New Yb3+-Doped Laser Materials and Their Application in Continuous-Wave and Mode-Locked Lasers

Total Page:16

File Type:pdf, Size:1020Kb

New Yb3+-Doped Laser Materials and Their Application in Continuous-Wave and Mode-Locked Lasers New Yb3+-doped laser materials and their application in continuous-wave and mode-locked lasers D I S S E R T A T I O N zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m (Dr. rer. nat.) im Fach Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Dipl. Phys. Peter Klopp geb. 14.12.1968, Wiesbaden Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Thomas Buckhout, PhD Gutachter: 1. Prof. Dr. Thomas Elsässer 2. Prof. Dr. Günther Huber 3. Prof. Dr. Achim Peters Tag der mündlichen Prüfung: 16.05.2006 Abstract Yb3+ laser media excel with high efficiency and relatively low heat load, especially in medium to high power laser oscillators and amplifiers. Mode-locking of Yb3+ laser systems can provide subpicosecond pulse durations at high average power. This work deals with two groups of the most promising novel Yb3+-activated laser crystals: Yb3+-activated monoclinic double tungstates, namely the isostructural crystals Yb:KGd(WO4)2 (Yb:KGW), Yb:KY(WO4)2 3+ (Yb:KYW), and KYb(WO4)2 (KYbW), and Yb -doped sesquioxides, represented by Yb:Sc2O3 (Yb:scandia). Spectroscopic data of KYbW were investigated as part of this thesis, finding an extremely short 1/e-absorption length of 13 micrometers at 981 nm. Continuous-wave (cw) and mode-locked laser performance of moderate-average-power lasers based on lowly Yb3+-doped tungstates were examined. Ultrashort pulse generation with Yb:KYW, Yb:KGW, and Yb:glass was compared in a passively mode-locked laser. A relatively high mode-locked laser efficiency was achieved due to a tapered diode pump laser with excellent beam quality. Quasi-cw and cw lasing of Yb3+ in highly doped and stoichiometric tungstate crystals were investigated. These materials are interesting for microchip and thin-disk lasers. Important issues were crystal quality and heat generation at high Yb3+ concentrations. For the first time, laser operation of tungstates with a Yb3+ concentration >>20% and finally, with KYbW, cw lasing of a stoichiometric Yb laser material was achieved. Furthermore, with KYbW, the smallest laser quantum defect ever for a laser crystal was demonstrated, 1.6%. Using a Yb:Sc2O3 laser medium, for the first time mode locking of an oscillator using a sesquioxide laser crystal was realized. Laser regimes with non-solitonlike and solitonlike pulse shaping were investigated, using a Ti:Sapphire laser and a tapered laser diode as pump sources. With a Ti:Sapphire-laser- pumped Yb:scandia laser the highest conversion efficiency with respect to absorbed pump power for any mode-locked Yb3+-based laser was achieved, 47%. Keywords: Yb3+ lasers, ytterbium-activated tungstates, ytterbium-doped sesquioxides, mode- locked lasers Abstract Yb3+-Lasermedien glänzen mit hoher Effizienz und relativ geringer thermischer Last, besonders in Laseroszillatoren und -verstärkern mittlerer bis hoher Leistung. Modenkopplung von Yb3+- Lasersystemen ermöglicht Subpikosekunden-Pulse bei hoher mittlerer Ausgangsleistung. Diese Arbeit widmet sich zwei Gruppen der vielversprechendsten neuen Yb3+-aktivierten Laserkristalle: den strukturell analogen, monoklinen Doppelwolframaten Yb:KGd(WO4)2 3+ (Yb:KGW), Yb:KY(WO4)2 (Yb:KYW) und KYb(WO4)2 (KYbW) und den Yb -dotierten Sesquioxiden, vertreten durch Yb:Sc2O3 (Yb:Skandia). Die spektroskopischen Daten von KYbW, darunter eine extrem kurze 1/e-Absorptionslänge von 13 Mikrometern bei 981 nm, wurden im Rahmen der Dissertation vermessen. Die Lasereigenschaften niedrig Yb3+-dotierter Wolframate im Dauerstrich (cw)- und modengekoppelten Betrieb wurden in Lasern moderater Ausgangsleistung untersucht. Ultrakurzpuls-Erzeugung mit Yb:KYW, Yb:KGW und Yb:Glas wurde in einem passiv modengekoppelten Laser verglichen. Dabei wurde eine relativ hohe Lasereffizienz erreicht, Dank einer Trapezlaserdiode als Pumpquelle mit exzellenter Strahlqualität. Quasi-cw- und cw-Laserbetrieb von Yb3+ in hochdotierten und stöchiometrischen Wolframatkristallen wurden untersucht. Diese Materialien sind interessant für Mikrochip- und Scheibenlaser. Wichtige Fragestellungen waren die Kristallqualität und die Hitzeentwicklung bei hohen Yb3+-Konzentrationen. Erstmals wurde Lasertätigkeit von Wolframaten mit Yb3+- Konzentrationen >>20% und schließlich, mit KYbW, cw-Laserbetrieb eines stöchiometrischen Yb-Lasermaterials demonstriert. Weiterhin wurde mit KYbW der kleinste bisher für einen Laserkristall gemessene Laserquantendefekt erzielt, 1,6%. Unter Benutzung eines Yb:Sc2O3- Lasermediums wurde erstmals modengekoppelter Betrieb eines Oszillators mit Sequioxid- Laserkristall gezeigt. Betrieb mit nichtsolitonen- und solitonenartiger Pulsformung sowie mit Ti:Saphir-Laser oder Trapezlaserdiode als Pumplaser wurden untersucht. Mit einem Ti:Saphir- gepumpten Yb:Skandia-Laser wurde eine Konversionseffizienz von 47 % bezogen auf die absorbierte Pumpleistung erreicht, der bisher höchste Wert für einen modengekoppelten Yb3+- basierten Laser. Schlagwörter: Yb3+-Laser, Ytterbium-aktivierte Wolframate, Ytterbium-dotierte Sesquioxide, modengekoppelte Laser 1 New Yb3+-doped laser materials and their application in continuous-wave and mode-locked lasers 1. Introduction 3 2. Yb3+-activated laser materials 6 2.1. Yb3+ as a laser active ion 6 2.1.1. Yb3+ level scheme 6 2.1.2. Yb3+ versus Nd3+ 7 2.2. Crystals and glasses as hosts 9 2.2.1. Influence of the host on spectroscopic properties 9 2.2.2. Overview of hosts: spectroscopic properties 12 2.2.3. Thermo-mechanical and thermo-optical properties of the host 16 2.2.4. Overview of hosts: Thermo-mechanical and thermo-optical properties 19 2.2.5. Crystal quality and dopability 23 2.3. Stoichiometric materials 24 2.4. Yb3+-activated tungstates 28 2.5. Yb3+-activated cubic sesquioxides 36 3. Quasi-three- and quasi-four-level lasers 41 3.1. Definitions 41 3.2. Rate equations 42 3.3. Continuous-wave case 45 3.3.1. Inversion and saturation effects 45 3.3.2. Laser threshold estimations 51 3.3.3. Laser efficiency 62 4. Passive mode locking 67 4.1. Pulse shaping in passively mode-locked solid-state lasers 67 4.2. Pulse-shaping effects in detail 75 4.3. Stability of passive mode locking 93 5. Yb3+-activated tungstate laser experiments 96 5.1. Lowly Yb3+-doped KYW and KGW experiments 97 5.1.1. Continuous-wave operation of lowly doped KYW and KGW 97 5.1.2. Mode-locked operation of lowly doped KYW and KGW 100 5.1.2.1. Diode-pumped Yb(5%):KYW femtosecond laser 102 5.1.2.2. Diode-pumped Yb(5%):KGW femtosecond laser 104 5.1.2.3. Diode-pumped Yb:glass femtosecond laser and comparison 105 5.2. Highly Yb3+-doped KYW and stoichiometric KYbW experiments 109 2 5.2.1. Quasi-cw operation of highly doped KYW and stoichiometric KYbW 109 5.2.1.1. Yb(60%):KYW quasi-cw laser 110 5.2.1.2. Yb(80%):KYW quasi-cw laser 113 5.2.1.3. KYbW quasi-cw laser 115 5.2.1.4. Smallest laser quantum defect 125 5.2.2. Continuous-wave face-cooled Yb:KYW and KYbW lasers 128 5.2.2.1. Yb(20%):KYW continuous-wave laser 129 5.2.2.2. KYbW continuous-wave laser 131 6. Yb3+-doped scandia laser experiments 135 6.1. Continuous-wave operation of a Yb(0.7%):Sc2O3 laser 137 6.2. Mode-locked operation of Yb:Sc2O3 lasers 138 6.2.1. Ti:Sapphire-laser-pumped Yb(0.7%):Sc2O3 picosecond laser 138 6.2.2. Ti:Sapphire-laser-pumped Yb(0.7%):Sc2O3 femtosecond laser 140 6.2.3. Diode-pumped Yb(0.7%):Sc2O3 femtosecond laser 143 7. Summary 147 A. Appendix 149 List of references 173 List of symbols 187 List of abbreviations 192 Dank 193 Zusammenfassung 194 Publikationen, die im Zusammenhang mit dieser Dissertation erfolgten 197 Lebenslauf 199 Versicherung 200 3 1. Introduction Combining Yb3+ as the active ion and a suited glass or crystal host provides laser media with excellent optical and mechanical properties. For laser oscillators and amplifiers operating in the 1-μm-range, Yb3+-based laser materials have the potential to substitute many Nd3+-based materials, especially in medium to high power systems used for material processing. Here, Yb3+ laser media excel with high efficiency and relatively low heat load. Mode-locking of Yb3+ laser systems can provide subpicosecond pulse durations at high average power. Such short pulses can e.g. enhance the precision of drilling compared to Q-switched systems and permit the structuring of transparent materials [Chi96, Dra03, Min01, Pro95]. This work deals with two groups of the most promising novel Yb3+-activated laser crystals: 3+ Yb -activated monoclinic double tungstates, namely the isostructural crystals Yb:KGd(WO4)2 3+ (Yb:KGW), Yb:KY(WO4)2 (Yb:KYW), and KYb(WO4)2 (KYbW), and Yb -doped sesquioxides, represented by Yb:Sc2O3 (Yb:scandia). Highly efficient laser operation is demonstrated with lowly doped tungstate and scandia crystals in continuous-wave (cw) and mode-locked regimes. Highly doped KYW and stoichiometric KYbW are investigated. With KYbW, the first cw lasing of a stoichiometric Yb3+ laser material is achieved. Motivation A general advantage of Yb3+ lasers is that the conversion efficiency of pump light into laser output can be very high and heat production is relatively low, due to a small laser quantum defect (lqd) and the absence of excited state absorption, up- or downconversion mechanisms, which are a problem with many other laser active ions including Nd3+. All Yb3+-activated laser materials can be pumped by InGaAs diode lasers, which helps to build cheap, compact and reliable laser systems. A disadvantage is that Yb3+ laser systems operate in a quasi-three- or quasi-four-level scheme at 2 room temperature, since the lower laser level belongs to the ground state manifold F7/2 and is considerably thermally populated. This leads to reabsorption of the emitted laser light and therefore to higher lasing thresholds and reduced efficiency.
Recommended publications
  • Interface Effect on Titanium Distribution During Ti-Doped Sapphire Crystals Grown by the Kyropoulos Method
    Optical Materials 69 (2017) 73e80 Contents lists available at ScienceDirect Optical Materials journal homepage: www.elsevier.com/locate/optmat Interface effect on titanium distribution during Ti-doped sapphire crystals grown by the Kyropoulos method * Carmen Stelian a, c, Guillaume Alombert-Goget b, , Gourav Sen a, Nicolas Barthalay c, Kheirreddine Lebbou b, Thierry Duffar a a University Grenoble-Alpes, CNAS, SIMAP-EPM, 1340 Rue de la Piscine, BP 75, F-38402, Saint Martin d’Heres, France b Univ Lyon, Universite Claude Bernard Lyon 1, CNRS, Institut Lumiere Matiere, F-69622, Villeurbanne, France c Le Rubis SA, BP 16, 38560, Jarrie, Grenoble, France article info abstract Article history: Large ingot Ti-doped sapphire crystals were successfully grown by Kyropoulos method. Optical charac- Received 16 January 2017 terization of 10 cm diameter crystals shows non-uniform radial distribution of titanium. The measure- þ Received in revised form ments of Ti3 ion distribution in several slices cut perpendicular to the growth direction show that the 5 April 2017 concentration is higher at the periphery of the crystal as compared to the central part of the ingot. Accepted 6 April 2017 Numerical modeling is applied to investigate heat transfer, melt convection and species transport during the Kyropoulos growth process. The transient simulation shows an unsteady convection generated by the strong interaction between the flow and the thermal field. The distribution of Ti in the melt is nearly Keywords: Ti-doped sapphire uniform due to the intense convective mixing. The radial distribution of titanium depends mainly on the fi Solute segregation shape of the crystal-melt interface.
    [Show full text]
  • Concept for Cryogenic Kj-Class Yb:YAG Amplifier K
    OSA / ASSP/LACSEA/LS&C 2010 AWB20.pdf a288_1.pdf Concept for Cryogenic kJ-Class Yb:YAG Amplifier K. Ertel, C. Hernandez-Gomez, P. D. Mason, I. O. Musgrave, I. N. Ross, J. L. Collier STFC Rutherford Appleton Laboratory, Central Laser Facility, Chilton, Didcot, OX11 0QX, United Kingdom [email protected] Abstract: More and more projects and applications require the development of ns, kJ-class DPSSL systems with multi-Hz repetition rate. We present an amplifier concept based on cryogenically cooled Yb:YAG, promising high optical-to-optical efficiency and high gain. ©2010 Optical Society of America OCIS codes: (140.3280) Laser amplifiers; (140.3480) Lasers, diode-pumped, (140.3615) Lasers, ytterbium, (140.5560) Pumping 1. Introduction Currently, most lasers for producing multi-J to multi-kJ ns pulses are based on flashlamp pumped Nd:glass technology. These lasers show very poor electrical-to-optical (e-o) efficiency and can only be operated at very low repetition rates (few shots per minute to few shots per day, depending on size). A new approach is required to overcome these limitations in order to advance fundamental laser-plasma research and to enable envisioned real world applications such as laser driven particle accelerators and inertial fusion energy (IFE) production. Two multi-national laser research projects have been started in Europe. The first is ELI [1], focussed on ultra- short pulse laser research and applications, and the second is HiPER [2], focussed on IFE research. Both projects require the development of kJ-class ns-lasers operating at high e-o efficiency and at repetition rates around 10 Hz.
    [Show full text]
  • Abstracts Book
    ABSTRACTS BOOK 5th European Conference on Crystal Growth 9-11 September 2015 Area della Ricerca CNR, Bologna, Italy WELCOME Dear Colleagues, On behalf of the Crystal Growth section of Italian Association of Crystallography (AIC) and the European Network of Crystal Growth (ENCG), we cordially welcome you to Bologna for the Fifth European Conference on Crystal Growth (ECCG5). The aim of ECCG5 is to represent the wide variety of topics connected with Crystal Growth, with a multidisciplinary approach able to answer the demands of the society in different fields of modern life, such as microelectronics, photonics, pharmaceutical and chemical material production, healthcare and cosmetics to name few. To delivery this, the organizing team has scheduled a wide-ranging and thought-provoking program of Plenary, Keynote and Invited conference lectures. The conference also presents two poster sessions, which are rich of very attractive and stimulating presentations. The Conference has been also organized to promote the meeting of researchers coming from public and private entities and to facilitate the cooperation between academia and industry. We aspect that that the program will trigger many fruitful discussions and that this will be an enriching experience for all of us. We express our heartfelt gratitude to the members of International Advisory Board for their qualified and wise guidance concerning the conference structure, content and speakers and to the Local Organizing Committee who have worked in very hard way to make easy many practical, and unexpected, issues associated with the conference organization. Last but not least we are very grateful to the Sponsors and Exhibitors for their significant support.
    [Show full text]
  • An Investigation of the Techniques and Advantages of Crystal Growth
    Int. J. Thin. Film. Sci. Tec. 9, No. 1, 27-30 (2020) 27 International Journal of Thin Films Science and Technology http://dx.doi.org/10.18576/ijtfst/090104 An Investigation of the Techniques and Advantages of Crystal Growth Maryam Kiani*, Ehsan Parsyanpour and Feridoun Samavat* Department of Physics, Bu-Ali Sina University, Hamadan, Iran. Received: 2 Aug. 2019, Revised: 22 Nov. 2019, Accepted: 23 Nov. 2019 Published online: 1 Jan. 2020 Abstract: An ideal crystal is built with regular and unlimited recurring of crystal unit in the space. Crystal growth is defined as the phase shift control. Regarding the diverse crystals and the need to produce crystals of high optical quality, several many methods have been proposed for crystal growth. Crystal growth of any specific matter requires careful and proper selection of growth method. Based on material properties, the considered quality and size of crystal, its growth methods can be classified as follows: solid phase crystal growth process, liquid phase crystal growth process which involves two major sub-groups: growth from the melt and growth from solution, as well as vapour phase crystal growth process. Methods of growth from solution are very important. Thus, most materials grow using these methods. Methods of crystal growth from melt are those of Czochralski (tensile), the Kyropoulos, Bridgman-Stockbarger, and zone melting. In growth of oxide crystals with good laser quality, Czochralski method is still predominant and it is widely used in the production of most solid-phase laser materials. Keywords: Crystal growth; Czochralski method; Kyropoulos method; Bridgman-Stockbarger method. A special method is used for each group of elements depending on their usage and importance of their impurity, or consideration of form, impurity and size of crystal.
    [Show full text]
  • Laser Dermatology
    Laser Dermatology David J. Goldberg Editor Laser Dermatology Second Edition Editor David J. Goldberg, M.D. Division of New York & New Jersey Skin Laser & Surgery Specialists Hackensack , NY USA ISBN 978-3-642-32005-7 ISBN 978-3-642-32006-4 (eBook) DOI 10.1007/978-3-642-32006-4 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012954390 © Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a speci fi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Download This Article in PDF Format
    E3S Web of Conferences 124, 05013 (2019) https://doi.org/10.1051/e3sconf/201912405013 SES-2019 The problem of creating an automated system to control growth of single crystal sapphires from melt as a problem of control and monitoring of a complex nonlinear and dynamic system V A Petrosyan1,*, A V Belousov2, A G Grebenik2 and Yu A Koshlich2 1LLC "Techsapphire", Belgorod, Russia 2BSTU named after V.G. Shukhov, Belgorod, Russia Abstract. The paper mentions some problems of automated control system development for growth of large (150 kg and above) single crystal sapphires. We obtain an analytical equation for the temperature distribution and thermal stresses along the crystal axis during the growth phase. An analysis was carried out and numerical estimates were obtained for the axial distribution of components of thermoelastic stresses depending on the physical, optical, and geometric parameters of the crystal. It is shown that the cause of thermal stresses and blocks during crystal growth is the nonlinear temperature dependence of thermal conductivity and thermal expansion coefficients. 1 Introduction a forced convention and with different density of melt saturation with gas inclusions in these zones. As a result, Based on the general concepts of the theory of normal in the places of melting, more favorable conditions arise directional crystallization from the melt, it is known that for the capture of micron-sized bubbles and their further the crystallization rate 푣푐푟 is proportional to the growth into a single crystal. supercooling of the melt ∆푇 or the temperature gradient It follows from the above that an important at the phase interface.
    [Show full text]
  • Anthony Edward Siegman Papers SC1171
    http://oac.cdlib.org/findaid/ark:/13030/c84m968f Online items available Guide to the Anthony Edward Siegman Papers SC1171 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives November 2013 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Guide to the Anthony Edward SC1171 1 Siegman Papers SC1171 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Anthony Edward Siegman papers creator: Siegman, Anthony E. Identifier/Call Number: SC1171 Physical Description: 53.5 Linear Feet Date (inclusive): 1916-2014 Information about Access The materials are open for research use. Audio-visual materials are not available in original format, and must be reformatted to a digital use copy. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94305-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/spc/using-collections/permission-publish. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Cite As [identification of item], Anthony Edward Siegman Papers (SC1171). Dept. of Special Collections and University Archives, Stanford University Libraries, Stanford, Calif. Scope and Contents The materials consist of administrative files, research files, correspondence, and publications.
    [Show full text]
  • Photon Science
    National Ignition Facility & Photon Science Photon Science & Applications The Photon Science and Applications (PS&A) peak brightness of a MEGa-ray pulse can be 15 program at Lawrence Livermore National orders of magnitude beyond any other man- Laboratory (LLNL) is a mission-oriented research made light in the million-electron-volt (MeV) and development organization that innovates spectral range. This revolutionary leap enables and constructs frontier photon capabilities to new solutions to an astonishingly wide variety address important national needs consistent with of critical and near-term national needs. MEGa- LLNL’s missions. PS&A leads in the development rays can be used to solve the grand challenge of large-scale photon systems and in the execution of finding and detecting highly enriched of photon-based projects for energy, defense, uranium, provide a unique tool for performing homeland and stockpile security, basic science, quantitative assay and imaging of nuclear and industrial competitiveness. Specific areas waste and nuclear fuel systems, enable in-situ of PS&A’s technical expertise include petawatt 3-D isotope-specific images of aging nuclear peak-power and megawatt average-power laser weapons, permit fundamental advances in technology, ultrashort-duration X-ray and laser- stockpile science by providing picosecond like gamma-ray sources, meter-scale diffractive temporal snapshots of isotope positions and optics, and the development of advanced laser velocities in turbulent mix systems, and provide crystals and transparent ceramics. a fundamental new tool for understanding and reinvigorating nuclear physics. Another technology under development, NIF’s Advanced Radiographic Capability (ARC) will use and extend LLNL’s expertise in high-energy petawatt lasers to enable multi-frame, hard-X- ray radiography of imploding NIF capsules—a powerful capability.
    [Show full text]
  • Petawatt Class Lasers Worldwide
    High Power Laser Science and Engineering, (2015), Vol. 3, e3, 14 pages. © The Author(s) 2015. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>. doi:10.1017/hpl.2014.52 Petawatt class lasers worldwide Colin Danson1, David Hillier1, Nicholas Hopps1, and David Neely2 1AWE, Aldermaston, Reading RG7 4PR, UK 2STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK (Received 12 September 2014; revised 26 November 2014; accepted 5 December 2014) Abstract The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities, including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation (x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide. The definition of ‘petawatt class’ in this context is a laser that delivers >200 TW. Keywords: diode pumped; high intensity; high power lasers; megajoule; petawatt lasers 1. Motivation of instabilities and perturbations on timescales where hydrodynamic motion is small during the laser pulse The last published review of high power lasers was con- (τcs λ, where cs is the sound speed of the plasma, ducted by Backus et al.[1] in 1998.
    [Show full text]
  • Analysis of Cracking at the Bottom During the Last Stage of Kyropoulos
    International Journal of Science Vol.2 No.8 2015 ISSN: 1813-4890 Analysis of cracking at the bottom during the last stage of Kyropoulos sapphire crystal growth Yongchun Gao 1, a, *, Xingang Guo 2, Jianwei Lu 3 1Department of Physics, College of Science, North China University of Science and Technology, Tangshan 063009, China 2School of Control Engineering, Northeastern University at Qinhuangdao, Qinghuangdao 066004, China 3Qinggong College, North China University of Science and Technology, Tangshan 063009, China [email protected] Abstract In the study, the reason of cracking at the bottom is analyzed during the last stage of Kyropoulos sapphire crystal growth. The indirect reason of crystal cracking is investigated by using the numerical simulation method. Marangoni convection reinforces the main vortex near the free surface greatly and gives rise to the interface inversion, which lowers the limit thermal stress of crystal cracking. The direct reason is discussed by considering the relation of expansion coefficient between crucible and sapphire. In addition, the proper increasing of bottom heater power can suppress the interface inversion, which is beneficial to grow the prefect crystal. Keywords Computer simulation, Convection, Single crystal growth, Growth from melt, Sapphire 1. Introduction Sapphire crystal is widely used as light-emitting diodes substrate, military infrared optical window, laser host material due to excellent integrated properties [1, 2]. The Kyropoulos method is one of the most promising methods to grow large size and low residual stress of single crystal due to low temperature gradient and in-situ annealing [3]. Numerical Simulation of sapphire crystal growth in recent years mainly focused on the thermal field, flow field, stress field and the shape of the crystal-melt interface [4-9].
    [Show full text]
  • Mercury Optical Lattice Clock: from High-Resolution Spectroscopy to Frequency Ratio Measurements Maxime Favier
    Mercury Optical Lattice Clock: From High-Resolution Spectroscopy to Frequency Ratio Measurements Maxime Favier To cite this version: Maxime Favier. Mercury Optical Lattice Clock: From High-Resolution Spectroscopy to Frequency Ratio Measurements. Quantum Physics [quant-ph]. Université Pierre et Marie Curie, 2017. English. tel-01636177v2 HAL Id: tel-01636177 https://tel.archives-ouvertes.fr/tel-01636177v2 Submitted on 2 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LABORATOIRE DES SYSTEMES` DE REF´ ERENCE´ TEMPS-ESPACE THESE` DE DOCTORAT DE L’UNIVERSITE´ PIERRE ET MARIE CURIE Specialit´ e´ : Physique Quantique ECOLE´ DOCTORALE : Physique en ˆIle de France (ED 564) Present´ ee´ par Maxime Favier Pour obtenir le titre de DOCTEUR de l’UNIVERSITE´ PIERRE ET MARIE CURIE Sujet de These` : Horloge a` Reseau´ Optique de Mercure Spectroscopie Haute Resolution´ et Comparaison d’Etalons´ de Frequence´ Ultra-Precis´ Soutenue le 11 octobre 2017 devant le jury compose´ de : Martina Knoop Rapporteure Leonardo Fallani Rapporteur Thomas Udem Examinateur Philippe Grangier Examinateur Jean-Michel Raimond Examinateur UPMC Sebastien´ Bize Directeur de these` Mercury Optical Lattice Clock From High-Resolution Spectroscopy to Frequency Ratio Measurements i Abstract This thesis presents the development of a high-accuracy optical fre- quency standard based on neutral mercury 199Hg trapped in an optical lattice.
    [Show full text]
  • Also in This Issue: Tabletop High-Energy X Rays Superstrong Nanotwinned Metals About the Cover
    Lawrence Livermore National Laboratory January/February 2014 Also in this issue: Tabletop High-Energy X Rays Superstrong Nanotwinned Metals About the Cover As described in the article beginning on p. 4, Lawrence Livermore and European scientists are constructing the High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), a laser designed to generate a peak power greater than 1 petawatt. Each pulse will generate 30 joules of energy in less than 30 femtoseconds. The laser system will deliver these light pulses 10 times per second, making possible new scientific discoveries in the areas of physics, medicine, biology, and materials science. HAPLS will be built at Livermore for the Extreme Light Infrastructure Beamlines facility, currently under construction near Prague in the Czech Republic (shown in the cover rendering). Cover design: George A. Kitrinos A. George design: Cover About S&TR At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. The Laboratory is operated by Lawrence Livermore National Security, LLC (LLNS), for the Department of Energy’s National Nuclear Security Administration. LLNS is a partnership involving Bechtel National, University of California, Babcock & Wilcox, Washington Division of URS Corporation, and Battelle in affiliation with Texas A&M University.
    [Show full text]