Hydrogenotrophic Methanogenesis in Archaeal Phylum Verstraetearchaeota Reveals the Shared Ancestry of All Methanogens

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogenotrophic Methanogenesis in Archaeal Phylum Verstraetearchaeota Reveals the Shared Ancestry of All Methanogens Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens Bojk A. Berghuisa, Feiqiao Brian Yua,b, Frederik Schulzc, Paul C. Blaineyd,e, Tanja Woykec, and Stephen R. Quakea,b,f,1 aDepartment of Bioengineering, Stanford University, Stanford, CA 94305; bChan Zuckerberg Biohub, San Francisco, CA 94158; cDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; dDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; eBroad Institute of Harvard and MIT, Cambridge, MA 02142; and fDepartment of Applied Physics, Stanford University, Stanford, CA 94305 Contributed by Stephen R. Quake, December 29, 2018 (sent for review September 27, 2018; reviewed by Jared R. Leadbetter and Marc Strous) Methanogenic archaea are major contributors to the global carbon electron donor (1, 11). To conserve energy, hydrogenotrophs couple cycle and were long thought to belong exclusively to the euryarchaeal the WLP to methanogenesis. This coupling is established by N5- phylum. Discovery of the methanogenesis gene cluster methyl- methyl-tetrahydromethanopterin:coenzyme M methyltransferase coenzyme M reductase (Mcr) in the Bathyarchaeota, and thereafter (Mtr; also known as tetrahydromethanopterin S-methyltransferase), the Verstraetearchaeota, led to a paradigm shift, pushing back the which transfers the methyl group from the WLP to coenzyme M. Mtr + evolutionary origin of methanogenesis to predate that of the uses the free energy of methyl transfer to establish a Na -motive Euryarchaeota. The methylotrophic methanogenesis found in force across the membrane (14). Methyl coenzyme M reductase then the non-Euryarchaota distinguished itself from the predomi- reduces methyl-coenzyme M to methane, using coenzyme B as an nantly hydrogenotrophic methanogens found in euryarchaeal orders as the former do not couple methanogenesis to carbon fixation through electron donor. The established disulfide bond between these coen- the reductive acetyl-CoA [Wood–Ljungdahl pathway (WLP)], which zymes is then broken again by heterodisulfide reductase (HdrABC/ was interpreted as evidence for independent evolution of the two mvhADG). This cytoplasmic electron bifurcating complex concomi- tantly generates the reduced ferredoxin required for CO reduction in methanogenesis pathways. Here, we report the discovery of a com- 2 EVOLUTION plete and divergent hydrogenotrophic methanogenesis pathway in a the process (15, 16). thermophilic order of the Verstraetearchaeota, which we have named The Bathyarchaeota, Verstraetearchaeota, and Methano- Candidatus Methanohydrogenales, as well as the presence of the WLP massiliicoccales are, together with some Methanobacteriales and in the crenarchaeal order Desulfurococcales. Our findings support the ancient origin of hydrogenotrophic methanogenesis, suggest that Significance methylotrophic methanogenesis might be a later adaptation of spe- cific orders, and provide insight into how the transition from hydro- Methane-producing microorganisms are thought to be among genotrophic to methylotrophic methanogenesis might have occurred. the earliest cellular life forms colonizing our planet, and are major contributors to the past and present global carbon cycle. methanogenesis | archaea | evolution Currently, all methanogens belong to the archaeal domain of life, and there is compounding evidence for a variety of meth- ll known methanogenic organisms belong exclusively to the anogenic metabolisms among a wide distribution of archaeal Aarchaeal domain of life. Methanogens are typically found in phyla. However, the predominantly hydrogenotrophic (CO2- the oxygen-depleted environments of soils, sediments, and the fixing) Euryarchaeota are distinct from the recently discovered intestinal tract of humans and animals (1). With an estimated methylotrophic (biomass-degrading) noneuryarchaea, making the combined annual production of 500 million tons of the green- shared ancestry and origins of all methanogens unclear. We house gas methane, methanogenic archaea are key contributors discovered hydrogenotrophic methanogenesis in a thermophilic to the global carbon cycle and play an important role in climate order of the Verstraetearchaeota, a noneuryarchaeote. The change (2, 3). Until recently, all known methanogens belonged to the Verstraetearchaeota, hitherto known as methylotrophs, unify Euryarchaeota and were categorized into two classes (class I and class the origins of methanogenesis and shed light on how organisms II). The hypothesis that methane metabolism originated early in the can evolve to adapt from hydrogenotrophic to methylotrophic evolution of the Euryarchaeota (4) has since been challenged fol- methane metabolism. lowing the recent discovery of a putative methane metabolism in the archaeal phyla Bathyarchaeota (formerly the miscellaneous Cren- Author contributions: B.A.B., F.B.Y., and S.R.Q. designed research; B.A.B. and F.B.Y. per- formed research; P.C.B. collected samples; B.A.B., F.S., T.W., and S.R.Q. analyzed data; and archaeota group) (5, 6) and Verstraetearchaeota (7). B.A.B., F.B.Y., F.S., P.C.B., T.W., and S.R.Q. wrote the paper. Three major pathways of methanogenesis are known (8, 9): Reviewers: J.R.L., California Institute of Technology; and M.S., University of Calgary. hydrogenotrophic, methylotrophic, and acetoclastic (Fig. 1A). Conflict of interest statement: S.R.Q. is a shareholder of Fluidigm Corporation. T.W. and The only enzyme that is present in all types of methanogenesis is M.S. are coauthors on a 2017 software assessment paper. methyl-coenzyme M reductase (Mcr), a Ni-corrinoid protein cat- This open access article is distributed under Creative Commons Attribution-NonCommercial- alyzing the last step of methyl group reduction to methane (1, 10, NoDerivatives License 4.0 (CC BY-NC-ND). 11). Hydrogenotrophic methanogenesis is the most widespread Data deposition: We have used the Department of Energy Joint Genome Institute’sIn- pathway (1) and has been suggested to represent the ancestral form tegrated Microbial Genomes and Microbiomes (IMG/M) database to upload our genome of methane production (12). Class I methanogens (Methanopyrales, and metagenome datasets, as well as performing parts of the analysis there. These ge- Methanococcales, and Methanobacteriales), as well as most class II nomes and metagenomes are available for download at https://img.jgi.doe.gov.IMG genome IDs are as follows: 2767802456, 2767802469,and2770939329–2770939439.IMG methanogens (Methanomicrobiales, Methanocellales, and Meth- metagenome IDs are as follows: 3300017482, 3300017562, 3300017696, 3300017469, anosarcinales, with the exception of Methanomassiliicoccales) are and 3300017461. 1 hydrogenotrophs. They reduce CO2 to CH4 in six steps via the re- To whom correspondence should be addressed. Email: [email protected]. ductive acetyl-CoA or Wood–Ljungdahl pathway (WLP). The WLP This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. is one of the most important processes for energy generation and 1073/pnas.1815631116/-/DCSupplemental. carbon fixation (13). Here, H2, or sometimes formate, is used as an Published online February 27, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1815631116 PNAS | March 12, 2019 | vol. 116 | no. 11 | 5037–5044 Downloaded by guest on September 30, 2021 A Hydrogenotrophic Methylotrophic methanogenesis Carbon fixation using methanogenesis archaeal WLP CO CO without methanogenesis 2 2 CO 2 Fd CO reduction red 2 Fd WLP WLP WLP WLP ox Cdh H MPT-CH acetyl-CoA coupled 4 3 biomass biomass with energy Mtr biomass Mtr Mtr Mtr conservation R-CH CoM-S-CH 3 R-CH 3 3 Ferredoxin Fd ox regeneration Mcr Mcr Mcr Mcr Fd related red Ignisphaera, methanogenesis CH CH CH Archaeoglobus, 4 4 4 Bathyarchaeota, Altiarchaeales, Euryarchaeota Bathyarchaeota Methanomassiliicoccales, Hadesarchaea, Methanohydrogenales BA1,BA2 Methanomethyliales Loki-, Thorarchaeota Cdh McrMtrRgy Hco B Korarchaeota OP bin 011 OP bin 015 Thaumarchaeota OP bin 010 OP bin 042 JZ bin 32 BA1 Bathyarchaeota BA2 JdFR-11 JdFR-10 JZ bin 37 JZ bin 38 Methanohydrogenales OP bin 008 JZ bin 30 Methanomediales OP bin 054 V4 Verstraete- V5 archaeota V3 Methanomethyliales V1 V2 OP bin 021 OP bin 046 8 YNP, WY Geoarchaeota 10 GBS, NV OP bin 108 Early Marsarchaeota OP bin 107 7 OP bin 061 Marsarchaeota 11 Thermoproteales Desulfurococcales Ignisphaera Crenarchaeota Acidilobales Sulfolobales 0.1 Fig. 1. WLP coupled to methanogenesis in the Methanohydrogenales. (A) Different configurations for the associated or independent functioning of the archaeal version of the WLP and methanogenesis. Missing enzymatic complexes or pathways are shaded in gray. The following are shown: CO2-reducing methanogenesis as present in the Methanohydrogenales as well as class I and class II methanogens without cytochromes (Left); methanogenesis by reduction of methyl compounds using H2 as inferred in Bathyarchaeota BA1, and a potential link with the WLP in the absence of Mtr (Left Center); methanogenesis by reduction of methyl compounds using H2 as present in the Methanomassiliicoccales and Methanomethyliales (Right Center); and carbon fixation using the archaeal WLP in the absence of methanogenesis, and proposal of a mechanism to generate low potential ferredoxin during sulfate reduction in the case of the Archaeoglobales (Right). Fd, ferredoxin. (B, Left) Genome-based phylogeny of the TACK superphylum genomes found in the OP dataset. The tree was inferred using a concatenated
Recommended publications
  • Methanothermus Fervidus Type Strain (V24S)
    UC Davis UC Davis Previously Published Works Title Complete genome sequence of Methanothermus fervidus type strain (V24S). Permalink https://escholarship.org/uc/item/9367m39j Journal Standards in genomic sciences, 3(3) ISSN 1944-3277 Authors Anderson, Iain Djao, Olivier Duplex Ngatchou Misra, Monica et al. Publication Date 2010-11-20 DOI 10.4056/sigs.1283367 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 3:315-324 DOI:10.4056/sigs.1283367 Complete genome sequence of Methanothermus fervidus type strain (V24ST) Iain Anderson1, Olivier Duplex Ngatchou Djao2, Monica Misra1,3, Olga Chertkov1,3, Matt Nolan1, Susan Lucas1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Jan-Fang Cheng1, Roxanne Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Evelyne Brambilla4, Amy Chen5, Krishna Palaniappan5, Miriam Land1,6, Loren Hauser1,6, Yun-Juan Chang1,6, Cynthia D. Jeffries1,6, Johannes Sikorski4, Stefan Spring4, Manfred Rohde2, Konrad Eichinger7, Harald Huber7, Reinhard Wirth7, Markus Göker4, John C. Detter1, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz5, Philip Hugenholtz1, Hans-Peter Klenk4, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 6 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 7 University of Regensburg, Archaeenzentrum, Regensburg, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C.
    [Show full text]
  • Diversity of Understudied Archaeal and Bacterial Populations of Yellowstone National Park: from Genes to Genomes Daniel Colman
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 7-1-2015 Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes Daniel Colman Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Colman, Daniel. "Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes." (2015). https://digitalrepository.unm.edu/biol_etds/18 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Daniel Robert Colman Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Cristina Takacs-Vesbach , Chairperson Robert Sinsabaugh Laura Crossey Diana Northup i Diversity of understudied archaeal and bacterial populations from Yellowstone National Park: from genes to genomes by Daniel Robert Colman B.S. Biology, University of New Mexico, 2009 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2015 ii DEDICATION I would like to dedicate this dissertation to my late grandfather, Kenneth Leo Colman, associate professor of Animal Science in the Wool laboratory at Montana State University, who even very near the end of his earthly tenure, thought it pertinent to quiz my knowledge of oxidized nitrogen compounds. He was a man of great curiosity about the natural world, and to whom I owe an acknowledgement for his legacy of intellectual (and actual) wanderlust.
    [Show full text]
  • Marsarchaeota Are an Aerobic Archaeal Lineage Abundant in Geothermal Iron Oxide Microbial Mats
    Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats Authors: Zackary J. Jay, Jacob P. Beam, Mansur Dlakic, Douglas B. Rusch, Mark A. Kozubal, and William P. Inskeep This is a postprint of an article that originally appeared in Nature Microbiology on May 14, 2018. The final version can be found at https://dx.doi.org/10.1038/s41564-018-0163-1. Jay, Zackary J. , Jacob P. Beam, Mensur Dlakic, Douglas B. Rusch, Mark A. Kozubal, and William P. Inskeep. "Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats." Nature Microbiology 3, no. 6 (May 2018): 732-740. DOI: 10.1038/ s41564-018-0163-1. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats Zackary J. Jay1,4,7, Jacob P. Beam1,5,7, Mensur Dlakić2, Douglas B. Rusch3, Mark A. Kozubal1,6 and William P. Inskeep 1* The discovery of archaeal lineages is critical to our understanding of the universal tree of life and evolutionary history of the Earth. Geochemically diverse thermal environments in Yellowstone National Park provide unprecedented opportunities for studying archaea in habitats that may represent analogues of early Earth. Here, we report the discovery and character- ization of a phylum-level archaeal lineage proposed and herein referred to as the ‘Marsarchaeota’, after the red planet. The Marsarchaeota contains at least two major subgroups prevalent in acidic, microaerobic geothermal Fe(III) oxide microbial mats across a temperature range from ~50–80 °C. Metagenomics, single-cell sequencing, enrichment culturing and in situ transcrip- tional analyses reveal their biogeochemical role as facultative aerobic chemoorganotrophs that may also mediate the reduction of Fe(III).
    [Show full text]
  • Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline
    Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline • Phlogenetics of Archaea • Phlogenetics of archaeal lipids • Papers Phyla • Two? main phyla – Euryarchaeota • Methanogens • Extreme halophiles • Extreme thermophiles • Sulfate-reducing – Crenarchaeota • Extreme thermophiles – Korarchaeota? • Hyperthermophiles • indicated only by environmental DNA sequences – Nanoarchaeum? • N. equitans a fast evolving euryarchaeal lineage, not novel, early diverging archaeal phylum – Ancient archael group? • In deepest brances of Crenarchaea? Euryarchaea? Archaeal Lipids • Methanogens – Di- and tetra-ethers of glycerol and isoprenoid alcohols – Core mostly archaeol or caldarchaeol – Core sometimes sn-2- or Images removed due to sn-3-hydroxyarchaeol or copyright considerations. macrocyclic archaeol –PMI • Halophiles – Similar to methanogens – Exclusively synthesize bacterioruberin • Marine Crenarchaea Depositional Archaeal Lipids Biological Origin Environment Crocetane methanotrophs? methane seeps? methanogens, PMI (2,6,10,15,19-pentamethylicosane) methanotrophs hypersaline, anoxic Squalane hypersaline? C31-C40 head-to-head isoprenoids Smit & Mushegian • “Lost” enzymes of MVA pathway must exist – Phosphomevalonate kinase (PMK) – Diphosphomevalonate decarboxylase – Isopentenyl diphosphate isomerase (IPPI) Kaneda et al. 2001 Rohdich et al. 2001 Boucher et al. • Isoprenoid biosynthesis of archaea evolved through a combination of processes – Co-option of ancestral enzymes – Modification of enzymatic specificity – Orthologous and non-orthologous gene
    [Show full text]
  • Tivities of the Thermococcales Alhr2 DNA/RNA Helicase
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 March 2021 doi:10.20944/preprints202103.0477.v1 Article Phylogenetic diversity of Lhr proteins and biochemical ac- tivities of the Thermococcales aLhr2 DNA/RNA helicase Mirna Hajj1,2†, Petra Langendijk-Genevaux1†, Manon Batista1, Yves Quentin1, Sébastien Laurent3, Ziad Abdel Raz- zak2, Didier Flament3, Hala Chamieh2, Gwennaele Fichant1*, Béatrice Clouet-d’Orval1* and Marie Bouvier1 1 Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse and France 2 Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its application, Leba- nese University, Tripoli, Lebanon 3 Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, Ifremer, Université de Bretagne Oc- cidentale, CNRS, F-29280 Plouzané, France † Co-first authors * Correspondence: Corresponding authors Abstract Helicase proteins are known use the energy of ATP to unwind nucleic acids and to re- model protein-nucleic acid complexes. They are involved in almost every aspect of the DNA and RNA metabolisms and participate in numerous repair mechanisms that maintain cellular integrity. The archaeal Lhr-type proteins are SF2 helicases that are mostly uncharacterized. They have been proposed to be DNA helicases that act in DNA recombination and repair processes in Sulfolobales and Methanothermobacter. In Thermococcales, a protein annotated as an Lhr2 protein was found in the network of proteins involved in RNA metabolism. To this respect, we performed in-depth phylogenomic analyses to report the classification and taxonomic distribution of Lhr-type proteins in Archaea, and to better understand their relationship with bacterial Lhr.
    [Show full text]
  • Histone Variants in Archaea and the Evolution of Combinatorial Chromatin Complexity
    Histone variants in archaea and the evolution of combinatorial chromatin complexity Kathryn M. Stevensa,b, Jacob B. Swadlinga,b, Antoine Hochera,b, Corinna Bangc,d, Simonetta Gribaldoe, Ruth A. Schmitzc, and Tobias Warneckea,b,1 aMolecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom; bInstitute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom; cInstitute for General Microbiology, University of Kiel, 24118 Kiel, Germany; dInstitute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany; and eDepartment of Microbiology, Unit “Evolutionary Biology of the Microbial Cell,” Institut Pasteur, 75015 Paris, France Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved October 28, 2020 (received for review April 14, 2020) Nucleosomes in eukaryotes act as platforms for the dynamic inte- additional histone dimers can be taggedontothistetramertoyield gration of epigenetic information. Posttranslational modifications oligomers of increasing length that wrap correspondingly more DNA are reversibly added or removed and core histones exchanged for (3, 6–9). Almost all archaeal histones lack tails and PTMs have yet to paralogous variants, in concert with changing demands on tran- be reported. Many archaea do, however, encode multiple histone scription and genome accessibility. Histones are also common in paralogs (8, 10) that can flexibly homo- and heterodimerize in
    [Show full text]
  • Geomicrobiological Processes in Extreme Environments: a Review
    202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments.
    [Show full text]
  • Differences in Lateral Gene Transfer in Hypersaline Versus Thermal Environments Matthew E Rhodes1*, John R Spear2, Aharon Oren3 and Christopher H House1
    Rhodes et al. BMC Evolutionary Biology 2011, 11:199 http://www.biomedcentral.com/1471-2148/11/199 RESEARCH ARTICLE Open Access Differences in lateral gene transfer in hypersaline versus thermal environments Matthew E Rhodes1*, John R Spear2, Aharon Oren3 and Christopher H House1 Abstract Background: The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these “long distance” LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results: We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions: Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA.
    [Show full text]
  • Dominio Archaea
    FILOGENIA DE LOS SERES VIVOS: DOMINIO ARCHAEA Nuria Garzón Pinto Facultad de Farmacia Universidad de Sevilla Septiembre de 2017 FILOGENIA DE LOS SERES VIVOS: DOMINIO ARCHAEA TRABAJO FIN DE GRADO Nuria Garzón Pinto Tutores: Antonio Ventosa Ucero y Cristina Sánchez-Porro Álvarez Tipología del trabajo: Revisión bibliográfica Grado en Farmacia. Facultad de Farmacia Departamento de Microbiología y Parasitología (Área de Microbiología) Universidad de Sevilla Sevilla, septiembre de 2017 RESUMEN A lo largo de la historia, la clasificación de los seres vivos ha ido variando en función de las diversas aportaciones científicas que se iban proponiendo, y la historia evolutiva de los organismos ha sido durante mucho tiempo algo que no se lograba conocer con claridad. Actualmente, gracias sobre todo a las ideas aportadas por Carl Woese y colaboradores, se sabe que los seres vivos se clasifican en 3 dominios (Bacteria, Eukarya y Archaea) y se conocen las herramientas que nos permiten realizar estudios filogenéticos, es decir, estudiar el origen de las especies. La herramienta principal, y en base a la cual se ha realizado la clasificación actual es el ARNr 16S. Sin embargo, hoy día sedispone de otros métodos que ayudan o complementan los análisis de la evolución de los seres vivos. En este trabajo se analiza cómo surgió el dominio Archaea, se describen las características y aspectos más importantes de las especies este grupo y se compara con el resto de dominios (Bacteria y Eukarya). Las arqueas han despertado un gran interés científico y han sido investigadas sobre todo por su capacidad para adaptarse y desarrollarse en ambientes extremos.
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]
  • Novel Insights Into the Thaumarchaeota in the Deepest Oceans: Their Metabolism and Potential Adaptation Mechanisms
    Zhong et al. Microbiome (2020) 8:78 https://doi.org/10.1186/s40168-020-00849-2 RESEARCH Open Access Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms Haohui Zhong1,2, Laura Lehtovirta-Morley3, Jiwen Liu1,2, Yanfen Zheng1, Heyu Lin1, Delei Song1, Jonathan D. Todd3, Jiwei Tian4 and Xiao-Hua Zhang1,2,5* Abstract Background: Marine Group I (MGI) Thaumarchaeota, which play key roles in the global biogeochemical cycling of nitrogen and carbon (ammonia oxidizers), thrive in the aphotic deep sea with massive populations. Recent studies have revealed that MGI Thaumarchaeota were present in the deepest part of oceans—the hadal zone (depth > 6000 m, consisting almost entirely of trenches), with the predominant phylotype being distinct from that in the “shallower” deep sea. However, little is known about the metabolism and distribution of these ammonia oxidizers in the hadal water. Results: In this study, metagenomic data were obtained from 0–10,500 m deep seawater samples from the Mariana Trench. The distribution patterns of Thaumarchaeota derived from metagenomics and 16S rRNA gene sequencing were in line with that reported in previous studies: abundance of Thaumarchaeota peaked in bathypelagic zone (depth 1000–4000 m) and the predominant clade shifted in the hadal zone. Several metagenome-assembled thaumarchaeotal genomes were recovered, including a near-complete one representing the dominant hadal phylotype of MGI. Using comparative genomics, we predict that unexpected genes involved in bioenergetics, including two distinct ATP synthase genes (predicted to be coupled with H+ and Na+ respectively), and genes horizontally transferred from other extremophiles, such as those encoding putative di-myo-inositol-phosphate (DIP) synthases, might significantly contribute to the success of this hadal clade under the extreme condition.
    [Show full text]
  • Representatives of a Novel Archaeal Phylum Or a Fast-Evolving
    Open Access Research2005BrochieretVolume al. 6, Issue 5, Article R42 Nanoarchaea: representatives of a novel archaeal phylum or a comment fast-evolving euryarchaeal lineage related to Thermococcales? Celine Brochier*, Simonetta Gribaldo†, Yvan Zivanovic‡, Fabrice Confalonieri‡ and Patrick Forterre†‡ Addresses: *EA EGEE (Evolution, Génomique, Environnement) Université Aix-Marseille I, Centre Saint-Charles, 3 Place Victor Hugo, 13331 Marseille, Cedex 3, France. †Unite Biologie Moléculaire du Gène chez les Extremophiles, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex ‡ 15, France. Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Celine Brochier. E-mail: [email protected]. Simonetta Gribaldo. E-mail: [email protected] Published: 14 April 2005 Received: 3 December 2004 Revised: 10 February 2005 Genome Biology 2005, 6:R42 (doi:10.1186/gb-2005-6-5-r42) Accepted: 9 March 2005 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/5/R42 reports © 2005 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Placement<p>Anteins from analysis 25of Nanoarcheumarchaeal of the positiongenomes equitans of suggests Nanoarcheum in the that archaeal N. equitans phylogeny inis likethe lyarchaeal to be the phylogeny representative using aof large a fast-evolving dataset of concatenatedeuryarchaeal ribosomalineage.</p>l pro- deposited research Abstract Background: Cultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis.
    [Show full text]