Laser Dermatology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Concept for Cryogenic Kj-Class Yb:YAG Amplifier K
OSA / ASSP/LACSEA/LS&C 2010 AWB20.pdf a288_1.pdf Concept for Cryogenic kJ-Class Yb:YAG Amplifier K. Ertel, C. Hernandez-Gomez, P. D. Mason, I. O. Musgrave, I. N. Ross, J. L. Collier STFC Rutherford Appleton Laboratory, Central Laser Facility, Chilton, Didcot, OX11 0QX, United Kingdom [email protected] Abstract: More and more projects and applications require the development of ns, kJ-class DPSSL systems with multi-Hz repetition rate. We present an amplifier concept based on cryogenically cooled Yb:YAG, promising high optical-to-optical efficiency and high gain. ©2010 Optical Society of America OCIS codes: (140.3280) Laser amplifiers; (140.3480) Lasers, diode-pumped, (140.3615) Lasers, ytterbium, (140.5560) Pumping 1. Introduction Currently, most lasers for producing multi-J to multi-kJ ns pulses are based on flashlamp pumped Nd:glass technology. These lasers show very poor electrical-to-optical (e-o) efficiency and can only be operated at very low repetition rates (few shots per minute to few shots per day, depending on size). A new approach is required to overcome these limitations in order to advance fundamental laser-plasma research and to enable envisioned real world applications such as laser driven particle accelerators and inertial fusion energy (IFE) production. Two multi-national laser research projects have been started in Europe. The first is ELI [1], focussed on ultra- short pulse laser research and applications, and the second is HiPER [2], focussed on IFE research. Both projects require the development of kJ-class ns-lasers operating at high e-o efficiency and at repetition rates around 10 Hz. -
8.5 X12.5 Doublelines.P65
Cambridge University Press 978-0-521-87409-0 - Modern Soft Tissue Pathology: Tumors and Non-Neoplastic Conditions Edited by Markku Miettinen Index More information Index abdominal ependymoma, 744 mucinous cystadenocarcinoma, 631 adult fibrosarcoma (AF), 364–365, 1026 abdominal extrauterine smooth muscle ovarian adenocarcinoma, 72, 79 adult granulosa cell tumor, 523–524 tumors, 79 pancreatic adenocarcinoma, 846 clinical features, 523 abdominal inflammatory myofibroblastic pulmonary adenocarcinoma, 51 genetics, 524 tumors, 297–298 renal adenocarcinoma, 67 pathology, 523–524 abdominal leiomyoma, 467, 477 serous cystadenocarcinoma, 631 adult rhabdomyoma, 548–549 abdominal leiomyosarcoma. See urinary bladder/urogenital tract clinical features, 548 gastrointestinal stromal tumor adenocarcinoma, 72, 401 differential diagnosis, 549 (GIST) uterine adenocarcinomas, 72 genetics, 549 abdominal perivascular epithelioid cell tumors adenofibroma, 523 pathology, 548–549 (PEComas), 542 adenoid cystic carcinoma, 1035 aggressive angiomyxoma (AAM), 514–518 abdominal wall desmoids, 244 adenomatoid tumor, 811–813 clinical features, 514–516 acquired elastotic hemangioma, 598 adenomatous polyposis coli (APC) gene, 143 differential diagnosis, 518 acquired tufted angioma, 590 adenosarcoma (mullerian¨ adenosarcoma), 523 genetics, 518 acral arteriovenous tumor, 583 adipocytic lesions (cytology), 1017–1022 pathology, 516 acral myxoinflammatory fibroblastic sarcoma atypical lipomatous tumor/well- aggressive digital papillary adenocarcinoma, (AMIFS), 365–370, 1026 differentiated -
Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks
Supplementary Online Content Tschandl P, Rosendahl C, Akay BN, et al. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. Published online November 28, 2018. doi:10.1001/jamadermatol.2018.4378 eFigure. Sensitivities (Blue) and Specificities (Orange) at Different Threshold Cutoffs (Green) of the Combined Classifier Evaluated on the Validation Set eAppendix. Neural Network Training eTable 1. Complete List of Diagnoses and Their Frequencies Within the Test-Set eTable 2. Education of Users According to Their Experience Group eTable 3. Percent of Correct Prediction of the Malignancy Status for Specific Diagnoses of a CNN Using Either Close-up or Dermatoscopic Images This supplementary material has been provided by the authors to give readers additional information about their work. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/25/2021 eFigure. Sensitivities (Blue) and Specificities (Orange) at Different Threshold Cutoffs (Green) of the Combined Classifier Evaluated on the Validation Set A threshold cut at 0.2 (black) is found for a minimum of 51.3% specificity. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/25/2021 eAppendix. Neural Network Training We compared multiple architecture and training hyperparameter combinations in a grid-search fashion, and used only the single best performing network for dermoscopic and close-up images, based on validation accuracy, for further analyses. We trained four different CNN architectures (InceptionResNetV2, InceptionV3, Xception, ResNet50) and used model definitions and ImageNet pretrained weights as available in the Tensorflow (version 1.3.0)/ Keras (version 2.0.8) frameworks. -
Aesthetic Treatment Outcomes of Capillary Hemangioma, Venous
International Journal of Environmental Research and Public Health Article Aesthetic Treatment Outcomes of Capillary Hemangioma, Venous Lake, and Venous Malformation of the Lip Using Different Surgical Procedures and Laser Wavelengths (Nd:YAG, Er,Cr:YSGG, CO2, and Diode 980 nm) Samir Nammour 1,* , Marwan El Mobadder 1 , Melanie Namour 1 , Amaury Namour 1, Josep Arnabat-Dominguez 2 , Kinga Grzech-Le´sniak 3 , Alain Vanheusden 1 and Paolo Vescovi 4 1 Department of Dental Science, Faculty of Medicine, University of Liege, 4000 Liege, Belgium; [email protected] (M.E.M.); [email protected] (M.N.); [email protected] (A.N.); [email protected] (A.V.) 2 School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; [email protected] 3 Dental Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland; [email protected] 4 Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; [email protected] * Correspondence: [email protected] Received: 20 October 2020; Accepted: 20 November 2020; Published: 22 November 2020 Abstract: Different approaches with different clinical outcomes have been found in treating capillary hemangioma (CH), venous lake (VL), or venous malformations (VM) of the lips. This retrospective study aims to assess scar quality, recurrence rate, and patient satisfaction after different surgeries with different laser wavelengths. A total of 143 patients with CH or VM were included. Nd:YAG laser was used for 47 patients, diode 980 nm laser was used for 32 patients (treatments by transmucosal photo-thermo-coagulation), Er,Cr:YSSG laser was used for 12 patients (treatments by excision), and CO2 laser was used for 52 patients (treatments by photo-vaporization). -
Anthony Edward Siegman Papers SC1171
http://oac.cdlib.org/findaid/ark:/13030/c84m968f Online items available Guide to the Anthony Edward Siegman Papers SC1171 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives November 2013 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Guide to the Anthony Edward SC1171 1 Siegman Papers SC1171 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Anthony Edward Siegman papers creator: Siegman, Anthony E. Identifier/Call Number: SC1171 Physical Description: 53.5 Linear Feet Date (inclusive): 1916-2014 Information about Access The materials are open for research use. Audio-visual materials are not available in original format, and must be reformatted to a digital use copy. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94305-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/spc/using-collections/permission-publish. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Cite As [identification of item], Anthony Edward Siegman Papers (SC1171). Dept. of Special Collections and University Archives, Stanford University Libraries, Stanford, Calif. Scope and Contents The materials consist of administrative files, research files, correspondence, and publications. -
New Yb3+-Doped Laser Materials and Their Application in Continuous-Wave and Mode-Locked Lasers
New Yb3+-doped laser materials and their application in continuous-wave and mode-locked lasers D I S S E R T A T I O N zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m (Dr. rer. nat.) im Fach Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Dipl. Phys. Peter Klopp geb. 14.12.1968, Wiesbaden Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Thomas Buckhout, PhD Gutachter: 1. Prof. Dr. Thomas Elsässer 2. Prof. Dr. Günther Huber 3. Prof. Dr. Achim Peters Tag der mündlichen Prüfung: 16.05.2006 Abstract Yb3+ laser media excel with high efficiency and relatively low heat load, especially in medium to high power laser oscillators and amplifiers. Mode-locking of Yb3+ laser systems can provide subpicosecond pulse durations at high average power. This work deals with two groups of the most promising novel Yb3+-activated laser crystals: Yb3+-activated monoclinic double tungstates, namely the isostructural crystals Yb:KGd(WO4)2 (Yb:KGW), Yb:KY(WO4)2 3+ (Yb:KYW), and KYb(WO4)2 (KYbW), and Yb -doped sesquioxides, represented by Yb:Sc2O3 (Yb:scandia). Spectroscopic data of KYbW were investigated as part of this thesis, finding an extremely short 1/e-absorption length of 13 micrometers at 981 nm. Continuous-wave (cw) and mode-locked laser performance of moderate-average-power lasers based on lowly Yb3+-doped tungstates were examined. -
Photon Science
National Ignition Facility & Photon Science Photon Science & Applications The Photon Science and Applications (PS&A) peak brightness of a MEGa-ray pulse can be 15 program at Lawrence Livermore National orders of magnitude beyond any other man- Laboratory (LLNL) is a mission-oriented research made light in the million-electron-volt (MeV) and development organization that innovates spectral range. This revolutionary leap enables and constructs frontier photon capabilities to new solutions to an astonishingly wide variety address important national needs consistent with of critical and near-term national needs. MEGa- LLNL’s missions. PS&A leads in the development rays can be used to solve the grand challenge of large-scale photon systems and in the execution of finding and detecting highly enriched of photon-based projects for energy, defense, uranium, provide a unique tool for performing homeland and stockpile security, basic science, quantitative assay and imaging of nuclear and industrial competitiveness. Specific areas waste and nuclear fuel systems, enable in-situ of PS&A’s technical expertise include petawatt 3-D isotope-specific images of aging nuclear peak-power and megawatt average-power laser weapons, permit fundamental advances in technology, ultrashort-duration X-ray and laser- stockpile science by providing picosecond like gamma-ray sources, meter-scale diffractive temporal snapshots of isotope positions and optics, and the development of advanced laser velocities in turbulent mix systems, and provide crystals and transparent ceramics. a fundamental new tool for understanding and reinvigorating nuclear physics. Another technology under development, NIF’s Advanced Radiographic Capability (ARC) will use and extend LLNL’s expertise in high-energy petawatt lasers to enable multi-frame, hard-X- ray radiography of imploding NIF capsules—a powerful capability. -
Petawatt Class Lasers Worldwide
High Power Laser Science and Engineering, (2015), Vol. 3, e3, 14 pages. © The Author(s) 2015. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>. doi:10.1017/hpl.2014.52 Petawatt class lasers worldwide Colin Danson1, David Hillier1, Nicholas Hopps1, and David Neely2 1AWE, Aldermaston, Reading RG7 4PR, UK 2STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK (Received 12 September 2014; revised 26 November 2014; accepted 5 December 2014) Abstract The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities, including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation (x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide. The definition of ‘petawatt class’ in this context is a laser that delivers >200 TW. Keywords: diode pumped; high intensity; high power lasers; megajoule; petawatt lasers 1. Motivation of instabilities and perturbations on timescales where hydrodynamic motion is small during the laser pulse The last published review of high power lasers was con- (τcs λ, where cs is the sound speed of the plasma, ducted by Backus et al.[1] in 1998. -
Mercury Optical Lattice Clock: from High-Resolution Spectroscopy to Frequency Ratio Measurements Maxime Favier
Mercury Optical Lattice Clock: From High-Resolution Spectroscopy to Frequency Ratio Measurements Maxime Favier To cite this version: Maxime Favier. Mercury Optical Lattice Clock: From High-Resolution Spectroscopy to Frequency Ratio Measurements. Quantum Physics [quant-ph]. Université Pierre et Marie Curie, 2017. English. tel-01636177v2 HAL Id: tel-01636177 https://tel.archives-ouvertes.fr/tel-01636177v2 Submitted on 2 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LABORATOIRE DES SYSTEMES` DE REF´ ERENCE´ TEMPS-ESPACE THESE` DE DOCTORAT DE L’UNIVERSITE´ PIERRE ET MARIE CURIE Specialit´ e´ : Physique Quantique ECOLE´ DOCTORALE : Physique en ˆIle de France (ED 564) Present´ ee´ par Maxime Favier Pour obtenir le titre de DOCTEUR de l’UNIVERSITE´ PIERRE ET MARIE CURIE Sujet de These` : Horloge a` Reseau´ Optique de Mercure Spectroscopie Haute Resolution´ et Comparaison d’Etalons´ de Frequence´ Ultra-Precis´ Soutenue le 11 octobre 2017 devant le jury compose´ de : Martina Knoop Rapporteure Leonardo Fallani Rapporteur Thomas Udem Examinateur Philippe Grangier Examinateur Jean-Michel Raimond Examinateur UPMC Sebastien´ Bize Directeur de these` Mercury Optical Lattice Clock From High-Resolution Spectroscopy to Frequency Ratio Measurements i Abstract This thesis presents the development of a high-accuracy optical fre- quency standard based on neutral mercury 199Hg trapped in an optical lattice. -
Also in This Issue: Tabletop High-Energy X Rays Superstrong Nanotwinned Metals About the Cover
Lawrence Livermore National Laboratory January/February 2014 Also in this issue: Tabletop High-Energy X Rays Superstrong Nanotwinned Metals About the Cover As described in the article beginning on p. 4, Lawrence Livermore and European scientists are constructing the High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), a laser designed to generate a peak power greater than 1 petawatt. Each pulse will generate 30 joules of energy in less than 30 femtoseconds. The laser system will deliver these light pulses 10 times per second, making possible new scientific discoveries in the areas of physics, medicine, biology, and materials science. HAPLS will be built at Livermore for the Extreme Light Infrastructure Beamlines facility, currently under construction near Prague in the Czech Republic (shown in the cover rendering). Cover design: George A. Kitrinos A. George design: Cover About S&TR At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. The Laboratory is operated by Lawrence Livermore National Security, LLC (LLNS), for the Department of Energy’s National Nuclear Security Administration. LLNS is a partnership involving Bechtel National, University of California, Babcock & Wilcox, Washington Division of URS Corporation, and Battelle in affiliation with Texas A&M University. -
Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to Mercury
Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury Danny J. Krebs, Anne-Marie Novo-Gradac, Steven X. Li, Steven J. Lindauer, Robert S. Afzal, and Anthony W. Yu A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and success- fully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury. © 2005 Optical Society of America OCIS codes: 140.3480, 120.2830. 1. Introduction from the rest of the satellite. In terms of laser per- The Mercury Surface, Space Environment, Geochem- formance it is necessary to achieve more than 18 mJ istry, and Ranging (MESSENGER) mission to the of output energy in a near-diffraction-limited beam planet Mercury requires a laser altimeter capable of with ϳ6᎑ns pulses at an 8᎑Hz repetition rate, while performing range measurements to the surface of the the laser bench temperature is executing a thermal planet over highly variable distances and with a con- ramp from 15 to 25 °C at a rate of approximately 0.4 stantly changing thermal environment.1–3 Specifi- °C͞min. -
4-Pass Pumping of Nd+3:YAG Slabs
Source of Acquisition NASA Goddard Space Flight Center 4-Pass Pumping of Nd+3:YAG Slabs D. Barry Coyle NASA-GSFC, Laboratory for Terrestrial Physics, Greenbelt, MD 20771 Demetrios Poulios The American University, Dept. of Physics, Washington, DC 20016 A solid-state, side pumping scheme, designed to enhance pump energy absorption, has been adapted for use in small, side-pumped, Nd+3:YAG zigzag lasers. This technique allows for pump radiation to make four complete passes through the gain medium, effectively doubling the absorption length of the usual 2-pass geometry. This produces higher inversion densities, higher gains, broader operating temperature bands and overall higher efficiencies. The improved performance has been demonstrated with a small Nd+3:YAG, mJ-class oscillator, and will aid in the development for space-based remote sensing laser transmitters for altimetry and mapping instruments. , . 2005 Optical Society of America OCIS codes: 140.3480, 140.5560,140.3580 Introduction: A large portion of NASA-Goddard’s in-house research and development effort in laser technology is concentrated in Nd+3:YAG-basedtransmitters for applications in laser-based remote sensing of earth and planetary surfaces and environments. This article describes a new pumping scheme with Nd:YAG crystals, however it could be applied to almost any solid state laser material. Two factors most critical to the final cost and success of such space-based laser systems are the total electrical-optical efficiency and long-term reliability. Enhancing optical efficiency,