Identification of the Molecular Partners That Regulate MEIS1A Function

Total Page:16

File Type:pdf, Size:1020Kb

Identification of the Molecular Partners That Regulate MEIS1A Function This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Identification of the molecular partners that regulate MEIS1A function Ravishankar Chandrasekaran 2013 Ravishankar Chandrasekaran. (2013). Identification of the molecular partners that regulate MEIS1A function. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/59111 https://doi.org/10.32657/10356/59111 Downloaded on 10 Oct 2021 20:51:59 SGT IDENTIFICATION OF THE MOLECULAR PARTNERS THAT REGULATE MEIS1A FUNCTION RAVISHANKAR CHANDRASEKARAN School of Biological Sciences A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of philosophy 2013 To My parents Table of Contents ACKNOWLEDGEMENTS ....................................................................................................... v LIST OF FIGURES ................................................................................................................. vii LIST OF TABLES .................................................................................................................... ix LIST OF ABBREVIATIONS .................................................................................................... x ABSTRACT ........................................................................................................................... xiv CHAPTER 1: INTRODUCTION ................................................................................. 1 1.1 Hox genes: An overview ...................................................................................................... 1 1.2 Specificity of HOX proteins: The need for cofactors .......................................................... 3 1.2.1 TALE class of HOX cofactors .............................................................................. 4 1.3 HOX cofactors: The Drosophila paradigm .......................................................................... 7 1.3.1 Extradenticle (EXD) ............................................................................................. 7 1.3.2 Homothorax (HTH) .............................................................................................. 8 1.3.2. A Physiological functions of HTH .......................................................... 9 1.4 TALE cofactor proteins in chordates ................................................................................. 10 1.5 MEIS1 ................................................................................................................................ 11 1.5.1 Isoforms of Meis1 ............................................................................................... 11 1.5.2 Cooperative binding of MEIS1 with PBX-HOX ................................................ 12 1.5.3 Regulation of Meis1 expression .......................................................................... 15 1.5.4 Physiological roles of MEIS1 ............................................................................. 16 1.5.5 MEIS1 in hematopoiesis ..................................................................................... 19 1.5.6 MEIS1 in cancer ................................................................................................. 21 1.5.7 MEIS1 in mixed lineage leukemia (MLL) .......................................................... 22 1.5.8 Mechanism of MEIS1 cancer induction ............................................................. 24 1.5.9 MEIS1 targets ..................................................................................................... 25 i 1.6 MEIS2 ................................................................................................................................ 30 1.7 PBX proteins ...................................................................................................................... 31 1.7.1 Physiological function of PBX ........................................................................... 34 1.8 PKNOX proteins ................................................................................................................ 36 1.8.1 PKNOX1 ............................................................................................................. 36 1.8.2 PKNOX2 ............................................................................................................. 38 1.9 CRTC (CREB regulated transcription coactivator) ........................................................... 39 1.9.1 Physiological roles of CRTC .............................................................................. 41 1.10 MLL1 (Mixed lineage leukemia 1) or HRX .................................................................... 43 1.10.1 Interactions of MLL1 ........................................................................................ 44 1.11 CBX3 or HP1γ ................................................................................................................. 47 1.12 NONO (p54nrb) ................................................................................................................. 48 1.13 NOP56/58 ........................................................................................................................ 50 1.14 Biotin-tagging and purification of protein complexes ..................................................... 51 RATIONALE ................................................................................................................................ 53 CHAPTER 2: Materials and methods ............................................................................. 54 2.1 Plasmid constructs ............................................................................................................. 54 2.2 Antibodies .......................................................................................................................... 55 2.3 Cell culture and transfections............................................................................................. 56 2.4 Preparation of samples for mass spectrometry .................................................................. 57 2.4.1 In-gel digestion ................................................................................................... 58 2.4.2 Mass spectrometry protocol ................................................................................ 58 2.4.3 Protein identification ........................................................................................... 59 2.5 Co-immunoprecipitation (co-IP) protocol ......................................................................... 59 2.6 SDS PAGE and Immunoblotting ....................................................................................... 60 2.7 Luciferase assay protocol ................................................................................................... 60 2.8 Immunofluorescence assay ................................................................................................ 61 ii 2.9 siRNA knockdown ............................................................................................................. 61 CHAPTER 3: Results ............................................................................................................... 63 3.1 PART 1 3.1.1 Creation of expression constructs for BAP-tagged MEIS1A ............................. 63 3.1.2 HEK293T cells as a system for the isolation of MEIS1A ................................. 64 protein partners 3.1.3 Creation of BirA stable lines ............................................................................... 65 3.1.4 In vivo biotinylation of FBM .............................................................................. 67 3.1.5 Test for functionality: Interaction with known partners ..................................... 69 3.1.6 Intracellular localization of FBM........................................................................ 71 3.1.7 Stable expression of FBM in HEK293T/BirA cells ........................................... 75 3.2 PART 2 3.2.1 Identification of MEIS1A interacting proteins ................................................... 76 3.3 PART 3 3.3.1 Investigating the interaction between MEIS1A and NONO............................... 82 3.3.2 Knockdown of endogenous NONO expression does not lead to ........................ 84 a decrease in MEIS1-CRTC1 interaction 3.3.3 NONO does not have any effect on MEIS1A transactivation while .................. 86 while having an inhibitory effect on PKA signaling 3.3.4 Other members of the MEIS family also interact with NONO .......................... 89 3.4 PART 4 3.4.1 MEIS1A interacts with NOP56, NOP58, CBX3 and MLL1 .............................. 90 3.4.2 PKNOX1 and PKNOX2 also interact with NOP56 and NOP58 ........................ 92 but do not interact with CBX3 and MLL1 3.4.3 MLL-AF4 fusion protein also interacts with MEIS1A ....................................... 94 3.4.4 Endogenous MLL1 interacts with MEIS1 in RS4;11 ......................................... 95 lymphoblast cells 3.4.5 MLL1 positively contributes to the MEIS1A-mediated ..................................... 96 transactivation iii 3.4.6 MLL1 interacts with the C-terminal region of MEIS1A .................................... 98 CHAPTER 4: DISCUSSION ...................................................................................... 100 4.1 Identification of novel interaction partners of MEIS1A .................................................
Recommended publications
  • De Novo MEIS2 Mutation Causes Syndromic Developmental Delay with Persistent Gastro-Esophageal Reflux
    Journal of Human Genetics (2016) 61, 835–838 & 2016 The Japan Society of Human Genetics All rights reserved 1434-5161/16 www.nature.com/jhg SHORT COMMUNICATION De novo MEIS2 mutation causes syndromic developmental delay with persistent gastro-esophageal reflux Atsushi Fujita1, Bertrand Isidor2,3, Hugues Piloquet4, Pierre Corre5, Nobuhiko Okamoto6, Mitsuko Nakashima1, Yoshinori Tsurusaki1, Hirotomo Saitsu1, Noriko Miyake1 and Naomichi Matsumoto1 MEIS2 aberrations are considered to be the cause of intellectual disability, cleft palate and cardiac septal defect, as MEIS2 copy number variation is often observed with these phenotypes. To our knowledge, only one nucleotide-level change— specifically, an in-frame MEIS2 deletion—has so far been reported. Here, we report a female patient with a de novo nonsense mutation (c.611C4G, p.Ser204*) in MEIS2. She showed severe intellectual disability, moderate motor/verbal developmental delay, cleft palate, cardiac septal defect, hypermetropia, severe feeding difficulties with gastro-esophageal reflux and constipation. By reviewing this patient and previous patients with MEIS2 point mutations, we found that feeding difficulty with gastro-esophageal reflux appears to be one of the core clinical features of MEIS2 haploinsufficiency, in addition to intellectual disability, cleft palate and cardiac septal defect. Journal of Human Genetics (2016) 61, 835–838; doi:10.1038/jhg.2016.54; published online 26 May 2016 INTRODUCTION at the homeodomain may interfere with DNA binding. Moreover, Meis homeobox 2 (MEIS2;alsoknownasMRG1, NM_170677.4) this female patient also presented with various anomalous features encodes a homeobox (HOX) protein belonging to the three amino and developmental abnormalities. Here, we report on another acid loop extension (TALE) superfamily.
    [Show full text]
  • Functional Analysis of the Homeobox Gene Tur-2 During Mouse Embryogenesis
    Functional Analysis of The Homeobox Gene Tur-2 During Mouse Embryogenesis Shao Jun Tang A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Graduate Department of Molecular and Medical Genetics University of Toronto March, 1998 Copyright by Shao Jun Tang (1998) National Library Bibriothèque nationale du Canada Acquisitions and Acquisitions et Bibiiographic Services seMces bibliographiques 395 Wellington Street 395, rue Weifington OtbawaON K1AW OttawaON KYAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence alIowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor sell reproduire, prêter' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Functional Analysis of The Homeobox Gene TLr-2 During Mouse Embryogenesis Doctor of Philosophy (1998) Shao Jun Tang Graduate Department of Moiecular and Medicd Genetics University of Toronto Abstract This thesis describes the clonhg of the TLx-2 homeobox gene, the determination of its developmental expression, the characterization of its fiuiction in mouse mesodem and penpheral nervous system (PNS) developrnent, the regulation of nx-2 expression in the early mouse embryo by BMP signalling, and the modulation of the function of nX-2 protein by the 14-3-3 signalling protein during neural development.
    [Show full text]
  • Sorbonne Université́
    Sorbonne Université́ École Doctorale ED515 – Complexité́ du vivant INSERM UMRS 933 : Physiopathologie des maladies génétiques d'expression pédiatrique Mécanismes physiopathologiques impliqués dans la différenciation du tractus génital masculin Matthieu Peycelon Thèse de Doctorat de Génétique Humaine Dirigée par Pr. Jean-Pierre Siffroi Présentée et soutenue publiquement le 19 décembre 2019 Devant un jury composé de : Brigitte BENZACKEN PU-PH Université Paris 13 Rapporteur Anne-Françoise SPINOIT Professeur Université de Gand Rapporteur Irène NETCHINE PU-PH Université Paris 6 Examinateur Nicolas KALFA PU-PH Université de Montpellier Examinateur Alaa EL GHONEIMI PU-PH Université Paris 7 Président Jean-Pierre SIFFROI PU-PH Université Paris 6 Directeur de thèse Sorbonne Université́ École Doctorale ED515 – Complexité́ du vivant INSERM UMRS 933 : Physiopathologie des maladies génétiques d'expression pédiatrique Mécanismes physiopathologiques impliqués dans la différenciation du tractus génital masculin Matthieu Peycelon Thèse de Doctorat de Génétique Humaine Dirigée par Pr. Jean-Pierre Siffroi Présentée et soutenue publiquement le 19 décembre 2019 Devant un jury composé de : Brigitte BENZACKEN PU-PH Université Paris 13 Rapporteur Anne-Françoise SPINOIT Professeur Université de Gand Rapporteur Irène NETCHINE PU-PH Université Paris 6 Examinateur Nicolas KALFA PU-PH Université de Montpellier Examinateur Alaa EL GHONEIMI PU-PH Université Paris 7 Président Jean-Pierre SIFFROI PU-PH Université Paris 6 Directeur de thèse Ce travail de thèse a été réalisé́ sous la direction du Professeur Jean-Pierre Siffroi, au sein de l’unité́ mixte de recherche INSERM / Sorbonne Université UMR_S933 dirigée par le Professeur Serge Amselem. Adresse : Département de Génétique Médicale, Hôpital Armand Trousseau ; 26 avenue du Docteur Arnold Netter, 75012, Paris.
    [Show full text]
  • Detailed Review Paper on Retinoid Pathway Signalling
    1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Differential Regulation of Parahox Genes by Retinoic Acid in the Invertebrate Chordate Amphioxus (Branchiostoma floridae)
    Developmental Biology 327 (2009) 252–262 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Evolution of Developmental Control Mechanisms Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae) Peter W. Osborne a,1, Gérard Benoit b, Vincent Laudet b, Michael Schubert b,2, David E.K. Ferrier a,⁎,1,2 a Zoology Department, Oxford University, South Parks Road, Oxford, OX1 3PS, UK b Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France article info abstract Article history: The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster Received for publication 2 October 2008 displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a Revised 19 November 2008 manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox Accepted 19 November 2008 cluster is however a simpler system to study because it is composed of only three genes. We provide a Available online 7 December 2008 detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Keywords: Amphioxus Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx Retinoic acid expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts Gsx its anterior/posterior position.
    [Show full text]
  • Roles of Id3 and IL-13 in a Mouse Model of Autoimmune Exocrinopathy
    Roles of Id3 and IL-13 in a Mouse Model of Autoimmune Exocrinopathy by Ian Lawrence Belle Department of Immunology Duke University Date:_______________________ Approved: ___________________________ Yuan Zhuang, Supervisor ___________________________ Michael Krangel, Chair ___________________________ Qi-jing Li ___________________________ Richard Lee Reinhardt ___________________________ Arno Greenleaf Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Immunology in the Graduate School of Duke University 2015 ABSTRACT Roles of Id3 and IL-13 in a Mouse Model of Autoimmune Exocrinopathy by Ian Lawrence Belle Department of Immunology Duke University Date:_______________________ Approved: ___________________________ Yuan Zhuang, Supervisor ___________________________ Michael Krangel, Chair ___________________________ Qi-jing Li ___________________________ Richard Lee Reinhardt ___________________________ Arno Greenleaf An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Immunology in the Graduate School of Duke University 2015 Copyright by Ian Lawrence Belle 2015 Abstract Within the field of immunology, the existence of autoimmune diseases presents a unique set of challenges. The immune system typically protects the host by identifying foreign pathogens and mounting an appropriate response to eliminate them. Great strides have been made in understanding how foreign pathogens are identified and responded to, leading to the development of powerful immunological tools, such as vaccines and a myriad of models used to study infectious diseases and processes. However, it is occasionally possible for host tissues themselves to be inappropriately identified as foreign, prompting an immune response that attempts to eliminate the host tissue. The immune system has processes in place, referred to as selection, designed to prevent the development of cells capable of recognizing the self as foreign.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • Endocrinology
    Endocrinology INTRODUCTION Endocrinology 1. Endocrinology is the study of the endocrine system secretions and their role at target cells within the body and nervous system are the major contributors to the flow of information between different cells and tissues. 2. Two systems maintain Homeostasis a. b 3. Maintain a complicated relationship 4. Hormones 1. The endocrine system uses hormones (chemical messengers/neurotransmitters) to convey information between different tissues. 2. Transport via the bloodstream to target cells within the body. It is here they bind to receptors on the cell surface. 3. Non-nutritive Endocrine System- Consists of a variety of glands working together. 1. Paracrine Effect (CHEMICAL) Endocrinology Spring 2013 Page 1 a. Autocrine Effect i. Hormones released by cells that act on the membrane receptor ii. When a hormone is released by a cell and acts on the receptors located WITHIN the same cell. Endocrine Secretions: 1. Secretions secreted Exocrine Secretion: 1. Secretion which come from a gland 2. The secretion will be released into a specific location Nervous System vs tHe Endocrine System 1. Nervous System a. Neurons b. Homeostatic control of the body achieved in conjunction with the endocrine system c. Maintain d. This system will have direct contact with the cells to be affected e. Composed of both the somatic and autonomic systems (sympathetic and parasympathetic) Endocrinology Spring 2013 Page 2 2. Endocrine System a. b. c. 3. Neuroendocrine: a. These are specialized neurons that release chemicals that travel through the vascular system and interact with target tissue. b. Hypothalamus à posterior pituitary gland History of tHe Endocrine System Bertold (1849)-FATHER OF ENDOCRINOLOGY 1.
    [Show full text]
  • Based Mechanism Study on the Beneficial Effects of Vitamin D
    www.nature.com/scientificreports OPEN Network Systems Pharmacology- Based Mechanism Study on the Benefcial Efects of Vitamin D against Psychosis in Alzheimer’s Disease Peihao Fan1, Xiguang Qi1, Robert A. Sweet2,3* & Lirong Wang1* Alzheimer’s disease (AD) is a chronic neurodegenerative disease with signifcant fnancial costs and negative impacts on quality of life. Psychotic symptoms, i.e., the presence of delusions and/ or hallucinations, is a frequent complication of AD. About 50% of AD patients will develop psychotic symptoms (AD with Psychosis, or AD + P) and these patients will experience an even more rapid cognitive decline than AD patients without psychosis (AD-P). In a previous analysis on medication records of 776 AD patients, we had shown that use of Vitamin D was associated with delayed time to psychosis in AD patients and Vitamin D was used more by AD-P than AD + P patients. To explore the potential molecular mechanism behind our fndings, we applied systems pharmacology approaches to investigate the crosstalk between AD and psychosis. Specifcally, we built protein-protein interaction (PPI) networks with proteins encoded by AD- and psychosis-related genes and Vitamin D-perturbed genes. Using network analysis we identifed several high-impact genes, including NOTCH4, COMT, CACNA1C and DRD3 which are related to calcium homeostasis. The new fndings highlight the key role of calcium-related signaling pathways in AD + P development and may provide a new direction and facilitate hypothesis generation for future drug development. Alzheimer’s disease (AD) is a chronic neurodegenerative disease commonly seen in the aging population, and the presence of AD is responsible for a signifcant decrease in the quality of life1.
    [Show full text]
  • Divergent Genes in Gerbils: Prevalence, Relation to GC-Biased Substitution, and Phenotypic Relevance Yichen Dai, Rodrigo Pracana and Peter W
    Dai et al. BMC Evolutionary Biology (2020) 20:134 https://doi.org/10.1186/s12862-020-01696-3 RESEARCH ARTICLE Open Access Divergent genes in gerbils: prevalence, relation to GC-biased substitution, and phenotypic relevance Yichen Dai, Rodrigo Pracana and Peter W. H. Holland* Abstract Background: Two gerbil species, sand rat (Psammomys obesus) and Mongolian jird (Meriones unguiculatus), can become obese and show signs of metabolic dysregulation when maintained on standard laboratory diets. The genetic basis of this phenotype is unknown. Recently, genome sequencing has uncovered very unusual regions of high guanine and cytosine (GC) content scattered across the sand rat genome, most likely generated by extreme and localized biased gene conversion. A key pancreatic transcription factor PDX1 is encoded by a gene in the most extreme GC-rich region, is remarkably divergent and exhibits altered biochemical properties. Here, we ask if gerbils have proteins in addition to PDX1 that are aberrantly divergent in amino acid sequence, whether they have also become divergent due to GC-biased nucleotide changes, and whether these proteins could plausibly be connected to metabolic dysfunction exhibited by gerbils. Results: We analyzed ~ 10,000 proteins with 1-to-1 orthologues in human and rodents and identified 50 proteins that accumulated unusually high levels of amino acid change in the sand rat and 41 in Mongolian jird. We show that more than half of the aberrantly divergent proteins are associated with GC biased nucleotide change and many are in previously defined high GC regions. We highlight four aberrantly divergent gerbil proteins, PDX1, INSR, MEDAG and SPP1, that may plausibly be associated with dietary metabolism.
    [Show full text]