unbalanced gate operation (see plates 19-21). However, the use of un­ balanced gate operation is not advised because of its erosive effect on the channel bed below the spillway. Little erosion was evident when discharges were controlled with a balanced gate combination as shown 'by plates 22-26.

Gated Spillway (Section Model)

21. The gated spillway of original design (plate 1) consisted of a broad-crested weir 12.5 ft wide with the upstream portion shaped to follow a circular curve with a radius of 7.0 ft~ The downstream portion of the crest consisted of two circular curves with radii of 24.0 ft and

42.25 ft. A horizontal apron 38.0 ft in length at elevation 15.0 was provided for energy dissipationo An end sill 6 ft in h~ight and with the upstream face sloped was located at the end of the apron to deflect

'bottom currents upward into the tailwater, thereby protecting the bed of the exit area from erosion.

22. Flow conditions over the gated spillway of original design were satisfactory for all conditions of free and submerged flow (fig. 8). Pool elev 77·0 Tailwater elev 74·9

Pool elev 79·0 Tailwater elev 76.6

Pool elev 82.0 Tailwater elev 79·7

Pool elev 85·0 Tailwater elev 83·1

Fi g . 8. Flow conditions, type 1 ( or i gi na l) de s ign gated spillway 19

The semicircular shape of the upstream faces of the crest piers provided

a smooth· transition of flow through the gate bays.

23. Velocity measurements and water... surface pr-of'd.Les over the

spillway were obtained for a complete range of pool stages for submerged flow. Typical plots of these data are shown on plates 27-31. The maxi- mum subsurface velocity recorded over the .crest was 19.3 ft per sec for

an upper pool stage of 82.0 and a lower pool of 79.7. The maximum sur­

face velocity over the crest for these conditions was 16.5 ft per sec.

The minimum surface and subsurface velocities recorded over the crest were 14.9 and 14.1 ft per sec for an upper pool stage of 91.0 and a lower

pool of 90.0.

24. Pressure measurements obtained for various pool stages for free

flow conditions are shown on table 1. These data revealed positive pres.-

sures for all conditions of flow. Pressure data under submerged condi-

tions were not obtained as no negative pressures were present under free

flow conditions. However, pressures over the spillway crest should

approximate the water-surface elevation above the piezometers for condi-

tions of submergence. Plate 33 shows piezometer locations for the gated

spillway of original designo

250 The determination of discharge coefficients for submerged flow

conditions was an important phase in the investigation of the gated spill- way, and extensive tests were conducted to obtain this information. The

spillway was first calibrated for free flow (plate 34) and va discharge

coefficient curve (plate 35) "based on these data was computed from the

formula, Q = CLH3/2 , where

Q = ,discharge in cfs 20

c = tbe coefficient of discharge

L = length of spillway crest (without piers)

H = head on spillway crest (including velocity head).

The spillway was thenrecali'brated for various conditions involving sub- mergence. This was accomplished by setting several constant discharges and then varying the tailwater ,for each from an ,elevation where no inter- ference in spillway flow was evident to an elevation where spillway flow was practically 100 per cent submerged. The family of curves obtained is shown on plate 36. Discharge coefficients were determined from these curves for various conditions involving submergence. These coefficients, expressed in per cent of free flow coefficient, are plotted on plate 370

260 The effect of crest piers on the gated spillway for both free

and submerged flows was also evaluated II This was accomplished by cali- brating the spillway weir for free flow conditions with crest piers in- stalled, then ·substituting C values previously obtained without piers 2 (plate 35) into the conventional weir formula, Q = e(L - NKH)H3/ , where

Q = discharge in cfs obtained from model curve for the spill­ way with crest piers

C = the coefficient of discharge as determined from the spill­ way without( crest piers

L = net length of spillway = 640 ft

N = the number of contractions = 32

K = the pier contraction coefficient

H = the head on spillway crest (including velocity head).

Values of K the pier contraction coefficient, are plotted on plate 380

The spillway was then r-eca.Lfbrat.ed for submerged cond.Lt.Lons with piers

(plate 39), and the pier contraction coefficient for' submerged flows 21 expressed Ln per cent of free-flow coefficient determined (plate 40) 0

270 Although the gated spillway of original design performed satis­ factorily, certain alterations to the weir shape were made to effect economies in construction. The revised weir, designated the type-2 de­ sign, consisted of a flat, 12.5-ft-wide crest with a 5.8-on-7.0 slope up­ stream from the crest and a l-on-l slope downstream therefrom (plate 2).

28. Observation of flow conditions with the type-2 design spillway installed revealed results similar to those observed on the original spillway (compare figs. 8 and 9). Velocity measurements over the weir were also similar; as on the original design, a maximum subsurface veloci­ ty of 19.2ft per sec was recorded for an upper pool of 82.0 and a lower pool of 79.7. The maximum surface velocity for this condition was 17.9 ft per sec, or 1.4 ft per Bec higher than had been recorded over the original spillway crest. Minimum surface and subsurface velocities of 15.3 and

14.1 ft per sec were recorded for an upper ~ool of 91.0 and a lower pool of 90.0. Typical plots of water-surface profiles and velocity measure­ ments are shown on plates 27-31. Plots of water-surface profiles and sub­ surface currents for various gate openings are presented on plate 32.

29. Pressure measurements obtained for various pool stages for free-flow conditions are presented on table 2. These data revealed that a minimum pressure of -4.5 ft existed at piezometer 5 for upper pool elevation of 55.79 (45,600 cfs)o The presence of this low pressure area was evident at pool stages of 59.36 and belowo Table 3 shows pressure measurements obtained over the type-2 design spillway for various upper and lower pool stages.. These data indicated positive pressures for all conditions testedo Pressures in the majority of cases were the differences Pool elev 77·0 Tailwater elev 74·9

Pool elev 79·0 Tailwater elev 76.6

Pool elev 82.0 Tailwater elev 79·7

Pool elev 85·0 Tailwater elev 83·1

Fig. 9. Flow conditions, type-2 design gated spillway 23

between the piezometer elevation and the water-surfac-e elevation over the

piezometer. Plate 33 shows piezometer locations for the gated spillway

of the type-2 design.

30. Determination of discharge and pier contraction coefficients

was of particular concern as it had 'been with t.he spillway of original

designo The methods previously used in the determination of the coeffi­

cients for the original design spillway crest were again employed. Re­

sults of these tests, as plotted on plates 41-47, indicate that there is

-little difference between the efficiency of the two ,designs under condi­

tions of free or submerged flow. Tailwater-discharge relations deter­

mined on the section model for full and partial gate openings are shown

on plate 48. These curves were 6btained by setting a constant head for

each gate opening and varying the tailwater from an elevation where no

interference with gate flow was evident to an elevation where gate flow

was approaching complete submergence. Data revealed that, for an expected

prototype condition of upper pool at elevation 77.0 and tailwater at

e.Levat.Lon 74.9, discharge through one bay was .14,100 cf's or 225,600 cfs

for the full spillway length.

31. Flow conditions downstream from the gated sptLlway of original

design and the type-2 design are shown on figs. 8 and 9. Only action

over the apron is shown because of the restricted length of glass panel.

However, water-surface profiles and ·subsurface currents presented on

plates 27~32 indicate excellent stilling~basin performance.

32. Examination of velocity data shown on plates 27-31 reveals

that the maximum bottom ve LocLt.y recorded was 9.3 ft per 'sec for upper

and lower pool stages of 77.0 and 74.9 ft, respectively. This velocity 24 25

has a. top vlidth of 14 ft and an upstream slope of 4 on 7 instead of the

top width of 12.5ft and the upstream slope of 5.8 on 7 of the type-2

design weir. The stilling basin also will be varied from average eleva­

.tion of 15 to fit the natural rock foundation configuration. The maximum

elevation of the stilling 'basin will be about 20. No deleterious effects

should result from the above-described variations to- the type-2 weir and

the stilling basin shown on plate 2.

Open-crest Spillway (Section Model)

36. The shape of the open-crest spillway (plate 1) was based on

a design head of 8 ft. The selection of the design head was complicated

"by the fact that the tailwater rises rapidly to submerge t.he crest. The

sheet of water flowing over the spillway will cease to plunge beneath the

tailwater and will ride, on top of it at some point when the submergence

ratio is about 0.8 (table 4). The design head of 8 ft was taken as the

maximum head at which the nappe will adhere to the downstream face of the

spillway. The upstream portion of the crest was shaped to follow two

circular curves with radii of 4.0 ft and 1.6 ft. The downstream portion

of the crest was sh~ped to a parabolic curve of Xl•85 = 2.0 HO• 85y , in

which H is design head and X and Yare coordinates referred to the

crest as origin. Velocity measurements obtained over the crest indicated

a maximum velocity .of 15.8 ft per sec for a discharge of 78,000 cfs.

Typical plots of velocity data and water-surface profiles are shown on

plates 49 and 50.

37. Tests were also conducted on the section model. of the open­

crest spillway to determine the coefficient of discharge for free and 26 submerged flows. The procedure used in obtaining the required data and the method of computing the discharge coefficient curves are outlined in paragraph 25. Results of these tests are shown on plates 51-530 Several tests also were conducted on the open-crest spillway with the bucket below the crest section removed to study the effect of this alteration on spillway performance for submerged flow conditions. These tests re­ vealed that removal of the bucket had no effect upon the capacity of the spillway.

38. Pressures were measured over the open-crest spillway and bucket at locations shown on plate 54 for various tailwater and free flow conditions. The magnitudes of pressures recorded are listed in tables 5 and 6. It will be noted that pressures were positive for all heads and discharges where normal tailwater was adjusted; however, for conditions

of free flow a negative pressure of -16 0 0 ft was recorded at piezometer 2 for a head of 17.51 ft. However, the presence of negative pressures along the crest is of little significance as this head is more than twice the design head of 8 ft.

39. The basin (plate 1) below the open-crest spillway consisted of an 8.0-ft-radius bucket to deflect the spillway nappe from the bottom, and to cause the water to flow away in a nearly horizontal direction.

Flow conditions through the bucket were satisfactory for all pool stages

(see fig. 10). As planned, the bucket served to deflect all bottom currents away from the bed of the exit area thus protecting this area from the possible effect of erosive currents.

40. The above tests and observations indicate that the bucket of original design is satisfactory for prototype construction. The elevation ,,

Pool elev 82 .0 Tailwater elev 79·7

Pool elev 85 ·0 Tailwater elev 83·1

Pool elev 91.0 Tailwater elev 90.0

Pool elev 105 ·0 Tailwater elev 104.8

Fig. 10. Flow conditions , open-crest spillway 28 of the bucket could be varied as much as 5.0 ft without affecting its efficiency if for structural reasons it becomes necessary to change the

'bucket location 0

Overflow Dike (Section Model)

410 The overflow dike as originally designed had a crest at eleva­ tion 8500, a 25-ft-wide crown and 1-on-205 side slopes (plate 1)0 Later revisions called for theadditiOll of a 10-ft-radius flip bucket to be located on the downstream slope (plate 2)0

420 Figs. 11 and 12, (pages 30-31) show flow conditions over the dike section as originally designed and with a lO-ft-radius flip bucket in­ stalled. The installation of the flip bucket was ·a precautionary measure to prevent t.he overflowing jet from following the side slope of the over­ flow dikeo Velocity measurements for various flow conditions indicated a max.lrnum velocity along the dovnat.rearn face of the dike of 7116ft per sec. without the flip bucket installed. The overflowing jet was diverted upward into the tailwater with the flip bucket installed, leaving relativelY,dead water along the downstream face of the dikeo Typical plots of velocity measurements and water'-surface profiles are shown on plates 55-58.

430 The determination of discharge characteristics for free and sublnerged flow over the dike was an important phase in the model testing program as was the case with the other overflow sectionso The procedure for dbtaining the required results was identical with that described in paragraph 25, ioe., the dike section was first calibrated for free flow conditions (plate 59) and a discharge coefficient curve developed from the results (plate 60). The model was then recalibrated for conditions 29

of submergence and 'discharge coefficients were computed for these cond.l­

tions (plate'6l). Submergence coefficients determined from model results

with the flip bucket installed are also .shovn on plate 61. This 'bucket

did increase slightly the capacity of this structure for submerged flows

although it had no effect on discharge over the dike for free flow

conditions.

Gated Spillway Operation

44. A program of spillway gate operation 'based on navigation re­

quirements as computed by the Mobile District Office and determined from

model data is given in table 7. Ddscharge data ,"ere obtained from the

family of curves shown on plate 48. It will be noted from the t.ab.Le that

the upper leaves were first raised 2.5 ft, then 6.0 ft and then complete­

ly removed. The lower leaves wer-e first raised 20.0 ft and then com­

pletely removed. Removal of the lower, gate leaf in one operation was

necessary to prevent the undesirable condition of flow passing simultane-,

ously over and under a gate.

45. An examination of table 7 indlc'ates model and computed dis­

charge data were generally consistent until the upper gate leaves were

removed. Continuation of the gate-operation program resulted in an ever­

increasing variance between computed and model results o This variance is

attributed to the uncertainty of computed discharges when tailwater

elevations downstream from the gates are interfering with flow over or

under the gates. Plate 62 presents a comparison of discharge curves

'based on model results with curves computed by the Mo'bile District Office.

These discharge data are for conditions with all gates in the gated ~ection Pool elev 86.0 Tailwater elev 84·3

Pool elev 88.0 Tailwater elev 86.4

~ ~ - .". ""1-'" _ .--1..:- . .::'

Pool elev - -"...-----_.- 90 .0 Tailwater elev 88.8

Pool elev 103·0 Tailwater elev 102·5

Fig. 11 . Flow conditions, original design dike section Pool elev 86.0 Tailwater elev 84·3

Pool e lev 88.0 Tailwater elev 86.4

Pool elev 90.0 Tailwater e lev 88.8

Pool elev 103· 0 Tailwater e l ev 102·5

Fig. 12 . Flow condition s , dike se ct i on wi t h flip bucket inst alled of the spillway .opened full. It will be noted that 'model and computed results are in fairly close' agreement, the maximum variation of dd schar'ge

for the combined structures being about 5 per cent 0

Cofferdam stages

46. Tests of cofferdam construction stages were conducted in the

comprehensive model to determine discharge capacity, swell-head condi­

tions, and channel velocities to be expected at such times. These tests were concerned wit.h the second and third stages of cofferdam conat.ructdon,

as the initial stage will be outside the river channel and velocities and

navigation conditions will be essentially normal. Locations of the

cofferdams as investigated in the model are shown on the surface-current

and velocity plates referred to in the following paragraphs.

47. Surface currents and velocity data for the second stage of cofferdam construction are shown on plates 63-66. These data reveal

satisfactory flow characteristics for all discharges. Velocity measure­ ments recorded in the contracted channel ranged from 6.2 to 8.3 ft per

sec for discharges from 40,000 to 180,000 cfs and the maximum head drop

in the channel for this range of discharges was l~l ft. Plate 67 presents a comparison of the model headwater elevation and channel ,velocity curves with curves computed by the Mobile District Office. It will be noted that

the curves are in close agr-eement, despite the small scale of the compre­ hensive model (1:100)0

4B. 'Surface currents and velocities for the third stage of coffer­ dam construction are shown on plates 68-71. Flow conditions in the lower lock approach and through the drawspan of the highway bridge below the 33 dam were satisfactory for all disch~rges, 'as was the case of the second cofferdam stage. The maximum velocity recorded through the drawspan was in the range of 4.'5 ft per sec and the maximum swell head over the .gat.ed spillway was 2.3 ft. for a discharge of 160,000 cfs. Plate 72 presents a comparison of computed and model headwater elevations. Surface velocities recorded t.hrough the drawspan .or the hf.ghway 'bridge below the dam are also ShO"\"Il onthis plate. PART IV: DISCUSSION

49. Tests of the models of Jim Woodruff Dam revealed that while

performance of the structures as originally designed was generally satis­

factory, certain alterations could be made which would improve performance

and, at the same time, effect economies in construction.

50. The most satisfactory t'Low conditions in the upper lock en­

trance, as determined from the model study, were observed with the type-K

appr-oach; This design, described Ln paragraph 12, not only provided the most satisfactory method of creating good navigation conditions in the

lock entrance, 'but also permitted considerable saving in construction by

reducing by 90 ft the over-all length of the guide walls as originally

designed. Tests also indicated that lowering the curtain walls in the

type-K approach below elevation 68.0 is not desirable unless equal reduc­

tion is expected in the normal upper pool elevation. Use of solid guide walls in the lock entrance, while reducing velocities in this area, in­

creased lateral flow around the lock entrance, t.hereby increasing the navigation hazard of entering the lock. Removal of the high riverbank

adjacent to tlle lock entrance increased the draw around the upstream end

of the left guide wall. Capacity of the spillway was not affected 'by any of the various approaches with the exception of the type-D and type-E approaches, where use of solid, angulated walls interfered somewhat with flow approaching the gated spillway.

51. The performance of the weirs of original design for ,both gated and open-crest spillways was found to be satisfactory. However, the use of the type-2 design weir for the ,gated spillway would further improve 35

hydraulic performance, particularly under submerged flow conditions, and

greatly reduce the amount of forming and concrete required in the origi­

nal structure. Use of the flip bucket shown on plate 2 on the downstream

face of the overflow dike is recommended. This flip bucket deflected all

flow passing over the dike away from the toe of the embankment.

52. Observation of stilling-basin performance in that portion of

the basin 'below the gated spillway indicated that the original basin

length was satisfactory. When used in conjunction with the type-2 design weir, the end sill could be moved upstream 25 ft without affecting the

length or efficiency of the basin. TIle performance of the stilling basin

'below the open-crest spillway appeared satisfactory for all flows tested.

The circular bucket deflected flow from the exit bed at the lower dis­

charges and the performance of the stilling 'basin was of little con­

sequence at the higher discharges when the spillway jet rides the tail­ water.

53. It was found that flow conditions 'below the spillways, through the highway bridge span, and in the lower lock approach would not present any problems to navigation. Flow conditions in the lower lock entrance were not considered to,be critical even for conditions of unbalanced gate operation. However , it is recommended that all discharges 'be controlled with balanced gate operation. Also, the regulating gates should not be separated by more than two closed gates to prevent eddies which would

. cause unsatisfactory erosion conditions. TABLES Table 1 Sheet I of 2 sheets

PRESSURES OVER TYPE-l (ORIGINAL) DESIGN GATED SPILLWAY

Free Overflow

Discharge ::: 305,000 crs Discharge ::: 282,000 cfs Discharges 224,000 cfa Discharge::: 169,700 cfs

Pool E1ev ::: 12.38' Pool Elev ::: 71.27 Pool Elev ::: 68.41 Pool Elev ::: 65.63 Piez. Piez , H ::: 2.36 H ::: 2.15 H ::: 1.64 H ::: 1.16 No. Zero V V V V Tai1water Elev* Tai 1V\ater Elev* TailwaterElev* Tailwater Elev* Piezometer Piezometer Piezometer Pressure Piezometer Pressure Pressure Pressure Reading Rea.ding Reading Reading

1 42.2 73.7 31.5 72.9 30.7 10.3 28.1 67.3 25.1 2 47.0 67.5 20.5 67.0 20.0 65.6 18.6 63.9 16.9

3 48.0 63.1 15.7 63.2 15.2 62.5 14.5 61a15 13.5

4 48.0 64.4 16.4 63.9 15.9 63.0 15.0 61.8 13.8 5 48.0 59.9 11.9 59.4 11.4 59.5 11.5 58.3 10.3 6 47.5 52.9 5.4 52.3 4.8 54.0 6.5 53.0 5.5 t 46.4 53.5 7.1 52.7 6.3 54.1 8.3 53.2 6.8 8 43.5 54.6 11.1 53.8 10.3 55.7 12.2 53.5 10.0 9 39.8 57.5 17.7 56.5 16.7 58.3 18.5 55.5 15.7 10 29.1 62.8 33.7 61.4 32.3 61.9 32.8 58.3 29.2 She et 2 of 2 sheets

Table 1 (Continued)

Discharge::: 145,700 cfs Discharge ::: 101,000 crs Discharge ::: 54,000 of's Discharge::: 27,600 cfs

Pool Elev ::: 64.13 Pool E1ev ::: 60.98 Pool Elev = 56.99 Pool Elev ::: 53.91 Piez. Piez. H ::: 0.97 H ::: 0.61 liv ::: 0.27 H = 0.10 No. Zero V V v Tailwater EleV* Tailwater EleV* Tailwater E1ev* Tail\va.ter Elev* Piezometer Piezometer Piezometer Piezometer Reading Pressure Reading Pressure Reading Pressure Reading Pressure

1 42.2 65.0 22.8 61.2 19.0 57.2 15.0 54.5 12.3

2 47.0 61.9 14.9 59.1 12.1 56.0 9.0 54.0 7.0

3 48.0 59.6 11.6 57.5 9.5 55.0 7.0 53.2 5.2 ,~

4 48.0 59.7 11.7 57.2 9.2 54.7 6.7 52.7 4.7

5 48.0 56.8 8.8 54.7 6.7 53.0 5.0 51.7 3.7

6 47.5 52.4 4.9 51.0 3.5 50.8 3.3 50.4 2.9

7 46.4 53.0 6.6 51.0 4.6 51.8 5.4 51.5 5.1

8 43.5 53·5 10.0 51.2 7.7 53.7 10.2 52.4 8.9

9 39.8 55.3 15.5 52.5 12.7 51+.0 14.2 52.5 12.7

10 29.1 57.2 28.1 54.0 24.9 54.1 25.0 52.8 23.7

* Minimum tailwater with exit ch~~nel fixed at elevation 40.0.

NOTE: Piezometer readings are recorded in feet of water in prototype, referred to msl, and have been corrected for capillary action in the manometer tubes.

Equation of curve downstream from crest, X2 + y2 ::: ~ and X2 + y2 ::: ~ 2 Equation of curve upstream from crest, X + y2 ::: 7.02 Elevation of spillway crest 48.0. Table 2 Sheet 1 of 2 sheets

PRESSURES OVER TYPE-2 DESIGN GATED SPILLWAY

Free Overflow

Discharge ::I 216,000 efs Discharge ::I 161,500 of's Discharge ::I l42,500 of's Discharge = 115,200 erS

Pool Elev :: 67.96 Pool E1ev :: 64.78 Pool Elev :: 63.43 Pool E1ev = 61.58 Piez. Piez. H 1.58 H == 1.14 ~ ~ No. Zero V:: v =- 0.96 :: 0.72- Tai1water E1ev* Tailwater Elev* Tai1water EleV* Tai1water E1ev* Piezometer Piezometer Piezometer Piezometer Pressure Pressure Pressure Pressure Reading Reading Reading Reading

I 1 42.3 69.0 26.1 65.8 23.5 54.1 11.8 62.0 19.1

~~ 2 45.2 67.4 22.2 64.4 19.2 53.1 7.9 61.1 15.9

3 48.0 56.5 8.5 55.6 7.6 55.3 7.; 54.6 6.6 4 48.0 61.6 13.6 59-5 11.5 58.7 10.1 57.1 9.1 5 48.0 55.1 7.7 53.1 5.1 52.7 4.7 51.1 3.1 6 45.3 55.7 10.4 53.1 7.8 52.1 1.4 51.1 5.8

1 39.9 55.8 15.9 53.3 13.4 52.9 13.0 51.2 11.3 8 34.4 55.8 21.4 53.; 18.9 52.9 18.5 51.2 16.8 Sheet 2 of 2 sheets

Table 2 (Continued)

Discharge = 87,600 cfs Discharge = 62,100 cfs Discharge = 45,600 crs Discharge = 22,500, cfs

Pool Elev = 59.36 Pool Elev = 57.29 Pool Elev =: 55.79 Pool Elev = 53.22 Piez. Piez. HV == 0.,54 Hv =: 0.33 Hv = 0.21 HV = 0.07 No. Zero Tailwater EleV* Tailv.ater E1ev* Tailwater Elev* Tai1water Elev*

Piezometer Pressure Piezometer Piezometer Piezometer Reading Reading Pressure Reading Pressure Reading Pressure

1 42.3 60.0 17.7 57.8 15.5 56.0 13.7 53.4 11.1 2 45.2 59.1 13.9 57.3 ]2.1 55.7 10.5 53.2 8.0 3 48.0 53.8 5.8 53.3 5.; 52-.9 4.9 51.7 3.7 4 .48.0 55.5 7.5 54.4 6.4 53.5 5., 51.6 3.6

5 48.0 46.8 -1.2 45.2 -2.8 43.5 -4.5 44.4 -3.6 6 45.3 46.9 1.6 45.6 0.3 46.3 1.0 47.4 2.1 7 39.9 47.9 8.0 49.2 9.3 47.9 8.0 45.5 5.6

8 34.4 51.2 16.8 48.9 14.5 47.5 13.1 45.4 11.0

* Minimum tai1water with exit channel fixed at elevation 40.0. NOTE: Piezometer readings are recorded in feet of water in prototype, referred to msl, and have been corrected for capillary action in the manometer tubes. Elevation of spillway crest 48.0. PRESSURES OVER TYPE-2 DESIGN GATED SPILLWAY

Controlled Tailwater Elevations

Discharge = 285,500 crs Discharge = 325,000 ers Discharge = 384,000 efs Discharge = 400,000 era

Pool Elev = 77.00 Pool Elev = 79.00 Pool Elev = 82.00 Pool Elev • 85.00 Piez. Piez. ~ ~ No. Zero s 1.56 lIv = 1.83 = 2.20 HV • 2.09 Tailwater Elev = 74.9 Tailwater Elev = 76.6 Tailwater Elev = 79.1 Ta.i1water Elev = 83.1 Piezometer Piezometer Piezometer- Piezometer Pressure Reading Pressure Reading Pressure Reading Pressure Rea.ding

1 42.3 74.5 32.2 76.0 33.1 79.0 36.7 82.5 40.2 2 45.2 14.5 29.3 76.0 30.8 79.0 33.8 82.5 37.3

3 48.0 74.5 26.5 76.0 28.0 79.1 31.1 82.5 34.5 4 48.0 14.5 26.5 76.0 28.0 79.3 31.3 82.5 34.5 : 5 48.0 74.5 26.5 76.0 28.0 78.8 30.8 82.2 34.2

6 45.3 70.5 25.2 71.8 26.5 74.1 29.4 78.0 32.7 '7 39.9 77.5 37.6 79.8 39.9 82.4 42.5 85.4 45.5

8 34.4 79.0 44.6 81.0 46.6 83.8 49.4 86.6 42.2

NOTE: Piezometer readings are recorded in feet of water in prototype, referred to msl, and have been corrected for' capillary action in the manometer tubes.

Elevation of spillway erest 48.0. Table 4

POINTS WHERE NAPPE CEASES TO PLUNGE -FOR RISING TAILWATER CONDITIONS

Uncontrolled Spillway

Discharge in cfs H* h** h/H 489,500 20.54 16.76 .816 431,600 18.86 15.38 .814 259,000 13.52 11.36 .840 196,000 11.15 9.47 .850 147,000 9095 8.51 .855 118,000 8.27 7.07 .855 100,500 7.37 6.11 .829 62,5 00 5.75 4.73 .822 4'5,000 4.67 3.83 .820 28,200 3·32 2.75 .828 14,500 2.30 1.94 0844

* H indicates gross head over crest. ** h indicates depth of tai1water above cr~st.

Note: Elevation of spillway crest = 79.0. Design head on crest = 8.0 ft. PRESSURES OVER OPEN-CREST SPILLWAY

Controlled Tailwater Elevation

Discharge := 211,500 crs Discharge ::: 192,500 crs Discharge := 181,500 crs Discharge :: 177,000 crs Discharge ::: 170,500 crs Discharge ::: 138,000 cts

Pool Elev = 96.57 Pool Elev ::: 93.15 Pool E1ev .:: 92.00 Pool E1ev = 90.69 Pool Elev = 88.83 Pool E1ev • 87.27 Piezometer Piezometer Tai1water Elev = 95.95 Tai1water E1ev = 92.35 Tailwater Elev ::: 91.00 Tailwater Elev = 89.60 Tailwater Elev = 87.50 Tai1water E1ev = 86.15 Number Zero Piezometer Piezometer Piezometer Piezometer Piezometer Piezometer Pressure Pressure Reading Pressure Reading Pressure Reading Reading Pressure Reading Pressure Reading

1 77.7 95.5 17.8 91.5 13.8 90.2 12.5 88.5 10.8 84.1 6.3 83.6 5.9

2 79.0 95.5 16.5 91.6 12.6 90.3 11.3 88.5 9.5 82.5 3.5 81.5 2.5

3 77.7 95.5 17.8 91.6 13.9 90.3 12.6 88.5 10.8 85.2 7.5 83.8 6.1

4 75.7 95.5 19.8 91.6 15.9 90.3 14.6 88.1 12.4 86.0 10.3 85.0 9.3

5 70.0 95.3 2.5.3 91.5 21.5 90.2 20.2 88.1 18.1 86.1 16.1 85.0 15.0

Discharge ::: 118,000 crs Discharge ::: 100,500 cre Discharge ::: 62,500 crs Discharge :0 45·,000 crs Discharge :: 28,200 crs Discharge :: 14,500 crs

Pool E1ev = 86.16 Pool E1ev ::: 85.47 Pool E1ev = 83.85 Pool E1ev :: 83.01 Pool E1ev = 81.99 Pool E1eT·:: 81.00 Piezometer Piezometer Tailwater Elev = 84.60 Tailwater Elev = 83.50 Tailwater Elev = 81. 75 Tailwater Elev = 80.75 Tailwater E1ev ::: 79.70 Tailwater E1ev ::: 78.50 Number Zero

Piezometer Piezometer Piezometer Piezometer Piezometer Piezometer . Pressure Rea(ling Pressure Reading Pressure Reading Pressure Reading Pressure Reading Pressure Reading

1 77.7 82.9 5.2 82.6 4.9 82.2 4.5 82.0 4.3 81.5 3.8 80.9 3.2

2 79.0 80.6 1.6 80.2 1.2 80.4 1.4 80.5 1.5 80.4 1.4 80.1 1.1

3 77.7 82.2 4.5 80.9 3.2 80.0 2.3 79.5 1.8 79.0 1.3 ~8.2 0.5

4 75.7 83.5 7.8 81.9 6.2 80.5 4.8 79.9 4.2 79.1 3.4 78.1 2.4

5 70.0 83.5 13.5 82.9 12.9 81.3 11.3 80.4 10.4 79.5 9.5 78.4 8.4

ROTE: Piezometer readings are recorded in teet ot water in prototyp:s, referred to IIlsl, and have been corrected for capill817 action in the manometer tubes. . l•85 Equation of curve downstream from crest, X s 11.72Y. 2 2 Equation of' curVe upstream from crest, X + y2 a 4":OQ2 and X + y2 s 1:"622. Elevation of spillway crest:: 79.0.

I»s!gn head on crest • 8.0 ft. PRESSURES OVER OPEN-CREST SPILLWAY

Free Overflow

Discharge :: 4S9,500 eta Discharge = 431,600 crs Discharge • 259,000 cts Discharge • 196,000 ors Discharge • 147,000 ots Discharge • 118,000 cts

Pool Elev • 96.57 Pool Elev = 95.25 Pool Elev =90.69 Pool Elev • 88.83 Pool E1ev • ttl.2? - Pool EleT • 86.16 Piezometer Piezometer Tai1water E1ev* Tallwat8r Elev* Tai1wat8r EleT*" Tai1water Elev* Tailwater EleT*' Tai1wat8r Elev* Humber Zero

Piezometer Piezometer Piezometer Piezometer Piezometer Piezometer Pressure Pressure Reading Reading Reading Pressure Reading Pressure Reading Pressure Beading Pressure

1 77.7 72.5 -5.2 74.5 -3.2 79.2 L5 81.2 3.5 82.0 4.3 82.1 ,4.4

2 79.0 63.0 -16.0 65.1 -13.9 73.3 -5.7 76.3 -2.7 78.1 -0.9 79.0 0.0 3 77.7 76.2 -1.5 76.3 -1.4 77.5 -0.2 7f.9 0.2 78.2 0.5 78.4 0.7

4 75.7 82.9 7.2 81.7 6.0 79.4 3.7 78.2 2.5 77.5 1.8 7f.2 1.5

5 70.0 70.0 0.0 68.7 -1.3 68.9 -1.1 68.1 -1.9 67.9 -2.1 67.5 -2.5

Discharge =' 100,500 cf's Discharge = 62,500 cf's Discharge .. 45,000 era Discharge :: 28,200 ef's Discharge • 14,500 cts

Pool Elev • 85.47 Pool Elev = 8.3.85 Pool Elev • 83.01 Pool Elev :: 81.99 Pool Elev • 81.00 Piezometer Piezometer Tailwater E1ev* Tailwater E1eT*" Tailwat8r Elev* Tailwater E1eT*" Tailwater Elev* Number zero Piezometer Piezometer Piezometer Piezometer Piezometer Piezometer Pressure Pressure Pre~sure Pressure Preasure Pressure Reading Reading Reading Reading Reading Reading

1 77.7 82.5 4.8 82.3 4.6 82.0 4.3 81.6 3.9 80.9 3.2 2 79.0 79.5 0.5 80.2 1.2 80.5 1.5 80.5 1.5 80.1 1.1

3 77.7 78.5 0.8 78.6 0.9 78.6 0.9 78.5 0.8 78.4 0.7

4 75.7 77.0 1.3 76.8 1.1 76.5 0.8 76.2 0.5 76.1 0.4 5 70.0 67.1 -2.9 67.5 -2.5 67.9 -2.1 67.9 -2.1 67.9 -2.1

* Tailwater elevation below spillway bucket lip.

NOTE: Piezometer readings are recorded in f'eet of water in prototype, referred to msl, and have been corrected for capillary action in the manometer tubes.

Equation of' curve downstream from crest, Xl •85 :: 11. 72Y.

Equation ot curve upstream from crest, Y? + y2 = 4.002 and x2 + y2 = 1.622. Elevation of' spillway crest = 79.0.

resign head on crest = 8.0 ft. Table 7

GATE OPERATION SCHEDULE

Computed Gross Tail- Step Discharge Discharge Head Gate Numbers water ~ ~ ~ H + Hv 1 2 _ 3_ 4 _5_ _7_ 8 _9_ 10 11 12 .u, 14 ..22.. 16 Elev

1 1,965 2,000 77·000 C c C CC c 2·5 C c CC C C CC C 44.00 2 3,930 4,000 77·000 CCCC CC 2·5 C C 2·5 c c C CC c 44.'00 3 5,895 6,000 77·000 c CCC 2·5 C 2·5 CC 2·5 C C CC CC 45·05 4 7,860 8,000 77·000 c CCC 2·5 C 2·5 CC 2·5 C 2·5 CC C C 46.10 5 9, 825 10,000 17·000 c c 2·5 C 2·5 C 2·5 C C 2·5 C 2·5 CC C C 47·10 6 11,790 12,000 17·001 C C 2·5 C 2·5 C 2·5 C C 2·5 C 2·5 C 2·5 CC 48.10 1 13,155 14,000 17·001 2.-5 C 2·5 c 2·5 C 2·5 C c 2·5 C 2·5 c 2·5 CC 49.00 8 15,120 16,000 71·001 2·5 C 2·5 C 2·5 C 2·5 CC 2·5 C 2·5 c 2·5 c 2·5 50.00 9 11,685 18,000 71·001 2·5 2·5 2·5 C 2·5 C 2·5 C C 2·5 C 2·5 C 2·5 c 2·5 50·90 10 19,650 20,000 77·002 2·5 2·5 2·5 C 2·5 C 2·5 C C 2·5 C 2·5 c 2·5 2·5 2·5 51.80 11 21,615 22,000 77·002 2·5 2·5 2·5 2·5 2·5 C 2·5 C C 2·5 C 2·5, C 2·5 2·5 2·5 52.65 12 23,580 24,000 71·002 2·5 2·5 2·5 2·5 2·5 C 2·5 C C 2·5 C 2·5 2·5 2·5 2·5 2 5 53.50 13 25,545 26,000 71·003 2·5 2·5 2·5 2·5 2·5 2·5 2·5 CC 2·5 C 2·5 2·5 2·5 2·5 2·5 54.25 14 21,510 28,000 71·003 2·5 2·5 2·5 2·5 2·5 2·5 2·5 C C 2·5 2·5 2·5 2·5 2·5 2·5 2·5 55·00 15 29,415 30,000 77.004 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 C 2·5 2·5 2·5 2·5 2'·5 2·5 2·5 55·70 16 31,440 32,000 71·004 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 56.40 11 33,415 34,050 77.004 2·5 2·5 2·5 2·5 2~ 5 2·5 6.0 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 2·5 56·95 18 35,510 36,100 71·005 2·5 2·5 2·5 2·5 2·5 2·5 6.0 2·5 2·5 6.0 2·5 2·5 2·5 2·5 2·5 2·5 57 ·55 19 37,545 38,150 71·006 2·5 2·5 2·5 2·5 6.0 2·5 6.0 2·5 2·5 6.0 2·5 2·5 2·5 2·5 ,2·5 2·5 58.15 20 39,580 40,200 71·006 2·5 2·5 2·5 2·5 6.0 2·5 6.0 2·5 2·5 6.0 2·5 6.0 2·5 2·5 2·5 2·5 58·70 21 41,615 42,250 17·007 2·5 2·5 6.0 2·5 6.0 2,·5 6.0 2·5 2·5 6.0 2·5 6.0 2·5 2·5 2·5 2·5 59·25 22 43,650 44,300 71·008 2·5 2·5 6.0 2·5 6.0 2·5 6.0 2·5 2·5 6.0 2·5 6.0 2·5 6.0 2·5 2·5 59·85 23 45,685 46,350 77·009 6.0 2·5 6.0 2·5 6.0 2·5 6.0 2·5 2·5 6.0 2·5 6.0 2·5 6.0 2·5 2·5 60.35 24 47,120 48,400 71·010 6.0 2·5 6.0 2·5 6.0 2·5 6.0 2·5 2·5 6.0 2·5 6.0 2·5 6.0 2·5 6.0 60.80 ' 25 49,155 50,540 77·011 6.0 6.0 6.0 2·5 6.0 2·5 6.0 2·5 2·5 6.0 2·5 6.0 2·5 6.0 2·5 6.0 61.30 26 51,790 52,500 17·012 6.0 6.0 6.0 2·5 6.0 2·5 6.0 2·5 ,2·5 6.0 2·5 6.0 2·5 6.0 6.0 6.0 61·70 21 53,.825 54,550 71·013 6.0 6.0 6.0 6.0 6.0 2·5 6.0 2·5 2·5 6.0 2·5 6.0 2·5 6.0 6.0 6.0 62.20 28 55,860 56,600 17·014 6.0 6.0 6.0 6.0 6.0 2·5 6.0 2·5 2·5 6.0 2·5 6.0 6.0 6.0 6.0 6.0 62.60 29 51 ;895 58,650 77·015 6.0 6.0 6.0 6.0 6.0 6.0 6.0 2·5 2·5 6.0 2·5 6.0 6.0 6.0 6.0 6.0 63·00 30 59,930 60,660 77·017 6.0 6.0 6.0 6.0 6.0 6.0 6.0 2·5 2·5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 63·30 31 61,965 62,835 77·018 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 2·5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 63.60 32 63,840 64,800 71·019 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 63.90 33 66,865 67,850 77·021 6.0 6.0 6.0 6.0 6.0 6.0 u 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 64.40 34 69,580 70,900 17·023 6.0 6.0 6.0 6.0 6.0 6.0 u 6.0 6.0 u 6.0 6.0 6.0 6.0 6.0 6.0 64.84 35 72,180 13,815 77·024 6.0 6.0 6.0 6.0 u 6.0 u 6.0 6.0 u 6.0 6.0 6.0 6.0 6.0 6.0 65.30 36 74,640 76,920 71·026 6.0 6.0 6.0 6.0 u 6.0 u 6.0 6.0 u 6.0 u 6.0 6.0 6.0 6.0 65·72 31 16, 865 80,040 11·028 6.0 6.0 U 6.0 u 6.0 u 6.0 6.0 u 6.0 u 6.0 6.0 6.0 6.0 66.15 38 19,410 82,,850 17·030 6.0 6.0 u 6.0 u 6.0 u 6.0 6.0 u 6.0 u 6.0 u 6.0 6.0 66.46 39 81,645 85,805 77·032 U 6.0 u 6.0 t5 6'.0 u 6.0 6.0 U 6.0 u 6.0 u 6.0 6.0 66.79 40 84,040 88,755 17·034 u 6.0 u 6.0 u 6.0 U 6.0 6.0 u 6.0 u 6.0 u 6.0 U 67·10 41 86,200 91,190 11·036 u u u 6.0 u '6.0 u 6.0 6.0 u 6.0 u 6.0 u 6.0 U 61·41 42 88,340 94,130 17·031 u u u 6.0 u 6.0 u 6.0 6.0 u 6.0 u 6.0 u u u 61·75 43 90,530 97,160 11·039 u u u u u 6.0 u 6.0 6.0 u 6.0 u 6.0 u u u 68.00 44 92,388 100,690 17·041 U U U U u 6.0 u 6.0 6.0 u 6.0 u u u u u 68·30 45 94,305 103,610 11·043 U u U UU U u 6.0 6.0 u 6.0 u u u u u 68.60 46 96,420 106,530 77·045 u u u u u u u 6.0 6.0 u u u u u u u 68.83 41 97,980 109,445 77·046 u u u u u u u u 6.0 u u u u u u U 69·10 48 99,680 112,350 77·048 u u u u u u u u u u u u u u u u 69·40 49 108,250 116,210 77·057 u u u u u U 20.0 U U UU U U U U u 69·80 50 116,600 120,090 77·068 u u u u u U 20.0 UU 20.0 U UU U U U 10.10 51 124,500 123,635 77·075 u u u U 20.0 U 20.0 U U 20.0 UU U U U u 70.40 52 132,900 126,810 11·088 U u UU 20.0 U 20.0 U U 20.0 U 20'.0 U U U U 70.61 53 139,800 129,290 77·095 u u 20.0 U 20.0 U 20.0 U U 20.0 U 20.0 U U U u -70.90 54 146,300 131,820 71·105 U u 20.0 U 20.0 U 20.0 UU 20.0 U 20.0 U 20.0 U 'U 71.10 55 151,525 134,115 77·110 20.0 U 20.0 U 20.0 U 20.0 U U 20.0 U 20.0 U 20.0 U u 71.27 56 154,560 136,250 71·115 20.0 u 20.0 U 20.0 U 20.0 UU 20.0 U 20.0 U '20.0 U 20.0 71.41 51 156,150 138,085 17·120 20.0 20.0 20.0 U 20.0 U 20.0 UU 20.0 U 20.0 U 20.0 U 20.0 11.60 58 151,200 139,515 71·121 20.0 20.0 20.0 U 20.0 U 20.0 U U 20.0 U 20.0 U 20.0 20.0 20.0 11.78 59 158,225 141,295 77·122 20.0 20.0 20.0 20.0 20.0 U 20.0 U U 20.0 U 20.0 U 20.0 20.0 20.0 71.90 60 161,520 142,980 77·124 20.0 20.0 20.0 20.0 20.0 U 20.0 U U 20.0 U 20.0 20.0 20.0 20.0 20.0 72.00 61 164,340 144,535 77·131 20.0 20.0 20.0 20.0 20.0 20.0 20.0 U U 20.0 U 20.0 20.0 20.0 20.0 20.0 72.11 62 161,500 145,100 71·135 20.0 20.0 20.0 20.0 20.0 20.0 20.0 U U 20.0 20.0 20.0 20.0 20.0 20.0 20.0 12.21 63 171,050 146,865 77·141 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 U 20.0 20.0 20.0 20.0 20.0 20.0 20.0 72·32 64 113,200 148,000 71·145 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 72.41 65 115,325 15 0,740 77·149 20.0 20.0 20.0 20.0 20.0 20.0 L 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 72.61 66 118,200 153,180 71·154 20.0 20.0 20.0 20.0 20.0 20.0 L 20.0 20.0 L 20.0 20.0 20.0 20.0 20.0 20.0 72.80 61 180,500 155,520 77·160 20.0 20.0 20.0 20.0 L 20.0 L 20.0 20.0 L 20.0 20.0 20.0 20.0 20.0 20.0 13·00 68 183,100 151,700 17.165 20.0 20.0 20.0 20.0 L 20.0 L 20.0 20.0 L 20.0 L 20.0 20.0 20.0 20.0 73·20 69 181,525 159,985 77·173 20.0 20.0 L 20.0 L 20.0 L 20.0 20.0 L 20.0 L 20.0 20.0 20.0 20.0 73.38 70 192,000 162,340 77.182 20.0 20.0 L 20.0 L 20.0 L 20.0 20.0 L 20.0 L 20.0 L 20.0 20.0 73·55 11 191,195 164,660 71·190 L 20.0 L 20.0 L 20.0 L 20.0 20.0 L 20.0 L 20.0 L 20.0 20.0 73·71 12 200,000 166,545 77·193 L 20.0 L 20.0 L 20.0 L 20.0 20.0 L 20.0 L 20.0 L 20.0 L 73·88 13 203,500 168,115 71·201 L L L 20.0 L 20.0 L 20.0 20.0 L 20.0 L 20.0 L 20.0 L 74.05 14 201,600 170,135 77·209 L LL 20.0 L 20.0 L 20.0 20.0 L 20.0 L 20.0 L L L 74.19 15 211,500 172,185 71.216 LLL LL 20.0 L 20;0 20.0 L 20.0 L 20.0 LL L 74·32 16 215,500 17 4,375 71·225 LLL LL 20.0 L 20.0 20.0 L 20.0 L L L L L 74.43 17 219,000 175,625 77·233 LLL LL L L 20.0 20.0 L 20.0 LL L L L 74·57 78 220,400 171,560 71·234 L L LL L LL 20.0 20.0 L L L LLLL 14·12 19 223,000 119,060 71·240 LL L L L L LL 20.0 LLL LL L L 74.81 80 225,600 182,000 11·245 L L LLLLL L L LL L L L L L 74.89

Notes: 1. Gate No.1 is ac;ljacent to the lock. 2. C denotes closed gate. 3. 2.5 and 6.0 denote opening between upper and lower leaves of gates. 4. U denotes upper leaf completely r-emoved- 5. 20.0 denotes lower leaf raised 20 ft - discharge under gate only. 6. L denotes lower leaf completely removed. 1. Discharge based on flow through one bay in the section model multiplied by 16 to give total discharge for entire spillway. PLATES £L£V 85.0 18"'GROUT£D RIPRAP ON 6"GRAV£L

rr: "--- ~ OF DIK£ AND AXIS OF DAM FLOOR £L £ V 85.6 01 KE SECTION SCALE IN FEET 20.M.0

I ~AXIS OF DAM

FLOOR £L£V 88.2 j I 5.0' I- D~CK £L£V 107.0 1-1r----L=------+-J

£L£V 99.0 rn"---f13----t==.lW £L£V96.5

UP

SILL

GATED SPILLWAY SECTION SCALE IN FEET

10 0 10 20 30 40 50 ,.. - --

GENERAL PLAN SCALE IN FEET OPEN CREST SPILLWAY SECTION 200.M.0 SCALE IN FEET !>...0---!> 10 15 20 Z5 GENERAL PLAN AND SECTIONS DECK ELEV /07.0

32.9/'

ELEV 84.00

5.00'

AXIS OF DAM

ELEV 48.00

ELEV 25.8.3

ELEV 2/.00

ELEV /5.00

52.5' 39.5'

GATED SPILLWAY AND STILLING BASIN TYPE 2 MODIFIED DESIGN SCALE IN FEET 10••• 0 10 20 30 40

TOP OF ROCK ~~:"lI""""'I~-4-~~~~-r-:

DIKE SECTION WITH FLIP BUCKET SCALE IN FEET 20•••0 20 40 60 80

DETAILS OF SPILLWAY AND DIKE ELEMENTS

PLATE 2 <, --- ~ 1600 ---..... --- -, 1600 / '\\ ~ ~ ---- »>: ---- \ 1200 --- ~\ \ / ~~ ) VERY SLOW EDDY ) 80 ( // 800 "" \ 'P..------~-----_==_~~ ~ ---- ~ 0 3.3:- -- 3: -----. -- RI VER ~ ..J A PALA CHICOL A ..J ~ 400 ____ 400 a: -- C/) IJ... IJ... o o w wz z ::J :J a: a: w ------0 w ~ ~ Z w w U u ~ ~ o o a: a: IJ... 400 ~ 400 IJ... ~ ~ w w W W ~ IJ... IJ... ------( ~ ---7~ \ ~ -- w w Uz 800 .>: .>: / Y fy'l f 800 ~ VERY SLOW EDDY t POOL ELEV 77.0 FT ~ s ~ C/) C/) TA ILWATER 74.9 FT Q Q ~ -: J I / \ / / ALL GATE LEAVES REMOVED. 1200 .> -: 'l'1 / 1200 -. . / / / //; SLACK ',--~/ ) 1600 »>: ~ ;/ ----- .:»: / SURFACE CURRE NTS 2000 SLACK OR IG INAL DE SIGN TYPE A APPROACH 12+00 '8+00 4+00 0+00 4+00 20+00 24+00 28+00 32+00 POOL ELEV 77.0 FT

NOTE: VELOC IT IES ARE IN PROTOTYPE FEET PER SE~OND. "U r ~ rn \~ ~ »>: ~ ~ 1600 ------: 1600 --- ~ .>: ------.> 1200 .> 1200 ==------: '\ ~ SLOW EDDY /1 ------800 5.3 ?i 3= ~ .J .J ~ 400 400 0: l.f) l.f) u, u, a o W wz z :J :J a:: ~~==:=::::::I..b======-=-=--~______0 ~ w o w I­ I- Z Z w w U U ~ ~ o o a:: ~ lI.. 400 400 u, I­ Or w --- o. W lL.. ------~ .> ~) ~ \ w \ ~ 800 800 POOL ELEV 79.0 fT ~ I ( l.f) .. VERY SLOW EDDY TAILWATER ELEV 76.6 fT (3 \ ) ALL GATE LEAVES REM OVED. 1200 ;:;:'ijf 1200 I \ .> ~ II 1600 <:.'. ~ ~;;~) \ ~ / / SURFACE CURRENTS ~ ~ ~ 2000 »>: .i-> OR IGINAL DESIGN ------TYPE A APPROACH ---- 8+00 12+00 16+00 20+00 POOL ELEV 79.0 FT STATIONS

NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. ~ ------~ .> 1600 ~ 1600 ~ \ .> -. .: ----- ~ \ VERY SL~W EDDY 1 .: .> 1200 --...... 1200 ~ ) .> \ -----..... / -- -: I -: 800 ~ ~/ / »->: 800 ~ ---...... ~--- 5.0 »->: ~ ----- ~ -:: ----- ~ ~ (APALACHICOLA ~RIV£R .i->; ..J 400 400 a: ~ ------(/) ~ ------u, ------~ ------~ ---- o ------w w -- -::::::.---- z ---- z :J --- :::i ------a:: a:: ------0 ----- w w I- I- Z 5 w u U ~ ~ o o a:: a:: u... 400 -- w 400 u... --- I.:> I- ..... o w a: w w ----- ID ~ u, --- »->: ~ ~ w w u ~ 800 .i->: 800 z ------POOL ELEV 82.0 FT ~ ~ (/) (/) TAl LWATER ELEV' 79.7 FT o 0 ALL GATE LEAVES REMOVED

1200 1200

1600 SURFACE CURRENTS

2000 ORIGINAL DESIGN TYPE A APPROACH

POOL ELEV 82.0 FT

NOTE: VELOC IT IES ARE IN PROTOTYPE FEET PER SECOND. .u->: ~ .> 1600 ~ 1600

/ ~ »>: --- ~ / ~ / -, 1200 .> 1200 / .> SLOW EDDY )1 / / »> ------800 / »>: 800 5.3 --- ~ ~ RIVER------r- ~ -l ~ --- ~ 400 400 (f) (f) u, u, o o w zw z :J :J a: ~===::::::!J=.,==-======--""'"_r_------a: -- 0 w w I­ I- Z Z w w U U ~ ~ o o a: a: l.L. 400 400 l.L. I­ I-w w W W l.L. u, \ ~ ~ W w ~ 800 800 ~ ~ f POOL ELEV 79.0 fT ~ I (f) (f) \ \ o VERY SLOW EDDY TAILWATER ELEV 76.6 fT o ALL GATE LEAVES REMOVED t \ ) J 1200 1200 \ \ /I 1600 // ------\ SURFACE CURRE NTS

2000 ----+- ORIGINAL DESIGN - --- TYPE B APPROACH 12+00 8+00 4+00 0+00 4+00 8+00 12+00 16+00 20+00 24+00 28+00 32+00 POOL ELEV 79.0 FT STATIONS NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. -- »>: 1600 ---- -: 1600 ------.... .: .> '\. / 1200 1200 / »>: SLOW EDDY ;1 ~ ~ 800 ---- 800 5.3 ~ ------~ ~ ..J ..J ~ 400 -- 400 0::: (/) (/)

I.L. ~.6~ I.L. o o w w z z ::J :J a:: ~===::::::l..b,===~===>o______0 a:: w o w f- f- Z Z w w U U ~ ~ o o a:: a:: I.L. 400 400 I.L. f­ f­ w w w \ j u, ~ Z ~ w 800 ( \ \ 800 ~ POOL ELEV 79.0 FT ~ VERY SLOW EDDY (/) f TAILWATER ELEV 76.6 FT Ci SLACK I ) ALL GATE LEAVES REMOVED. 1200 j \ 1200 -. ) / 1600 \ // ----- \ SURFACE CURRE NTS 2000 ORIGINAL DESIGN " ------TYPE D APPROACH 12+00 8+00 POOL ELEV 79.0 FT

NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. -----~ .s->: ~ 1600 .i-> 1600 .>------~ \ .> 1200 1200 ------'\ ) ---:.... / / SLOW EDDY /1 800 /. .: 800 5.3 ?i ----- «>­ 3: ::::::----- ~ -l -l a:-l 400 400 a: (/) (/) u, ---- u, o o w z :J -:::::r=====::::::Lb~==-====~""","---______a:: 0 w --- f- ~ u 2 o ~ 400 ----- 400 .i->: ~ w w U ~ Z 800 800 ~ .i->: POOL ELEV. 79.0 FT ~ (/) (/)o TAILWATER ELEV 76.6 FT o SLACK ALL GATE LEAVES REMOVED. 1200 ---- 1200

---- .i>: 1600 ------SURFACE CURRENTS 2000 ORIGINAL DESIGN TYPE F APPROACH

4+00 24+00 POOL ELEV 79.0 FT

NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. ~ ------~ 1600 .i-> 1600 -- ~ '\ / ~ ~--~ ~

~ 1200 ----...... / 1200 SLOW EDDY }; ) »>: ------~ 800 / h / ------800 ---- Y-+--..L----L~~_.,e_+___:::_-~'------=--- ~ , ~ /V £ R 400 --- 400 6.3 -~-- w z -=-~ :J ------=:::: c:: ~==_==::::::J...b_,==-=-===_=_:=="'""=> 0 w o -----===---~--- ~ Z w ------=== U --- ~ ---- o c:: u, 400 400 ~ u..tJ ---- ~ w ~ 800 ____ 800 ~ POOL ELEV 79.0 FT (/) TAILWATER ELEV 76.6 FT Q ALL GATE LEAVES REMOVED 1200 ---- 1200

1600 SURFACE CURRENTS

2000 ORIGINAL DESIGN --- TYPE G APPROACH 12+00 8+00 4+00 POOL ELEV 79.0 FT

NOTE: VELOC IT IES ARE IN PROTOTYPE FEET PER SECOND. 1) r ~ (T1 o 1600 ------1600 / ~~ 1200~ )/~ 1200 r >:SLOW EDDY / 800 L 800 ~ ~ ~ ...J ...J ...J 400 ---- 400 a: a: (/) (/) u, ----- u, 0 o w zW z :J ::i II: ~====::::::I..b======-______II: w 0 ----- 0 w f- f- Z Z w w U ----~ U ~ ~ ~ 0 ------o II: II: lL. 400 "\~ 400 lL. f­ f-w w W W lL. lL. ~ ?; W w u z 800 800 ~ ~) ~ ~ POOL ELEV 79.0 FT ~ ~ VERY SLOW EDDY (/) (/) I ( TAILWATER ELEV 76.6 FT o 0 ALL GATE LEAVES REMOVED SLACK 1200 1200 r \ J J 1600 ---- \ ~~~/ I ~. / SURFACE CURRENTS 2000 ---~ .OR IGIN A L D ES I G N TYPE H APPROACH POOL ELEV 79.0 FT

NOTE: VELOCIT IES ARE IN PROTOTYPE FEET PER SECOND. ---- ~ ~ -1600 ----- ~ ----- 1600 »> ~ ~ /

1200 -: 1200 .> "1 .>: -- SLOW EDDY I 800 I / / ----- 800 ~ 3: ~ -l -l ~ 400 400 a:: (/) (/) u, u, o o w w z z ::i :J a: ~==:=:::::Lb===-==-=-==-=---______0 a: w w I­ I- Z Z w w U U ~ ~ o o ~ a: 400 400 u, I­ I­ w w W u, ~ !f !f w w U ~ Z 800 800 ~ POOL ELEV 79.0 FT ~ (/) ( ( (/) TAILWATER ELEV 76.6 FT is ---- is ALL GATE LEAVES REMOVED. 1200 ------\ \ 1200 SLACK 1600 ---- \ SURFACE CURRENTS

2000 OR IG INA L DESIGN TYPE K APPROACH

12+00 8+00 4+00 0+00 20+00 24+00 28+00 32+00 POOL ELEV 79.0 FT

NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. -0 r ~ rn° N 1600

1200 ~ 1200 SLOW EDDY I / 800

~ ~ ~ ~ ..J ..J ~ 400 400 a::: (/) (/) u, u, o o w w z z :J ::i a: a: w ;::;:-----:===::::;;zwc!'-:====::::::L1~==="="=='""'"'------0 w t­ t- Z Z w w U U a:~ ___ ~ ~ o o a: l.L. 400 400 u, t- t­ w w W ~ l.L. ~\ \1 ~ w 800 ~ POOL ELEV 79.0 FT ~ VERY SLOW EDDY (/) I \ t TAILWATER ELEV 76.6 FT Q ALL GATE LEAVES REMOVED. 1\ )J 1200 <. // \ ~----- / SURFACE CURRE NTS

2000 / ORIGINAL DESIGN ------TYPE L APPROACH 8+00 4+00 0+00 4+00 12+00 16+00 20+00 24+00 28+00 32+00 POOL ELEV 79.0 FT STATIONS NOTE: VELOCIT IES ARE IN PROTOTYPE FEET PER SECOND. 1600 1600 ----- .> ---

1200 1200 ~ ----- 800 ------800 ~ 3: ...J ~ ~ 400 400 ~ (/) (/) u, u, o ---~----- o w w z ----- z ::J ::::i ~====:::::I..k======-====--______-- c:r: 5 o --~-~--o4.S • ---~=-II-- 0 w f­ f­ Z Z w w U u ~ ~ o o c:r: l.a... 400 w 400 ~ f­ o f­ w o w W a:: W l.a... lD l.a... 6 ?; w w ~ 800 800 ~ ~ POOL ELEV 79.0 FT ~ (/) (/) o TAILWATER ELEV 76.6 FT o ALL GATE LEAVES REMOVED.

1200 1200

1600

SURFACE CURRE NTS

2000 ORIGINAL DESIGN TYPE M APPROACH POOL ELEV 79.0 FT

NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. 85

II II I I I I IIIIII v TOP OF GUIDE WALL - ELEV 82.0 / ~~~~ ~~~~ 80 ~~~~ ~V-/.v// V~V-/. ~V//V/JV-/. 0-v~V~" ~~~~~ ~~~~ ~ ~v~WATER SURFACE-ELEV 77.0 ~ 1-r---~ ~~~~ ~ ~~~~ ~ 75 ~~~~~ .J (f) ~ ~ ~~~~ ~ I t­ w ~~~~ ~ w u, ~~~~ % ~ ~ BOTTOM OF CURTAIN WALL (ORIGINAL DESIGN)-ELEV 70.0 ~~~~ ~ IIIIIIIIIII I _/ j 70 ~- r% 1IIIIIIIIIII /V ~ '/. -BOTTOM OF BARGE - £LEV 68.0 Z ~./.V///'//V~~/:0 /~ ~ ~/ v///'~~/ ,.. ./V ~ a: V :::> ./ o V~ u, o /"' ~ 65 .... // mb V z V o ~ ~ V I'" > W / ...J ·w V 60 V V v/"- / V

55 V ,,/ //

50 o 5 10 15 20 25 30 35 fORCE ON BARGE IN PROTOTYPE TONS

EFFECT OF FLOW THROUGH SLOTTED GUIDE WALL OF UPPER LOCK APPROACH ON BARGE TOW

PLATE 14 SLACK 1600 1600

1200 1200

800 800

~ ---~­ >- ~ ------I R / VER ~ H / COL A -I ~ 400 400 a: (/) (/)

I.L. I.L. a VERY SLOW ------a w w z z :J :J Y-=.==:::-:::::::i-l=-======~~______o; 5 ------0 w l- I­ ------Z t w u U ~ a2 a c::: c::: I.L. 400 400 I.L. I- I­ w w W I.L. ~ ~ w w ~ 800 800 ~ ~ POOL ELEV 77.0 FT ~ (/) (/) a TAl LWATER ELEV 56.0 FT a

1200 1200

1600

SURFACE CURRENTS

'1J 2000 ORIGINAL DESIGN r TYPE J APPROACH ~ UPPER GATE LEAVES RAISED 2.5 r r rn NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. m 1600 1600 ~ 1200 / 1200 ) 800 800

~ .~ ~ ...J- ...J ...J ~ 400 400 a:: (f) (f) u, alJ.. o w -- w z z :J :J cr: cr: w o .Y-:======:::I..'=====-=-===---=------0 w t- t- Z Z w w U u ~ ::::E o o cr: I.&.. 400 400 ~ t­ t­ w w W W u, I.&.. ?; ?; w w ~ 800 ~ 800 POOL ELEV 77.0 FT ~ ~ (f) z(f) TAILWATER ELEV 63.9 FT o

1200 1200

1600

SURFACE CURRE NTS

2000 ------ORIGINAL DESIGN TYPE J APPROACH 12+00 8+00 4+00 UPPER GATE LEAVES RAISED 6.0 r r

NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. ~ 1600 1600

1200 1 ( 1200

800 =------\ -. 800 ~ ~ ----~~ R/V~ ~ ..J A PAL A CHI C O~ ~ ..J ~ 400 400 a::: (/) (/) ~ ______.----~3.3 u, »->: lL. o ------a-?2------o ~ w wz z ------:- ::J ------:J a: ~~=:::::::!J=.======_=_=___-_____ 0 a: w w I­ I- Z Z w w U U ~ o a: 400 u, I­w t::

w 800 ~ POOL ELEV 77.0 FT ~ (/) TAILWATER ELEV 69.4 FT (5

1200

SURFACE CURRE NTS

'"U 2000 ORIGINAL DESIGN r TYPE J APPROACH ~ UPPER GATE LEAVES REMOVED rn NOTE: VELOC IT IES ARE I N PROTOTYPE FEET PER SECOND. "'U r » -I rn ---~

1600 1600 ------

1200 ---- 1200

VERY SLOW EDDY

800 800

?i >- ~ eY-- ~ ...J -l ...J A PALACHICOL A ...J 0::: 400 400 0::: CI) ~ 6.3 __ CI) u, lr.. 0 ----- o w --- w z z :J :J a:: ~~~/=====::::::,l~======~______0 a:: w w I- I- Z Z w w U U ~ .i->: ~ ~ 0 o a:: a:: lr.. 400 400 lr.. I­ I-w -----~~ w w W u, lr.. ~ ~ W ~~/ALAiK' w u z 800 -- 800 ~ ~ POOL ELEV 77.0 FT ~ CI) CI)q ~ /j TAILWATER ELEV 72.4 FT a ~y 1200 --- /J 1200 1600 ------~ SURFACE CURRE NTS 2000 ---- ORIGINAL DESIGN TYPE J APPROACH 12+00 8+00 4+00 28+00 LOWER GATE LEAVES RAISED 20.0 FT

NOTE: VELOC IT IES ARE IN PROTOTYPE FEET PER SECOND. 1600 ---- 1600 SLACK 1200 1200

800 800

~ ~ ~ ------~ ~ 3: A __RIVE R-----00- ..J ..J ..J ...J c:: 400 400 c:: (f) (f) u, u, 0 o w wz z ::J :::i a:: ------~ a:: 0 -~----~Y, ~====:::::Lb======__._,.._------0 w w ~ ~ z z w w U U ~ ~ 0 /-; o a:: a:: lL. 400 400 u, ~ ~ w ~ ----- //~ W lL. ~ ~/\LACK lL. ~ ~ W w u z 800 800 ~ ~ POOL ELEV 77.0 FT ~ (f) TA ILWATER ELEV 60.0 FT (f) (5 ~~/-I fTI f\) 0 1600 ------...... 1600

1200 ---...... 1200 ---- SLACK

~

800 ~ 800

~ 3: -----...... RIV £ R ~ ..J ----- A PALA CHICOL A ..J c:..J 400 400 ([ (/) (/) I.J... aI.J... a w zw z :J ---- :J cr: 5 0 ~==:-:=:::::::Lh======---=--______0 w I- I- ~ ~ U U ~ ~ a a cr: E 400 400 I.J... I- ~ I.J... ~ ~ ------~ w w u z 800 800 ~ -c POOL ELEV 77.0 FT I- ~ (/) Cf) 0 .i> TAILWATER ELEV 60.0 FT o SLACK

1200 ------»>: 1200

36+00 40+00 44+00 1600 SURFACE CURRENTS

2000 ORIGINAL DESIGN TYPE J APPROACH

24+00 28+00 32+00 FIVE GATES ADJACENT TO LOCK OPEN

NOTE: VELOCITIES ARE IN PROTOTYPE" FEET PER SECOND. ----- ~ 1600 1600 ~

SLACK ~ 1200 ---- ~ \ 1200

~ -:-<:9 800 \ 800 ~ ~ ~ 3: .....J RIV £ R ~ .....J A PALA CHICOL A .....J 0:: 400 400 0:: (/) (/) u, lL o ~.~-- o w w z ---- oJf2fL-- ~ ~ z :::::i :J -----_._-----~ a:: 5 r::===-=-==::::!.b======-_.______0 w I- I­ Z ~ w U ---- U ~ --- ~ o y o E: a:: 400 .s->: 400 lL I­ I­ w w ) W ~ u, ---~':1 ?; w 800 800 ~ ----- yy VERY SLOW EDDY / POOL ELEV. 77.0 FT ~ ---- TAILWATER ELEV. 61.4FT (/) / I o / .s> / 1200 --- /I ~ .> 1200 / / 1600 ------/ SLACK SURFACE CURRE NTS

2000 OR IG INAL DESIGN TYPE J APPROACH 12+00 8+00 4+00

NOTE: VELOC IT IES ARE I N PROTOTYPE FEET PER SECOND. 600 600 W (/) ::J 0 I a:: 500 W 500 ~ 0 a..

400 400

300 MODEL CONDITIONS 300 POOL ELEVATION 77.0 >- «>- TAl LWAT ER ELEVATION 56.4 « ~ ~ .J 200 200 .J a: a. (J) (J) LL LL 0 0 W w Z 100 100 Z :::i :::i a: a: w w...... Z z w w 0

300 300

400 400

500 500

600 600

0+00

NOTE: STATION 0 + 00 IS AX IS OF DAM. SAND BED MOLDED TO PROTOTYPE CONTOURS SCOUR PATTERN AT START OF TEST. ORIGINAL DESIGN GAT E NO. I IS AQJACENT TO TH E LOCK. GATE NO.7-UPPER LEAF RAISED 6 FT OTHER GATES-UPPER LE;:AVES RAISED 2.5 FT

PLATE 22. 600 600 W (/) ::> 0 J: a: 500 W 500 ~ a.0

400 400 MODEL CONDITIONS

POOL ELEVATION 77.0 TAILWATER ELEVATION 64.4 300 300

>- «>- « C) ~ 't ~ -1 200 200 -1 0:: 0... C/) C/) LL LL 0 0 w w Z 100 100 Z ::J :J a:: a:: w w I- l- Z Z w w U

300 300

400 400

500 500

600 600

0+00 1+00 2+00 3+00 4 +00 STATIONS

NOTE: STATION 0+00 IS AXIS OF DAM. SAND BED MOLDED TO PROTOTYPE CONTOURS SCOU R PATTE RN AT START OF TEST. ORIGINAL DESIGN GAT E NO. I I S ADJACENT TO TH E LOCK. GATE NO.7 - UPPER ,LEAF REMOVED OTHER GATES-UPPER LEAVES RAISED 6FT

PLATE 23 600 600 W (/) :::> 0 I a:: 500 W 500 3 0 a.

400 400 MODEL CONDITIONS

POOL ELEVATION 77.0 TAILWATER ELEVATION 69.8 300 300

>- >- <{ <{ ~ ~ ..J 200 200 ..J a. 0: en en u, u, 0 0 W W Z 100 100 Z ::::i J rr rr w w f-.,...... Z Z w w o

300 300

400 400 ~

500 500

600 600

0+00 4+00 5+00 6+00 7+00 8+00 STATIONS

SCOUR PATTERN NOTE: STATION 0 +.00 I~ AXIS OF DAM. OR IGINAL DESIGN SAND BED MOLDED TO PROTOTYPE CONTOURS. AT START OF TEST. GATE NO.7- UPPER LEAF REMOVED GAT E NO. I I S ADJACENT TO TH E LOCK. LOWER LEAF RAISED 20 FT OTHER GATES-UPPER LEAVES REMOVED BOTTOM LEAVES IN PLACE

PLATE 24 600 600 W (/) ::::> 0 I a: 500 W 500 ~ 0 0-

400 400 MODEL CONDITIONS

POOL ELEVATION 77.0 TAILWATER ELEVATION 72.6 300 300

>- >- <{ <{ ~ ~ ...J 200 200 ...J CL ii en cn I.L. I.L. 0 0 w w Z 100 100 Z J J a: a: .-w .-w Z Z w w o

300 300

400 400

500 500

600 600

0+00 1+00 2+00 3+00 4 +00 5 +00 6+00 7+00 8+00 STATIONS SCOU R PATTERN NOTE: STATION 0 + 00 IS AX IS OF DAM. ORIGINAL DESIGN SAND BED MOLDED TO PROTOTYPE CONTOURS AT START OF TEST. GATE NO.7-UPPER LEAF REMOVED GAT E NO. I I S ADJACENT TO TH E LOCK. LOWER LEAF REMOVED OTHER GATES-UPPER LE,AVES REMOVED LOWER LEAVES RAISED 20 FT

PLATE 25 600 600 W en ::> 0 :::c (( 500 W 500 ~ 0 Q.

400 MODEL CONDITIONS 400 POOL ELEV 77.0 TAl LWATER 74.9

300 300

>- «>- « ~ ~ -' 200 200 -' a. a. en en u.. LL 0 0 W W Z 100 100 Z ::::i J cr: cr: w w ...... Z Z W W o

300 300

400

500 500

600 600

0+00 1+00 2+00 3+00 4+00 5+00 7+00 8+00 STATIONS

NOTE: STATION 0+00 IS AXIS OF DAM. SAND BED MOLDED TO PROTOTYPE CONTOURS. AT START OF TEST. SCOUR PATTERN GAT E NO. I I S ADJACENT TO TH E LOCK. ORIGINAL DESIGN ALL GATES REty10VED

PLATE 26 120 120

100 100 ...J l/) ~ ~ ~ PROFILE ~ 80 10.5 80 ~ w ...!.LL w w 10.5 ~ w u, ~ ~ u, ~ ·60 10.0 ..!QL ~ ~ ~ 60 ~

z 10.0 .-!Q.L 17.2 10.~ z 0 2.2.- 0 i= 9.3 10.0 ~ ~ i= -c 40 40 > :t, <> W W ...J DISCHARGE 285/500CFS ...J W POOL ELEV 77.0FT W 20 20 ::~.' .~ ..' Hv 1.59FT TAILWATER ELEV 74.9 FT OL-_---l..__--l...-__..l...-_---l__----L. __-l..-__L.__----l...__--1-__..l.....-_----l.__--l-__....L...-_----.JL.--_----L.__....l-__..l....--_---'-__...... J..-_--=-...1--~:_:_--:-'-----'--- .L.;_-----l...-- o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXI~ OF DAM TYPE 2 DESIGN

120 r--_,_--~--..,__-____r--___r_--__.__--r_-____r--_.__--r__-___,--__.___--,___-_____,;--__,_--_.__--r_-_,_--__._--.---~--__,_--_._--r--_,_--...., 120

100 100 ...J ...J (/) (/) ~ ~ 80 WATER-SURFACE PROFILE 80 ~ 10. 14.9 13.2 ~ w ...!i4- w W 10.0 w u, ...!!22- ~ u.«: u:s.: u, ~ 60 IqJJ- .ae.: ...!.Z4.- ..!.Y- ..!.i.E- 60 ~ Z 10.0 16.5 ~ .JJ2..J2- z 0 ...!!22- 0 i= 9.3 9.3 ...M- ...M- i= -c 40 40 -c > > W w ...J ...J W DISCHARGE 282,000CFS w 20 POOL ELEV 77.0 FT 20 Hv 1.55FT TAILWATER ELEV 74.9 FT 0L-_---l..__--l...-__..l...-_---l__----L. __--'--__L.__----l...__--1-__..l.....-_----l.__--l-__....L...-_----.JL.--_-..L__....l-__..l....--_---'-__-'-_--'------~---..L----'----L.------l...----Jo 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM

TYPE I (ORIGINAL) DESIGN WATER-SURFACE PROFILES AND NOTE: WATER-SURFACE PROFILES MEASURED ALONG "1J CENTERLINE OF MODEL. FLOW CHARACTERISTICS r VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. ~ GATED SPILLWAY DISCHARGE 282,000 CFS AND 285 CFS m J500 ." r » 120 120 ~ m 100 100 ..J ..J N l/) l/) ~ (X) WATER- SURFACE PROFILE ~ 80 I- 80 I- w 10.5 ~ w w ~ ..!ll­ w u, u, 10.5 ~ .&d­ ~ ~ 60 60 ~ 10.5 -E.J- ..&.1.­ Z us..: us: z 0 ~.::~:.:':": 0 i= g..] 9.9 . .. j:::: -c 40 l~~~~~~~~<'~' :1"":'::- 40 > ~ ~ W W ..J y~ DISCHARGE 325,OOOCFS ..J W '.'/.;,., W ... ~. 79.0 FT 20 POOL ELEV 20 Hv 1.83 FT TAILWATER ELEV 76.6 FT 0 o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM· AXIS OF DAM TYPE 2 DESIGN

120,------.----.----,-----,----.----,----,,....------.----.----,-----,----.---..,.---,----,-----.----,-----,----,---,...-----,-----r----,----r----,-----,120

100 100 ..J ..J l/) l/) ~ WATER-SURFACE PROFILE ~ 80 80 I- ),.------_14.9~------14.9_...... ------'-I I- w w w 11.2 ~ ~ w u, .-!.l.d- .!ZL- us.: -Ed- .&..E-- u, ~ 60 /I. -..ill- .!ll-~~ ss.. ..!.U­ -LU­ 60 ~ Z 10.5 .JQ.9- -'U- ~.J.l..4- .lQQ-. ~ z 0 .se.: 0 i= 9.3 9.3 5.0 7.9 - 7.9 j:::: -c 40 40 -c > > W W ..J DISCHARGE 321,000 CFS ..J W POOL ELEV 79.0 FT W 20 Hv 1.81 FT 20 TAILWATER ELEV 76.6FT OL-_--L__---I.-__..L.-_-l__----L__.....L.- __.L-.._--L__---I.-__-'--_-l_--'----l..__...I.-__I....-._-..l.__---I.-__-'--_---1__--'-_-....I...--__I....-----I-----L---.1..-----L----:--.....J o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 420 DISTANCE IN FEET. FROM AXIS OF DAM

TYPE I (ORIGINAL) DESIGN WATER-SURFACE PROFILES AND NOTE: WATER-SURFACE PROFILES MEASURED ALONG CENTERLINE OF MODEL. FLOW CHARACTERISTICS VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. GATED SPILLWAY DISCHARGE 321,000 CFS AND 325,000 CFS 120 r------r---.-----r------y---,---_,._--r_-__r--__.__--~-__r--__r--_,._--r_-__r--__.__--~-__r--__y_--...------;r_-__r--__.__--~---r----,120

100 100 ..J lI) ~ WATER -SURFACE PROFILE '22 l- 80 HL- w 122 ..JgL ~ w ..l2.4- u, 11./ J.il- .ss.: ~ ~ ~ ~ ~ ~ 60 60 ~ //./ .u.c: ~ .!M-- K!- R!- J.J...:..L ~ Z I~ ~. Z 0 .. o i= 9.9 1S- ~ 2:..L ~ ~ M...- ~ -c 40 I~~~~~~~~:·<·~· :~.> ~~~~~~~~~~W~~~~~~~~~~~W~~~~~~~~~~~~~~~~~:t:::140 ~ > :"...... w \::...... , w ..J . "..:." ..J DISCHARGE 384,,000 CFS W w ...• 'e>' • •" 20 .'". . POOL ELEV 82.0 FT 20 ::'~",,: ~_:_+':_,..,..,..,...,...,...,,~,..,.,.,..,.,~=:-f; '" J> •••• p.::.. Hv 2.24 FT ::...:::.;..::.:.:::.. ::.: .. :.::-.: .. .. TAILWATER ELEV 79.7 FT OL..------I..-----l...----'------l----I----.l---J.------I..----'----..L...------'------'-----'-----'------I..-----l...---..L...------'----'--_-'-__'----_-----1..__--'--__-'--_----'__--' o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM TYPE 2 DESIGN

120,------r---.-----r-----,---,----.-----,.------,---,----r------y---,----,.---,.------,---.-----r------y---,---_,._--,.------,---,----r------y----,120

100 100 ..J ..J lI) C/) ~ ~ 12. ~ /6.5 80 l- 80 I- w w w 12. w u, ~ .as.: .&:!l­ u, ~ 60 II. .us.. ~ .Md­ 60 ~ Z 11.2 J..!..:.E- 19.3 ~ .ill.- .l.U- z 0 ::.~ ?~.:.: 0 ~ 8.6 8.6 -::,;:.. .. :.}> . 7./ 8.6 8.6 ~ -c 40~~~~~~~~ ~: 40 -c > ... :. ... :. ..::'.:.: . > w ~. ;'.'0:'.' ':. .' ... ~: :":"- .. w ..J ..J w DISCHARGE 381,000 CFS w 20 POOL ELEV 82.0 FT 20 Hv ~.21 FT TAILWATER ELEV 79.7 FT OL-----L----l.---..L.------'-----L--~--L------I..-,-----l...---..I..-----l----I----.l---J.------:...-----I..-----l...--,--..I..-----l----L..-_--L.-,--_L__-----I.._____l...___..I.._ .I.----l o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM

TYPE I (ORIGINAL) DESIGN WATER-SURFACE PROFILES' AND NOTE: WATER-SURFACE PROFILES MEASURED ALONG '1l CENTERLINE OF MODEL. FLOW CHARACTERISTICS r VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. ~ GATED SPILLWAY AN~ f11 DISCHARGE 38J,000 CFS 384,000 CFS 1] r »- 120 ,...-----,-----,---,------r---,.----,----,-----,----,---.------r---,.--.,------,,-----,----,---.------.---,---..,.-----,-----,----,---,.----.---,120 --I rn 100 100 ...J ...J CAl l/) WATER - SURFACE PROFILE l/) 0 ~ /2.1. -iL..!- ::? I- 80 ~ .izs: .a.«: JM- 80 I­ w /2.1 .au.: .zzz., ~ -.!M- ..!.M- w w W LL LL //.1 .u.c: ...!M-- !.li- ~ .M.:.1- --.Ml- ~ 60 60 ~ /0.0 .JY.- ~ ~ E!.- ..J!..J!.- ~ z /7.2 .ss.: Z 0 8.6 o t= -.M..- 2..2- .se.: ~ 22-. ss..: i= -c 40 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~w~~q, ~ > 40 w w ...J ...J w DISCHARGE 400,000 CFS w 20 POOL EL EV 85.0 FT 20 H" 2.12 FT TAILWATER ELEV 83.1 FT

OL-_---L.__--I....- __...l...-_-.I__--L__-L-__l--_---L.__--I....- __..l....-_-.I__--L__-L-__L-_---L.__--I....- __..l....-_-----'__----'-_--L-----=-::-:--~--~----=-_:_:_---l.--...... J 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 2140 260 280 300 320 340 360 DISTANCE IN FEET FROM AX IS OF DAM TYPE 2 DESIGN

120,..-----,----,-.,....---,------r---,.----,----,-----,----,---.------r---,.--.,------,,------r----,---.------.---'---,---..,.-----,-----,-----,---'--,.----.---, 120

100 100 ...J ...J l/) WATER -SURFACE PROfiLE l/) ~ ~ 80 /2. ..R..?- -M4- ..!fl.- . 80 I- I- w w w /2.2 ~.!E2- ~ W La.. .us: -.&L !Y- H...!- u, ~ 60 II. ..!.U- .!M-~~ ~ .a.s.: u.«: 60 ~ z /0.0 -!.LL /7.3 iu: ~ l!li2- J!2J2.- z 0 .u.s: .ee: 0 t= 8.6 8.6 7./ 5.0 5.0 -c 40 40 i= > -c w > ..... : w ...J ~ ...J w :';:. . p.. •. DISCHARGE 39~000 CFS w 20 1>. POOL ELEV 85.0 FT 20 H" 2.09 FT TAILWATER ELEV 83.1 FT OL-_---L.__--I....- __..L.-_----I.__--L__-L-__L-_---J.-__---I....-__-'---_----I.__--L__..L-_----JL.....-_---J.-__---I....-__-'---_------'-__----'--- __-'--_--:-':-:--_---'-_----'--l-__-'---_------'-__---.J o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM

TYPE I (ORIGINAL) DESIGN WATER-SURFACE PROFILES AND NOTE: WATER-SURFACE PROFILES MEASURED ALONG CENTERLINE OF MODEL. FLOW CHARACTERISTICS VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. GATED SPILLWAY

DISCHARGE 397,000 CFS AND 400,000 CFS 120 120

100 100 ...J WATER-SURFACE PROFILE ...J CI) -----.!!:Z- 17s~: -- :~~: -~::;.;::=------.!..::::::==------15..3 :g~~ CI) ::E E2- I ::E f- E..­ 80 f- w ~ ~ .!b!.- w W !S!:!d....- .ss.: w l1... u, ~ ~ ~ !.l:L- ~ 60 60 ~ 10.0 ~ ~ .!!:1.- z E!!.-- z a .1:..1. a ~ 8.6 32-- J:!L..- ~ ..!:.!L..- ~ -c 40 I~~~~~~~~':";;" :'.':/":::~'. 40 -c > ~ if, > w ...... /> -: •• DISCHARGE 414.,000 CFS w ...J ~ ...J w C:'::·".: '.;'. ::'<' POOL ELEV 91.0 FT w 20 • t>. :>.. Hv 1.77 FT 20 ::.~.. .. :.' ...~:..~~~...,....,...,=-'"'~~=' TAILWATER ELEV 90.0 FT

OL-_---l__----L__--l.-__....l.-__.L.-_-..L____L..___I.___...l..-__'____---'-_--.,,---l.-___I.___....L...-__'--_------l__--L.___I.___....L...-__'--_------l__--L.__....L-__...L.-__L-_---l o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM TYPE 2 DESIGN

120...------,-----.------r---.,..---,------,------,-----.---,------,r---,-----,-----.----,-----,,.------,------,----,---.,..-----,,------,------,-----r---.,..-----,,.-----,120

100 WATER-SURFACE PROFILE 100 ...J ...J CI) 11.2 !!:L- ~/5.3 14.9 14.9 .lH.-- 13.2 CI) ::E ::E /1.2 ~ ~ 80 f- '80 lid-- !£- s«: E.:.!- .ill-- f- w w W 10.0 ue.; w u, .!!d- !H- !H.- .!M..- ..!:l.:.£- ..!:ll.-- l1... ~ 60 10.0 .!.E:!!....- ~ ~ ~ us.: ~ ...!Y-- .ss..: 60 ~ z 10.0 14.1 ~ ss: ~ ~ .!!:.L- ..!!.:.L- z a .!!Y!....- .::; -,:...~:: ;.-::: '~':'j,... a ~ 8.6 8.6 .. :.....:: 7.1 7.0 .!.:!L- ~ -c 40 />00 ••~:. ~ Z:.L- 40 -c > ,,' > .~::: w ,'1> '" . , ... w ....1 .' . DISCHARGE 410,000 CFS ...J w 1>'. ".1>.':'.. POOL ELEV 91.0 FT w 20 Hv 1.74 FT 20 TAILWATER ELEV· 90.0 FT

0L-_------l__---L__--l.-__....l.-__.L.-_ ____l.__--l.-__-'-__...1..:-_---:-:-:--_---:-:--_-l-=--_~--...L.---'------l.----L..---I.---....L...-__'--_---'-__--l.-___I.___....L...-_----lL-_---l o 100 80 60 40 20 o 20 40 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET PROM AXIS OF DAM

TYPE I (ORIGINAL) DESIGN WATER-SURFACE PROFILES AND NOTE: WATER-SURFACE PROFILES MEASURED ALONG "'U CENTERLINE OF MODEL. FLOW CHARACTERISTICS r VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. » GATED SPILLWAY -I ITt DISCHARGE 410~000 C FS AND 414,000 C FS --0 r » 120 120.------, ~ MODEL CONDITIONS MODEL CONDITIONS m DISCHARGE -98,500 CFS DISCHARGE - 31,410 C F S 100 100 POOL ELEV - 77.0 FT POOL ELE V - 77.0 FT W T.W. ELEV - 69.4 FT T.W. ELEV - 56.4 FT I\) t- 80 l:j 80 w -....-- W ---- w u, lL. ~ -- -- Z 60 t------;: 60 I I 0 o W W I 40 I 40

20 20

0 O'------'---'-----'------'---'---...... L..-----'---'-----J o 20 40 60 80 100 120 140 160 o 20 40 60 80 100 120 140 160 DISTANCE IN FEET DISTANCE IN FEET

UPPER GATES OUT UPPER GATES OPEN 2.51

120 MODEL CONDITIONS 100 DISCHARGE - 63,400 CFS POOL ELEV - 77.0 FT T.W. ELEV - 63.9 FT

t- w 80 W u, ~ 60 ~ --... I ------0 ------W I 40

20

0 o 20 40 60 80 100 120 140 160 DISTANCE IN FEET FLOW PATTERN LOWER. GATES CLOSED UPPER GATES OPEN 6.0' TYPE 2 DESIGN WEIR £L£V. /07.0 £L£V. /07.0

PIEZ. PIEZ. PIEZ. PIEZ. NO. ELE\I. NO. ELEV.

P-I 42.2 P-I 42.3 P-2 47.0 P-2 45.2 P-3 48.0 P-3 48.0 £L£V. 84.0 P-4 48.0 £L£V. 84.0 P-4 48.0 P-5 48.0 P-5 48.0 P-6 47.5 P-6 45.3 P-7 46.4 P-7 39.9 P- 8 43.5 P-8 34.4 P-9 39.8

P-IO 29. J

" >

£L£V. 25.83

""'---...... -----1 £L£V. /5.0

TYPE I (ORIGINAL) DESIGN TYPE 2 DESIGN

\) r » PIEZOMETER LOCATIONS --I SCALE rn 10.....o 10 20 UJ w ""0 r :> ~ fTI 40

35 I

30

..... laJ laJ l&.. ~ ..... 10 .k~ ~ i> ~ JI.-, ...... ~V ~ V"'" ~ .... e-- 0:: W .A...k ...... W > fa...... - I...... ,.,., °20 WITH PIERS ~ ·d P ~ .< :..,..e ...... laJ ...... 1 ...... J: ~ ~ , ...... WITHOUT PIERS CI) ...... -:~ V CI) v -- ~ 15 V r- .C> .~~V i-:~v i: ::: .kV"" /~v b'~v 10 ~l:?' ~ ~~ Jr?, 500 550 60o 5 11 /

V - I SPILLWAY RATING C.URVE V 50 100 150 200 250 300 350 400 450 GATED SPILLWAY Q =DISCHARGE PER NET FOOT OF WEIR IN CFS - - - ~ - TYPE I (ORIGINAL) DESIGN 30

I / 25 / / IJ II 9

/ I" 1/ v

20 Ie 1/ t­ pi w W n 1/ u, / / n / V I ex: w > o 15 V o In -c W / J: / V IV (/) / (/) / o / ex: o )6 11 /v / / V 10 14' /V /' V V /v V / /' /P 5 /v.

o 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 -c- ---9...- - LHf SPILLWAY DISCHARGE COEFFICIENTS:· GATED SPILLWAY TYPE I {ORIGINAL) DESIGN PIERS REMOVED FROM SPILLWAY CREST

PLATE 35 44 44

42 42

40 40

38 38

36 36

34 ~" ••34

32 32 I- w I­ W , w LL 30 30 ~ ~ ~ a: w 28 28 ~ ~ a: w > 0 26 c c{ w ~ J: 24 24 I f/) f/) (/) 0 f/) a: 22 ~ o 22 .. o I II I 20 20

18 18

16 16

14 14

12 12 34 36 38 40 42 44 46 48 50 52 10 10 SUBMERGENCE CURVES 8 8 GATED SPILLWAY

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 TYPE I (ORIGINAL) DESIGN h =TA ILWATER OVER WE IR IN FEET PIERS REMOVED FROM SPILLWAY CREST I

/.0 0 l.:.I -r-- i--- ~Nf--- 0 I'" -- ~ - -r-- N r- t:> 0-,~~ (I) ••, ~r4.. H= lo'-i4' I'". P- r.,./'I---- 0.9 .~ro:: """,.....::, ~~ ~ r--; -...... :....'" ".~~ ...... <, et ...... -, u l­ V r-, 0 ~ f/) H =18'- 22'- I'u ~f)" W III B'~ ~ a: "tit ~ o "b...1;f ~R ,,~ ~r-I---~H = 14'- 18' W 0.8 ~ > -, f\... 6\~ 1\ gt;; ~r'\ I'r.1 «~ \. k H 22'- 26'- ", .: \ ~ s 0.7 \- ~o 1\ \ 1-« "A': \ I.L.w o I \q \ ~~ 'y \ ~~~' fj ~ 0.6 oc> d~\ II ..elI G\ l:P ItJ !:PhD 0.5

OA

0.9 1.0 1.1 I.2

SUBMERGENCE ·COEFFICIENTS 3 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.8 GATED SPILLWAY C' COEFFICIENT OF DISCHARGE FOR SUBMERGED FLOW C - COEFFICIENT OF DISCHARGE FOR FREE FLOW TYPE I (ORIGINAL) DESIGN PIERS REMOVED FROM SPILLWAY CREST 30

29

28

27 \

26 \ \ \ 0 25

24 \ ~\

23 l 0

\0 22 \

21 \ \~

20 \ \

19 '\ \ 18 c ~

17 \ \ <:) t- \ ~ 16 LL \

a: 15 W \ ~ 0 a: ,14 0 I.LI \ f5 ~ ~ 13 :r:I.LI '\ ~ 12 \ o \ a: e ~ II f "-, 10 r\. "\

"' ..... -, "'-......

...... """- """'-. o """'-. --r--

'4

2

o o .01.02 .03 ,04 .05 .08 .07 .08 .09 ;10.11 :12'.13 ;14 .15 -.16 ~IJ '.18- ,.19 .20 K_ CLH.}2 -Q - NCH~2 COEFFICIENTS OF PI'ER CONTRACTION FREE FLOW GATED SPILLWAY TYPE I (ORIGINAL) DESIGN PIERS INSTALLED ON SPILLWAY CREST

PLATE 38 a:: w > 0 Q -c w J:

CI) CI) 0 a:: (J II J:

20

18

16

14 14 34 36 38 40 42 44 46 48 5250

12 12 SUBMERGENCE CURVES 10 GATED 'SPILLWAY

8 0 2 4 8 10 12 14 16 18 20 22 24 26 28 30 TYPE I (ORIGINAL) DESIGN h= TAl LWATER OVER WEIR IN FEET PIERS INSTALLED ON SPILLWAY CREST \.0 u - I~ 0 v n ~ 0 -, 0 p "" ~ 0 r\. 0.9 v 0 -, c p o 0\ '" \:J . \ li 0 0.8 0 \, 0 0 0 0 \ c \

0 0 0.7 \ \

\:J v ",p .... 0 n p W o> 00 I.e ~ !! 0.6 a: w w ~ ~ t- a: 0 ~ ~ p ~O '"

~ ~ v ~ ~ 0.5 p 0 0 I (/) 0 t- (/) a.O p 0 w a: oC> II =IJ: 0 0.4

0.3

0,2

0.1

0.0 -I o ,I Z K1 COEFFICIENT OF PIER CONTRACTION FOR SUBMERGED FLOW K COEFFICIENT OF PIER CONTRACTION FOR FREE FLOW COEFFICIENTS or PIER CONTRACTION SUBMERGED FLOW GATED SPILLWAY TYPE I (ORIGINAL) DESIGN PIERS INSTALLED ON SPILLWAY CREST

PLAT E 40 40

35

30

I­ w w !?V u... ..,/1--' ~ 25 ..... ~ ...... """'v ~ IY"'"V !e-"V ~-::;~ 0::: PIERS ~ w WITH &!r'~V ~20 ...... """ f::,...... ~ ¥ Q .....-::~ v -c w l<...... ~ I'----.r-.- I WITHOUT PIERS ~s-: CI) ~V ~ 15 ~~ 0::: o ~~v II M~V I _L~v ,pv 10 ~ ,..7 ,,"/ /v ;/ 5 f--- - / 500 550 60o / V / SPILLWAY RATING CURVE ov o 50 100 150 200 250 300 350 400 450 GATED SPILLWAY Q = DISCHARGE PER NET FOOT OF WEIR IN CFS TYPE 2 DESIGN 30

I I I 25 I II

oL I J I I i: 0 20 flvI I- w I W L.. II c ~ v ~ ~ W / ~ r 11 0:: W > 15 / 0 / «Cl /0 W 7 I ./ CI) CI) / 0 0:: / ,(j » II I / / V 10 / ~ .// -: ~ /7 ,...... -/ "......

.,./V ._J...... <:/" 5 V"......

2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Q c= LH~ SPILLWAY DISCHARGE COEFFICIENTS GATED SPILLWAY TYPE 2 DESIGN PIERS REMOVED FROM SPILLWAY CREST

PLAT·E 42 44

42 42

40 40

38 38

36 36

34 34

32 32 t- t­ w 30 , 30 ~ w LL Z ~ 28 W W ~ ~ a: 26 26 a: w LaJ > > 0 o ~ 24 24 ~ LaJ w J: J:

~ 22 22 ~ 0 o a: a: C) C) II :!t 20 20 J:

18 ,

16 16

14 ' 14

12

10 SUBMERGENCE CURVES 8, GATED SPILLWAY

6 0 2 4 8 10 12 14 16 18 20 22 24 26 28 30 TYPE 2 DESIGN h = TAILWATER OVER WEIR IN FE;ET PIERS REMOVED FROM SPILLWAY CREST 1.1

1.0 - :::r-- I--- )-0-t-- ~ 0 O~ p c,\ lll(j) «w ~ e:::e::: wU C \(1 ~5 0.7 \ ~> c~ ~O 1& 1-0 « 0\ I.t..W OI 0 I(j) ~ ~(/) 0.6 11..0 we::: \ O() \ II \ ..elI \~ 0 0.5 o c

0 0.4 0

0.9 1.0 1.1 I.2

SUBMERGENCE COEFFICIENTS o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 GATED SPILLWAY c' COEFFICIENT OF DISCHARGE FOR SUBMERGED FLOW C COEFFICIENT OF DISCHARGE FOR FREE FLOW TYPE 2 DESIGN PIERS REMOVED FROM SPILLWAY CREST 30

29

28

27 \ \ \ 26

25 o \

24 \ o \ \ 23 \

22 \

21 \ o \ 20 \

19 \

18 !\ ..... IV w \ W IJ.. 17 \ z \ 0:: W 16 1\ ~ \ 0:: W > 15 \ 0 0 \ -c w 14 \ J: \ (f) (f) 0 0:: 13 \ ? \ n J: \ 12 V \

II 1\

-, 10 '" '\ 0 -, -, ",- -, -, r-,

""'" ~

4

.01 .02 .03 .04 .05 .06 07 .08 .09 .10 3 K =CLH /Z-Q NCH~2 COEFFICIENTS Of PIER CONTRACTION FREE FLOW GATED SPILLWAY TYPE 2 DESIGN PIERS INSTALLED ON SPILLWAY CREST

PLATE 45 ""0 r » --J fTI

34

32

30 ~ W lL Z. 28 ~ W ~ :, 26 a::w o> 24~ . w I 22 ~ o a: C) mii*fWftmi 2 0 ~ "".1618

50

SUBMERGENCE CURVES GATED SPILLWAY TYPE 2 DESIGN 2 4 6 8 10 12 14 18 20 22 24 26 28 30 PIERS INSTALLED ON SPILLWAY CREST 16 h = TAILWATER OVER WEIR IN FEET "

1.0 0 i\ 0 0 "\ \ 0 0 r\ c c 0.9 0 < 0 0 \ o 0 o (p f\ 0 \ 0 c 0 0 1\

0.8 ('\1 '\ C \ \ 0 a:: 0 \ 0 ~ 0.7 \ W > 0 0 al 1\ « a:: a:: W \ W ~ c t- a:: o \ c \ u ~~ 0.6 ::! 0 0 ~ ~ < 0 la.W ,\ o J: J: lI) \ t-lI) Q. 0 \ W a:: ( o o 0.5 \ n II 0 \ ~IJ: \ 0 \

0.4 0

0.3

0.2

c

0 0.1

0.0 .... -0.7 0,0 1.0 2.0 3.0 E COEFFicIENT OF PIER CONTRACTION FOR SUBMERGED FLOW K COEFFICIENT OF PIER CONTRACTION FOR FREE FLOW COEFFICIENTS OF PIER CONTRACTION SUBMERGED FLOW GATED SPILLWAY TYPE 2 DESIGN PIERS INSTALLED ON SPILLWAY CREST

PLATE 47 78 78

\~r---.:..: i'o--.. r----r----...... 76 - ---.. 7 6 ...... ~ r----.r---- I~ ~ - r-----.... r-.~ ~ ~ 74 \ 74 ...... ~\ <, ~ \ ~ 1\ ~ i""o-.... ""' 72 , r-. 72 \ -~ ~ -, 70 \ 1\ 70 "',\ ~ 68 \ \ \ \ 68 ....J ...J (J) CI) ~ \ ~ 66 \ 66 \ \ \ I­ I­ w w W , W LL. , , LL. 64 \ 64 ~ ~ ELEV 63.0 TOP OF LOWER GATE z ..... ------~--- --~ ------Z Q ------~ o I­ 1\ 62 <{ 62 ~ > > W W ....J ...J W W 60 \ 60 a:: a:: w FT.~ w I­ ~ LOWER LEAF OPEN 20.0 I- <{ ~~ 1\ ~ ~ 58 t--- \ 58 ....J "It.. - ~ ~ It) ~ ~ UPPER LEAF REMOVED -c ~

5 0 50

£L£V 48.0 SPILLWAY CR£ST 4 8 --r--l--1--T--T-- -- __--,-_ 48' 4 6 r 46 o 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 2 0 21 22 DISCHARGE IN 1000 CFS NOTE: DISCHARGE BASED ON FLOW THROUGH ONE GATE. RATING CU'RVES FOR ONE GATE UPPER POOL ELEVATION - 77.0. GATED SPILLWAY TYPE 2 DESIGN 120 120

100 100 ..J ..J (/) WATER-SURFACE PROFILE (/) ~ ~ .£rL- 3./ .. ~ ___ ~...- 7.6-;--~ 4.4 80 I- 80 M...-- ll-- I- w Y2...... - ~i?cfY-- JL- t2.- w w L!L...- ~ L!L-- !L.-- ~ I.L. SLACK ~ ~ 60 QL-.- QL.- ~ ~ 60 ~ Z /'/ Z a Q i= I- -c 40 40 -c > w DISCHARGE 26,300 C FS ~ ..J ..J w POOL ELEV 82.0 FT w 20 20 c~~~~~~~~~-::=; Hv 0.0 FT TAILWATER ELEV 79.7 FT 0 0 100 80 60 40 20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM

120 120

100 1'00 ..J ~ ..J (/) WATER -SURFACE PROFILE (/) ~ 3.0 3.0 ___ ~8.7. 8.7- 7.6 ~ 80 22..._ JlL- 15,8~C7.0-;) ~ ~ ~ ~ i~ 80 l- : I- w ~Q!/---""") w &- ~ J£L-- ~ ML- ~ I.L. SLACK) ) ') ))' "-~&- ~, 60 .!2.-- M..-- ~~./) .1!L- .i:L- 60 ~ Z Z a a i= i= -c 40 40 -c > > w DISCHARGE 78,000 CFS w ..J ..J w POOL ELEV 85.0 FT w 20 20 :-~~~~~~~~~~ Hv 0.0 FT TAILWATER ELEV 83.1 FT

0 0 100 80 60 40 20 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM WATER-SURFACE PROFILES AND

NOTE: WATER-SURFACE PROFILES MEASURED ALONG FLOW CHARACTERISTICS CENTERLINE OF MODEL. VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. OPEN-CREST SPILLWAY DISCHARGE 26~300 CFS AND 78,000 CFS -0 r ~ \20 120 [T1 WATER-SURFACE PROFILE 100 100 (]I ..J ..J CI) ~ ~ 10.3 --__9.8 ..!:2.....-.-__--_...:--0.9 ----6.2'-1--....l...------l CI) 0 ::2: ~ ::2: E2-- ~ ~ ~ ~ ~ 2.5 ~ 80 f- 80 ~ f- w .!.2-- ..!2..- --rs;- w w .!2.- ~ u, ") )))) ~!2-- l!l- !:2- ~ ~ 60 .!l2.- ~ " ."././,/ ~ .!22.:- ~ .!2L- 60 ~ Z z 0 0 i= i= -c 40 40 -c > > W DISCHARGE 169,500 CFS w ..J .-J W POOL ELEV 91.0 FT w 20 Hv 0.13 FT 20 TAILWATER ELEV 90.0 FT

90~0:__---::-'-::-----'-:__--'----.L.---.L.--'---I.---.L.----L--~--~----L.--....l------.J----L--...l...------.J----L--...l...-----l__--.L.__..l..--_---l.__---l.-__..L-_---L__-1 o 80 60 40 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM

120 120 WATER-SURFACE PROFILE ~-~ 100 .li- .li- ~ ~ -U..- ~ 100 ..J ~ ~ ~ ~ ~ ~ ~ ~ CI) ::2: ~ ~ 0.9 2.2..- ~ ~ ~ f­ 80 se.: 80 f- w ) ) w w -Y!- -!.!2.- ) ') J.£L- .1d.- !.:L- u, t ') ~ ~ .~ '" ./ ~ ~ 60 .J2d..- .QQ--. / ~/ .!.2.-- J.d.- .!:2--- 60 ~ ." Z z o 0 i= i= <{ 40 40 -c > > W DISCHARGE 237,500 CFS w ..J .-J W POOL ELEV. 105.0 FT w 20 Hv 0.14 fT 20 TAILWATER ELEV 104.8 FT

90:-::0=-----:::=-----7:::----:-':-----::~-_:_----:--~--~---L---L---L.-----L.--....l------.J----L--...L------l----L--...L-----l.__--.L.__..L-_--..L__--.l...- __..L-_---L__-l o 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM WATER-SURFACE PROFILES AND

NOTE: WATER-SURFACE PROFILES MEASURED ALONG FLOW CHARACTERISTICS CENTERLINE OF MODEL. VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. OPEN-CREST SPILLWAY DISCHARGE 169,500 CFS AND 237,500 CFS 20

V

.-'V .-...... i'" ...... -"" / V ...... 15 ...".. Y Y"

f­ ..."../ W V W ,...., V u, / ..."..v / V ,...... Ie"'" MODEL Z" a: Q~"'" w > ,...... 010 o ~ -c lJr W J: « en en V o /",. a: C> /,/0 ;/ 0 V V .» 5 .7 ..,V .IV V /' '/ 260' 280 30o / j '1J r r ~ >-{ o 20 40 60 80 100 120 140 160 180 200 220 240 SPILLWAY RATI NG CURVE fTI "Q"= DISCHARGE IN CFS PER FOOT OF WEIR OPEN CREST SPILLWAY (J1 "1J r ~ rn 20 I

I l I t

/ J / I I 0 / 15 oJ / I / / J / 0 /J a: ( I.aJ 0 V > 0-10 /0 a / -c ~V I.aJ :I: ./ (/) o ...... V (/) o V a: C> /'" o /,/' V V ~VV" 0 V V 5 l,....---' ......

.-'V 3.9 4.0 4.1 4 .2 _...... -V ...... -10-- ~ ,...-- ....- ...... - ~ I--- ~ .....- ~ ~------SPILLWAY DISCHARGE COEFFICIENTS o 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

OPEN CREST SPILLWAY -:::: • ....;;IDt:'~ --"::::-1--_

~~~~~ 0 ~~~ ~1/2 DE~GN HEAD~~~~~~~~~~~~~~~~~~~~~~ -,~r-~:~ '-r-:~~-

1(1)

U-l---LlJL1--L--!-U--+--+-~W--+-+-H----t-++-H++H-4++-H-++H-+++-H-t--r-rL-.L--L'O---L..-J-rJ~-&-~1.2 10 u O.4,l-!-!----!--l-~4-W---+--+----+--+-+-H-++++-HH_+++_+_H__+___t__t_T_rHI_r_IIIH___r~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SUBMERGENCE COEFFICIENTS C' COEFFICIENT OF DISCHARGE FOR SUBMERGED FLOW C- COEfFICIENT OF DISCHARGE FOR FREE FLOW OPEN CREST SPILLWAY ELEV 79.0

2 NOTE: EQUATION OF CURVE DOWNSTREAM F'ROM CREST, X 1.85= 11.72Y EQUATION OF CURVE UPSTREAM FROM CREST, 2 2 2 2 2 X + y2 =4.00 AND X + y = 1.6 4

PIEZ PIEZ NO. ELEV

I 77.70

2 79.00

3 77.70 4 75.70

5 70.00

ELEV 55.0

PIEZOMETER LOCATIONS OPEN -CREST SPILLWAY SCALE 2- 0 246FT 120 120

100 100 ...J ...J Cf) WA TER - SURFA CE PROFILE l.f) 2 es.: ~ I- 80 !M-- !M...- 80 I- w w w J£L- w u, u, ~ 60 SLACK SLACK 60 ~ z z 0 0 ~ 1= « 40 40 « > > w DISCHARGE 2.8 CFS/FT w ...J ...J w POOL ELEV 86.0 FT w 20 20 Hv 0.0 FT TAILWATER ELEV 84.3 FT 0 0 100 80 60 40 20 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM DIKE

120 120

100 100 ...J ...J Cf) WATER-SURFACE PROFILE (/) ~ 2 3./ 1.5 0.5 80 I- 80 I- w .ilL- ~ M- w w w u, u, ~ 60 SLACK SLACK 60 ~ z z 0 0 ~ ~ « 40 40 « > > w DISCHARGE 2.8 CFS/FT w ...J ...J w POOL ELEV 86.0 FT w 20 20 Hv 0.0 FT TAILWATER ELEV 84.3 FT

0 0 100 80 60 40 20 20 40 ,60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM DIKE WITH FLIP BUCKET WATER - SURFACE PROFILES AND "U NOTE: WATER-SURFACE PROFILES MEASURED ALONG FLOW CHARACTERISTICS r CENTERLINE OF MODEL. » VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. DIKE SECTION -I P1 DISCHARGE 2.8 CFS/FT

(J1 01 "1J r » 120 120 -i JTl 100 100 -l WATER-SURFACE PROFILE -l tn If) If) 2 ~ ~ ~ ~ 2 0) JL- f- 80~ ~ 80 f- w ~ w w ~ ~ W I..L I..L ~ 19- ~ ~ 3.1 60 Z Z 0 0 f= i= -c 40 40 -c > > w DISCHARGE 15.0 CFS 1FT w -l ..J w POOL ELEV 88.0 FT w 20 Hv 0.0 FT 20 TAILWATER ELEV 86.4 FT

0 0 100 80 60 40 20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM DIKE

120 120

100 100 -l WATER-SURFACE PROFILE ..J If) If) 2 3.1 2 ~ ~ 80 f- 80 /.5 u-.- f- w ~ .u..- w w £4- w I..L !!l-- .!.2.-- ~ I..L ~ 60 ~

Z Z 0 0 f= f= -c 40 40 -c > > w DISCHARGE 15.0 CFS/FT w -l -l w POOL ELEV 88.0 FT w 20 Hv 0.0 FT 20 TA ILWATER EL EV 86.4 FT

0 0 100 80 60 40 20 0 20 40 60 80 100 120 .140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM DIKE WITH FLIP BUCKET WATER-SURFACE PROFILES AND NOTE: WATER-SURFACE PROFILES MEASURED ALONG CENTERLINE OF MODEL. FLOW CHARACTERISTICS VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. DIKE SECTION

DISCHARGE 15.0 CFS/FT 120 120

100 100 ...J WATER-SURFACE PROFILE ...J rJ) rJ) ~ li- ~ .J.L- ~ 80 f- f- w u:»: li--- .!.:.L..- w w ~ u, .ll-- li.-- 1.L- ~ 60 ~ 60 2.2 1.0 1.0 z z 0 0 f= i= « 40 40 -c > > w DISCHARGE 31.5 CfS/fT w ...J ...J w POOL ELEV 90.0 fT w 20 20 Hv 0.0 fT TA/LWATER ELEV 88.8 FT"

0 0 100 80 60 40 20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM DIKE

120 120

100 100 ...J ...J rJ) WATER-SURFACE PROFILE rJ) ~ li- ~ li....- .L!- 80 f- f- w w w ~ u, .ll-- u:»: ~ ~ ~ .!!L-- .!ll-- 60 ~ 1.0 1.0 1.0 Z 0 i= 40 40 « DISCHARGE CFS/F"T ~ 33.2 ...J POOL ELEV 90.0 FT w 20 Hv 0.0 FT 20 TA/LWATER ELEV 88.8 FT

0 0 100 80 60 40 20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM DIKE WITH FLIP BUCKET WATER SURFACE PROFILES AND -0 NOTE: WATER-SURFACE PROFILES MEASURED ALONG FLOW CHARACTERISTICS r CENTERLINE OF MODEL. » VELOCITIES ARE IN PROTOTYPE FEET PER SECOND -1 DIKE SECTION m DISCHARGE 31.5 CFS/FT AND 33.2 CFS/FT

l1'J ~ -0 r »0 -i 120 120 fT1 WATER-SURFACE PROFILE ·------6.2- 5.4~)------1 54-8.8-~fM...-8.8-;--~ ~ £---- ~ 100 -.J M-M.-~ -.J 01 rJ) M-- ~ M-- M..- rJ) 2 8.2 ~.9 2 ()) 3./ ~ ~ ~ 80 I- sz»: I- w w W ~ W u, :l.L- !l:L- u, ~ ~ 2.2 2.2 2.2 2.2 2.2 60

Z /. Z 0 0 f= f= -c 40 40 « > w DISCHARGE 150.0 CFS/FT ~ -.J -.J W POOL ELEV. 103.0 FT w 20 Hv 0.15 FT 20 TAILWATER ELEV 102.5 FT 0'---_--L__----'-__-1--__-L-__"'----_---l__--'--_____L___--'-__.L..-______l__---L._____L___--L..-__-'--_--..JL-_---L__----'-__---I..-__-'--__'---_---L__----'-__---L-_-..,..--L-_---.J o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AXIS OF DAM DIKE

120 ,-----,---.,----,----,---,------,----,----,----,---,-.--,----,------,------.----,...... ------r------r----,-----,---,...... ------r------r----,-----.----...,.----,120

WATER-SURFACE PROFILE 100 44 ~&.-~~------6.9------6.2 H-- 100 4.4 8.8 ~~ !li-­ -.J 7.6~ H-- rJ) ILL- 2 I- 80 3./ 80 I­ ~ w 3.1 W u, u, 3./ 3./ ~ ~2.---=---- ~ 60 ~ Z z o o f= -c 40 40 ~ > > W DISCHARGE 150.0 CFS/FT w -.J -.J W POOL ELEV 103.0 FT w 20 Hv 0 ..15 FT 20 TAILWATER ELEV 102.5 FT

O'------'------'----'----'----'------'------'------'----~--.l.--_ ____'______'______L_____'___.L.______l_____L--,---_ ____I.___--'---__-'--_-----l'---_ ___L______I.___---I..-__-'--_---.J o 100 80 60 40 20 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 DISTANCE IN FEET FROM AX IS OF DAM DIKE WITH FLIP BUCKET WATER-SURFACE PROFILES AND NOTE: WATER-SURFACE PROFILES MEASURED ALONG CENTERLINE OF MODEL. FLOW CHARACTERISTICS VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. DIKE SECTION

DISCHARGE 150.0 CFS/FT 20

.» /' ~ V V VI/" ~v /1.;'" V V 15 V ...... / ...... w // w ..... // /P V / /v MODEL ~ a: V w 1/0" >10 o V o 1/ « [7 w I » V) V) V o ,,/ a: C) ./ II I V / 5 / V V V V / .1"1 250 275 30o V rI II o 25 50 75 100 125 150 175 200 225 RATING CURVE Q = DISCHARGE IN CFS PER FOOT OF DIKE £.JIKE SECTION "1J r ~ rn 20 v / 0) o / V V / / V V V 15 V

1-' / n w V W I.&.. / V w / ~ V C / 0:: / W > /IP °10 c / « w / I / CI) / 0 CI) V 0:: °o V ./ I V 0 // 5 V /'"/( vv /V /n V p .-----V ) V.- ~I------3.3 3. 4

2.9 3.0 3.1 3.2 DISCHARGE COEFFICIENTS Q C = LH~ DIKE SECTION I

1.0 0 - OR In C 0("1 0 IV C .cr Ulr- C ~ rR-~ ~~ .....0 U r- . ~ In C ~ ~R<~bt-~~ • ~ o 0 l~r:l . ..,( ~ 0 ~I" 0.9 c ( go~ ~ c p ~~·o 0 ~ rCl~. °rw 0 .~~O C w 0.8 > C o I~ • «wCO ol~~ ~ o , 0 ~a d'~t10 o ~~ --- O~ ~ ~ 0.7 IQ ~ «0 .-« ~~ lL..W crg OI 0 Icn .;:b h: ~ 0.6 wO:: I~ .8 0<':> I II LEGEND ..r. n ..elI I,..,. 0 0---0 DIKE SECTION ~ pO 0 DIKE SECTION WITH FLIP BUCKET 0.5 ------k9 10 • 0 o~~

0.4 0.9 1.0 1.1 I.2

'1J r 0.3 SUBMERGENCE COEFFICIENTS > o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ~ C' COEFfiCIENT OF DISCHARGE FOR SUBMERGED FLOW DIKE SECTION )'11 C COEFFICIENT OF DISCHARGE FOR FREE FLOW "'U r » 90 1\ -i I VI I / \ ~'-LOCK \ f11 \ 89 , V J / V 1\ 0)' / / I \ \ l\) / ~ 88 / / I // \ I I / /;-/ V 87 f I TOTAL DISCHARGE~~ /~/ V ' DIKE (COMPUTED AND ~/-.--OPEN CREST SPILLWAY , 1/ V /~y // 86 86 f-- MODEL) ~ ;1'/ L--J....- GATED SPILLWAY I I 1// V /'/ / /

85

~ 84 ~ z Q 83 I--c > w / /~~ / d 82 : I' I, /,y / 1£/ ~ // 81 / I V I II ~/7 t---TAILWATER ///~ 80 I / / /1 jJ' / 79' OPEN CREST SPILLWAY ELEV. 79.0 35 40

/ /1 / // V LEGEND I -- COMPUTED NORMAL POOL FLEV. 77.0 // / ----- MODEL - ORIGINAL DESIGN / -- MODEL - MODIFIED DESIGN OF / GATED SPILLWAY. / / / 5 10 15 20 25 30 DISCHARGE 10,000 CFS RATING CURVES 1600 1600

1200

800

~ 3: ~ -1 "&. 400 400 "&. (/) (/) u, u, a a w w z z :J :i a: a: w o w ~ ~ Z Z w w U U ~ ~ a a a: a: lL. 400 400 lL. ~ ~ w w W W u, lL. ~

W w u ~ 800 aoo z ~ ~ (/) (/) o 0

1200 1200

1600

-0 SURFACE CURRENTS r 2000 » AND VELOCITIE'S -I I'T1 24+00 28+00 32+00 SECOND STAGE COFFERDAM DISCHARGE 40,000 CFS NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. "'U r »...; rn VERY SLOW EDDY

0> 1600 1600 ~

5.0 0---- 1200 ---- 1200 ~ ---- 5.9 5.6 --- ~ ~ --022- 0----, -- 0---- 800

---- / --- r- ~ ------c 5.9 ~ ~ ..J PAL A C H /OCOL A ..J 400 ---- 400 0: (/) au, w w z z :J :J a:: a:: w w r- r­z z w w U U ~ ~ a a a:: ~ 400 400 u, r- r- w w u... ~ -; DISCHARGE 100,000 CFS POOL ELEV 68.9 FT ( / -. \ TAILWATER ELEV 68.4 FT 1200 1200 { l VERY SLOW EDDY \\ \ ~ J ) ~ ------J SURFACE· CURR·ENTS AND VELOCITIES 12+00 8+00 4+00 0+00 4+00 8+00 12+00 16+00 20+00 24+00 28+00 32+00 SECOND STAGE COFFERDAM STATIONS DISCHARGE 100,000 CFS NOTE: VELOCIT IES ARE IN PROTOTYPE FEET PER SECOND ---- 1600 ----- 1600 ------6.2 0--- -- 1200 --- 1200 ------4.5 6.7 7./ 8.3 0------0------0---- 0----- 800 800 ___- _ --~----; 1--__ --===----==~==---==~--O::::::::_-_=~~7./,--- ______~ 3: ~ 0-!-2- ~ _....;...-1'___ ~ ~ ...J RIVER------/_____ A PAL A CHI COL ...J ~ 400 400 a:: (/) -> -r:» (/) u, u, o o w w z ~ z ::::i .i-r: ~J~'" :J a:: o : a:: w w I­ I­ Z Z w w U U ~ ~ 0 o a:: a:: u, 400 400 u, I- I­ w w w u, ~ ~ ~ w w u ~ z 800 DISCHARGE: 143,000 CFS 800 ~ POOL ELEV 73.0 F'T ~ (/) (/) 0 TAILWATER ELEV 72.0 FT Q

1200 1200

1600

-U r 2000 SURFACE CURRENTS » AND VELOCITIES -I rn SECOND STAGE COFFERDAM DISCHARGE 143,000 CFS 0) NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. 01 ( ( 1600 SLOW 1600 / ~

1200 ~ 1200 --l'___

----- 8.3 ------d!!-2------0---- ~ 800 ~ 800

0----7./ _____ ~ ~ ~ ~ ------.....------~ ...J R / V £ R ~ ...J ~ 400 400 a:: C/) ~ ~ C/) u, lr... o o w zw z :J ~~ :J a:: a:: w ------0 w r­ r- z z w w U U ~ ~ o o a:: a:: lr... 400 ~~ 400 lr... r­ r- w ~ w ;1 -. u, lr... ~ ~ w w ~ 800 .800 ~ DISCHARGE 180,000. CFS ~ ~ I POOL ELEV 76.0 FT C/) C/) o TAILWATER ELEV 74.9 FT o SLACK

1200 1200

1600

2000 SURFACE CURRENTS AND VELOCITIE'S SECOND STAGE COFFERDAM DISCHARGE 180,000 CFS NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. PERCENT OF TIME EQUALED OR EXCEEDED 20 10 060 035 015 90 I I I I AVERAGE INTERVALS IN YEARS BETWEEN PEAKS 1.0 2.0 4.0 6 10iO I jO

-1 CI) ~ 80 ..... w W u, ~~ 1-- :::- ~~ ~ ~ ::;:::::. .--~ z ;:::::::-~ Q ~~ ..... ~ -c ~~ > I-- w 70 ~ I5 -1 ~ --- W ~ ~ I4 U W V -- w U -' 3 CI) I <, -cu, V c:: ----~ 12 ::J I=?'" t (/) .(MODEL), # I HEADWATER ~ P'" I II -1 c:: ~~ w ~ 1\ ~ 60 V 10 -c ~ I'L-HEADWATER (COMPUTED) -c ~ 9 I .,.~ U ~ 8 0 5 MILES PER HOUR ,.--~I--" w ~~ ~ -- I--' ==-== 7 I--I-- ~- ,- t COMPUTED, I-- « 1/ r--_ I..---~ 1-- 6 c:: ~~ - ..... -- I-- ~- 1'-- ~I---I--I-- 1--- z 50 / -- 1--- -- 5 0 ~ -~, ~ - - U ~ 4 CI) I'-SURFACE VELOCITIES (MODEL) ~ w ~ 3 t: ~ u 2 0 -1 tJ w s I> tI) o ~ 175 20a ~ a-r----

HEADWATER EL EVATIONS AND CHANNEL VELOCITIES a 25 50 75 100 125 150 2ND STAGE OF COFFERDAM DISCHARGE IN 1000 CFS "1J r »- .-; rn

en 1600 1600 OJ

1200 1200

800 800

?i 3= ~ ....J ~ 400 400 ~ (/) (/) u, u, o o w zw z :J ::J a:: a:: w o w I- I­ Z Z w w U U ~ ~ o o a:: t.... 400 400 E: I- I- w W u, ~ ~ ~ w uW z -800 800 ~ -c -c l- l­ (/) (/) 0 o

1200 1200

SURFACE CURRENTS 2000 ------AND VELOCITIES 28+00 32+00 THIRD STAGE COFFERDAM DISCHARGE 40,000 CFS NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. 1600 --- .: 1600 ( VERY SLOW 1200 1200 \ EDDY 800 --- 800

-- 4.0 ~ 4.5--- ___ 0--- ~ ~ ...J o--rrr VER ~ 400 400 £ (f) (f) ----- 4.0 u, 0--- u, o --­ o w 4.1 w Z 0-- z ~ :::i ex: 5 w I- I­ Z 3 w u U ~ ~ o o ex: E: 400 400 Ii.. I- -- I­ w w )\~~ W ~ -- Ii.. --- ~ w w ~ 800 800 ~ ~ DISCHARGE 100,000 CFS ~ (f) POOL ELEV 69.7 FT (f) o / \~ TAILWATER E LEV 68.3 FT o VERY SL a W / \

1200 1200 I EDDY / ~~ 1600 \ / '"U / SURFACE CURRENTS r 2000 -. ~ AND VELOCITIES I'll 24+00 28+00 32+00 THIRD STAGE COFFERDAM DISCHARGE 100,000 CFS 0) NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. tD -..J ---- o 1600 \ 1600 VERY SLOW EDDY ) 1200 1200 / ~ 800 ----- 800 ~ ---- ~ ~ ..J ..J ~ 400 400 a:: (f) (f) u, u, o o w ---- 3.9 w z 0--- z ::J ::i II: II: w o ------0 w I­ .... Z z w w u U ~ 2 o II: ~ 400 lL.. lL.. 400 ------~ I­ .... w \ W W W lL.. lL.. ------/ ------6; 6; \~ w w ~ ---- 800 ______~ / 800 ~ DISCHARGE 143,000 CFS ~ ~ POOL ELEV 74.1 FT (f) I (f) ~ TAILWATER ELEV 72.0 FT o / I I \~~ o I~ J VERY SLOW EDDY 1200 / ( 1200 ~/ / J ) 1600 --- /~ ) \ / / 2000 SURFACE CURRENTS AND VELOCITIES

20+00 24+00 28+00 32+00 THIRD STAGE COFFERDAM DISCHARGE 143,000 CFS NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. 1600 ---- 1600 ---- _____ 1200 1200

800 800 ~------_.....-- +* ------:::::::::;::;7------~ --- 4.5 COFFERDAM ~ ~ ----- 0----- A PA LA CH / COL A R/ VER ~ -I ~ JJ-- r--.- ~ -r-....--~-~I 400 a:: II) ---"- 0::--=--- 4.5 u, ,6.2 0---- u, o cJJ-- o w 4.0 w z 0-----,..- z :i :J' a:: a:: w ------0 w I­ ---- I- Z Z w w U u ~ <, ~ o o a:: a:: lJ.. 400 400 lJ.. I­ w W \ \ u, ~ ~ w w ~ 800 DISCHA~ 800 ~ ~ ( 160,000 CFS ~ II) \ POOL ELEV 75.7 FT II) .0 / ) TAILWATER ELEV 73.4 FT o SL OW EDDY 1200 ) 1200 \ '- 1600 \ \ )

SURFACE CURRENTS 2000 AND VELOCITIES

4+00 0+00 4+00 12+00 16+00 20+00 24+00 28+00 32+00 THIRD STAGE COFFERDAM STATIONS DISCHARGE 160,000 CFS NOTE: VELOCITIES ARE IN PROTOTYPE FEET PER SECOND. PERCENT OF TIME EQUALED OR EXCEEDED 20 10 060 035 0.15 90 I I I I AVERAGE INTERVALS IN YEARS BETWEEN PEAKS 1.0 2.0 4.0 6.0 10.0 I I I

~ (/) ~ BO I- ~ l:::":= W -~ W ~ u, ~~ _...~ - ~- ~ ~~ HEADWATER (COMPUTED) [\ ~ -- I,.....- ~- Z I--- .--'- Q L--.> .-\:1--'"- I­ l--"" ...- « ~1-- I'-HEADWATER .(MODEL) ~ -~ I5 70 ~- ~ l.-:::::' '0 w b::-::::: 4~ ~ I w ~ <, u ~ « I3t u, V I a: V I2 :J Z (j) V « / I~ I , I ex: 3: ~ ./ Io « 60 ex: « ~/ o 3: 9 /' I 8 ~ 5 MILES PER HOUR o /J' 7 ~, V I­ 6'(/) , SURFACE VELOCITIES (MODEL)\ w 50 f THRU BRIDGE SPAN \ '5~ - U ..-I---1---- tI) 43 ~I--- Q:: :W 3> ~ ~ --- :::( w ~ 2,~ ~ I~ I t3 (/) i < o 0 175 20o V)r-I---'- ~ ~r-r--- 0 HEADWATER EL EVATIONS AND CHANNEL VELOCITIES o 25 50 75 100 125 150 3 RD STAGE OF COFFERDAM DISCHARGE IN 1000 CFS