Marine Ecology Progress Series 555:49
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atlas of the Neuromuscular System in the Trachymedusa Aglantha Digitale: Insights from the Advanced Hydrozoan
Received: 11 September 2019 Revised: 17 November 2019 Accepted: 18 November 2019 DOI: 10.1002/cne.24821 RESEARCH ARTICLE Atlas of the neuromuscular system in the Trachymedusa Aglantha digitale: Insights from the advanced hydrozoan Tigran P. Norekian1,2,3 | Leonid L. Moroz1,4 1Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida Abstract 2Friday Harbor Laboratories, University of Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key refer- Washington, Friday Harbor, Washington ence lineage to understand early origins and evolution of the neural systems. The 3Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of hydromedusa Aglantha digitale is arguably the best electrophysiologically studied jelly- Sciences, Moscow, Russia fish because of its system of giant axons and unique fast swimming/escape behaviors. 4 Department of Neuroscience and McKnight Here, using a combination of scanning electron microscopy and immunohistochemistry Brain Institute, University of Florida, Gainesville, Florida together with phalloidin labeling, we systematically characterize both neural and mus- cular systems in Aglantha, summarizing and expanding further the previous knowledge Correspondence Leonid L. Moroz, The Whitney Laboratory, on the microscopic neuroanatomy of this crucial reference species. We found that the University of Florida, 9505 Ocean Shore Blvd., majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are dif- St. Augustine, FL. Email: [email protected] ferent from those revealed by anti-α-tubulin immunostaining, making these two neuro- nal markers complementary to each other and, therefore, expanding the diversity of Funding information National Science Foundation, Grant/Award neural elements in Aglantha with two distinct neural subsystems. -
Meddelelser120.Pdf (2.493Mb)
MEDDELELSER NR. 120 IAN GJERTZ & BERIT MØRKVED Environmental Studies from Franz Josef Land, with Emphasis on Tikhaia Bay, Hooker Island '-,.J��!c �"'oo..--------' MikhalSkakuj NORSK POLARINSTITUTT OSLO 1992 ISBN 82-7666-043-6 lan Gjertz and Berit Mørkved Printed J uly 1992 Norsk Polarinstitutt Cover picture: Postboks 158 Iceberg of Franz Josef Land N-1330 Oslo Lufthavn (Ian Gjertz) Norway INTRODUCTION The Russian high Arctic archipelago Franz Josef Land has long been closed to foreign scientists. The political changes which occurred in the former Soviet Union in the last part of the 1980s resulted in the opening of this area to foreigners. Director Gennady Matishov of Murmansk Marine Biological Institute deserves much of the credit for this. In 1990 an international cooperation was established between the Murmansk Marine Biological Institute (MMBI); the Arctic Ecology Group of the Institute of Oceanology, Gdansk; and the Norwegian Polar Research Institute, Oslo. The purpose of this cooperation is to develope scientific cooperation in the Arctic thorugh joint expeditions, the establishment of a high Arctic scientific station, and the exchange of scientific information. So far the results of this cooperation are two scientific cruises with the RV "Pomor", a vessel belonging to the MMBI. The cruises have been named Sov Nor-Poll and Sov-Nor-Po12. A third cruise is planned for August-September 1992. In addition the MMBI has undertaken to establish a scientific station at Tikhaia Bay on Hooker Island. This is the site of a former Soviet meteorological base from 1929-1958, and some of the buildings are now being restored by MMBI. -
Egg Production Rates of the Copepod Calanus Marshallae in Relation To
Egg production rates of the copepod Calanus marshallae in relation to seasonal and interannual variations in microplankton biomass and species composition in the coastal upwelling zone off Oregon, USA Peterson, W. T., & Du, X. (2015). Egg production rates of the copepod Calanus marshallae in relation to seasonal and interannual variations in microplankton biomass and species composition in the coastal upwelling zone off Oregon, USA. Progress in Oceanography, 138, 32-44. doi:10.1016/j.pocean.2015.09.007 10.1016/j.pocean.2015.09.007 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Progress in Oceanography 138 (2015) 32–44 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Egg production rates of the copepod Calanus marshallae in relation to seasonal and interannual variations in microplankton biomass and species composition in the coastal upwelling zone off Oregon, USA ⇑ William T. Peterson a, , Xiuning Du b a NOAA-Fisheries, Northwest Fisheries Science Center, Hatfield Marine Science Center, Newport, OR, United States b Cooperative Institute for Marine Resources Studies, Oregon State University, Hatfield Marine Science Center, Newport, OR, United States article info abstract Article history: In this study, we assessed trophic interactions between microplankton and copepods by studying Received 15 May 2015 the functional response of egg production rates (EPR; eggs femaleÀ1 dayÀ1) of the copepod Calanus Received in revised form 1 August 2015 marshallae to variations in microplankton biomass, species composition and community structure. Accepted 17 September 2015 Female C. marshallae and phytoplankton water samples were collected biweekly at an inner-shelf station Available online 5 October 2015 off Newport, Oregon USA for four years, 2011–2014, during which a total of 1213 female C. -
Evolutionary History of Inversions in the Direction of Architecture-Driven
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset. -
A Systematic and Experimental Analysis of Their Genes, Genomes, Mrnas and Proteins; and Perspective to Next Generation Sequencing
Crustaceana 92 (10) 1169-1205 CRUSTACEAN VITELLOGENIN: A SYSTEMATIC AND EXPERIMENTAL ANALYSIS OF THEIR GENES, GENOMES, MRNAS AND PROTEINS; AND PERSPECTIVE TO NEXT GENERATION SEQUENCING BY STEPHANIE JIMENEZ-GUTIERREZ1), CRISTIAN E. CADENA-CABALLERO2), CARLOS BARRIOS-HERNANDEZ3), RAUL PEREZ-GONZALEZ1), FRANCISCO MARTINEZ-PEREZ2,3) and LAURA R. JIMENEZ-GUTIERREZ1,5) 1) Sea Science Faculty, Sinaloa Autonomous University, Mazatlan, Sinaloa, 82000, Mexico 2) Coelomate Genomic Laboratory, Microbiology and Genetics Group, Industrial University of Santander, Bucaramanga, 680007, Colombia 3) Advanced Computing and a Large Scale Group, Industrial University of Santander, Bucaramanga, 680007, Colombia 4) Catedra-CONACYT, National Council for Science and Technology, CDMX, 03940, Mexico ABSTRACT Crustacean vitellogenesis is a process that involves Vitellin, produced via endoproteolysis of its precursor, which is designated as Vitellogenin (Vtg). The Vtg gene, mRNA and protein regulation involve several environmental factors and physiological processes, including gonadal maturation and moult stages, among others. Once the Vtg gene, mRNAs and protein are obtained, it is possible to establish the relationship between the elements that participate in their regulation, which could either be species-specific, or tissue-specific. This work is a systematic analysis that compares the similarities and differences of Vtg genes, mRNA and Vtg between the crustacean species reported in databases with respect to that obtained from the transcriptome of Callinectes arcuatus, C. toxotes, Penaeus stylirostris and P. vannamei obtained with MiSeq sequencing technology from Illumina. Those analyses confirm that the Vtg obtained from selected species will serve to understand the process of vitellogenesis in crustaceans that is important for fisheries and aquaculture. RESUMEN La vitelogénesis de los crustáceos es un proceso que involucra la vitelina, producida a través de la endoproteólisis de su precursor llamado Vitelogenina (Vtg). -
How Including Ecological Realism Impacts the Assessment of the Environmental Effect of Oil Spills at the Population Level: the A
How including ecological realism impacts the assessment of the environmental effect of oil spills at the population level: The application of matrix models for Arctic Calanus species de Vries, P., Tamis, J., Hjorth, M., Jak, R., Falk-Petersen, S., van den Heuvel- Greve, M., ... Hemerik, L. This is a "Post-Print" accepted manuscript, which has been published in "Marine Environmental Research" This version is distributed under a non-commercial no derivatives Creative Commons (CC-BY-NC-ND) user license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and not used for commercial purposes. Further, the restriction applies that if you remix, transform, or build upon the material, you may not distribute the modified material. Please cite this publication as follows: de Vries, P., Tamis, J., Hjorth, M., Jak, R., Falk-Petersen, S., van den Heuvel-Greve, M., ... Hemerik, L. (2018). How including ecological realism impacts the assessment of the environmental effect of oil spills at the population level: The application of matrix models for Arctic Calanus species. Marine Environmental Research, 141, 264- 274. DOI: 10.1016/j.marenvres.2018.09.008 You can download the published version at: https://doi.org/10.1016/j.marenvres.2018.09.008 Accepted Manuscript How including ecological realism impacts the assessment of the environmental effect of oil spills at the population level: The application of matrix models for Arctic Calanus species Pepijn de Vries, Jacqueline Tamis, Morten Hjorth, Robbert -
Hidden Food in the Coldest of Times the NUTRIENT ROLE of SEA ICE Copepods, Tiny Lipid-Rich Obtaining Sufficient Food Under Fig
UNDERSTANDING ECOSYSTEM PROCESSES IN THE BERING SEA 2007–2013 Hidden Food in the Coldest of Times THE NUTRIENT ROLE OF SEA ICE Copepods, tiny lipid-rich obtaining sufficient food under Fig. 1 crustaceans in the Bering Sea, the ice to initiate feeding and are a favored meal of larval and reproduction. A second question juvenile Pollock. One copepod is “what is this food source”? One that dominates the zooplankton possibility was the layer of ice on the Bering Sea shelf, and shelf algae—a diverse community of areas around the Arctic Ocean, microscopic plants and animals is Calanus glacialis (Figure 1). that grow under the ice during We know that the abundance of spring (Figure 2)—rather than this species fluctuates between from the more usual phytoplank- years. Surprisingly, colder years, ton community in the water when ice cover is more extensive column beneath. and persists longer during spring, appear to favor growth of the How We Did It copepod population. Why is this? We collected zooplankton We set out to answer this ques- samples to see what the C. glacialis Fig. 2 tion during a cruise in late winter population was doing, whether of 2009 through early spring of the adult females were laying eggs 2010, when ice covered most of or not, and how much food was the Bering Sea shelf. in their guts. We determined the Since reproduction and identity of individual prey spe- growth of this copepod is con- cies in their guts from their DNA trolled by the availability of food, and quantified the amount of this we thought that they must be continued on page 2 The Big Picture The high feeding rates of the copepod Calanus glacialis that we observed during a cruise in late Blocks of sea ice turned winter and early spring of 2009/2010 could not have been sustained by the low levels of phyto- upside down to reveal plankton in the water column. -
Tautuglugu Uvani PDF Mi Makpiraanmi
KANATAUP UKIUQTAQTUNGATA TARIURMIUTANUT NUNANNGUAQ Taanna Nunannguaq kiinaujaqaqtitaujuq ilangani Gordon amma Betty Moore Katujjiqatigiinik. I | Atuqujaujuq takujaujunnarluni: Tariurjualirijikkut Ukiuqtaqtumi Atutsiarnirmut Katujjiqatigiit, Nunarjuarmi Uumajulirijikkut Kiinajangit Kanatami, amma Mitilirijikkut Kanatami. (2018). Kanataup Ukiuqtaqtungata Tariurmiutanut Nunannguaq. Aatuvaa, Antiariu: Tariurjualirijikkut Ukiuqtaqtumi Atutsiarnirmut Katujjiqatigiit. Qaangata ajjinnguanga: Siarnaulluni Nunannguaq Kanataup Ukiuqtaqtungani taassuma Jeremy Davies Iluaniittuq: Nalunaijaqsimattiaqtuq Kanataup Ukiuqtaqtungani Tamanna piliriangujuq laisansiqaqtuq taakuatigut Creative Commons Attribution-NonCommercial 4.0 Nunarjuarmi Laisansi. Taasumaa laisansimi takugumaguvit, uvungarluti http://creativecommons.org/licenses/by-nc/4.0 uvvaluunniit uvunga titirarlutit Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Ajjinngualimaat © ajjiliurijinut Naasautinga (ISBN): 978-1-7752749-0-2 (paippaamut saqqititat) Naasautinga (ISBN): 978-1-7752749-1-9 (qarasaujatigut saqqititat) Uqalimaagaqarvik amma Tuqquqtausimavik Kanatami AJJIGIINNGITTUT Paippaat kamattiaqtuninngaaqsimajut Paippaarmuuqtajut Kanatami, Vivvuali 2018 100% Pauqititsijunnanngittuq Saqqititaq taassuma Hemlock Saqqititsijikkunnu © 1986 Paannti nalunaikkutaq WWF-Nunarjualimaami Kinaujaqarvik Uumajunut (qaujimajaungmijuq Nunarjualimaamit Uumajunut Kinaujaqarvik). ® “WWF” taanaujuq WWF Atiliuqatausimajuq Ilisarijaulluni. Tunuaniittuq Ajjinnguanga: Imarmiutait piruqtut attatiqanngittut -
Bioluminescence As an Ecological Factor During High Arctic Polar Night Heather A
www.nature.com/scientificreports OPEN Bioluminescence as an ecological factor during high Arctic polar night Heather A. Cronin1, Jonathan H. Cohen1, Jørgen Berge2,3, Geir Johnsen3,4 & Mark A. Moline1 Bioluminescence commonly infuences pelagic trophic interactions at mesopelagic depths. Here receie: 01 pri 016 we characterize a vertical gradient in structure of a generally low species diversity bioluminescent ccepte: 14 Octoer 016 community at shallower epipelagic depths during the polar night period in a high Arctic ford with in Puise: 0 oemer 016 situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20–40 m where a dinofagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to infuence pelagic ecology during the light-limited polar night. Light and vision play a large role in interactions among organisms in both the epipelagic (0–200 m) and mesope- lagic (200–1000 m) realms1,2. Eye structure and function in these habitats is commonly adapted for photon capture in the underwater light feld, with increasing specialization in the mesopelagic3. To avoid visual detection, species in epi- and mesopelagic habitats employ cryptic strategies such as transparency4 and counter-illumination5,6, along with diel vertical migration7,8, to remain hidden from potential predators. -
Canada's Arctic Marine Atlas
CANADA’S ARCTIC MARINE ATLAS This Atlas is funded in part by the Gordon and Betty Moore Foundation. I | Suggested Citation: Oceans North Conservation Society, World Wildlife Fund Canada, and Ducks Unlimited Canada. (2018). Canada’s Arctic Marine Atlas. Ottawa, Ontario: Oceans North Conservation Society. Cover image: Shaded Relief Map of Canada’s Arctic by Jeremy Davies Inside cover: Topographic relief of the Canadian Arctic This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0 or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. All photographs © by the photographers ISBN: 978-1-7752749-0-2 (print version) ISBN: 978-1-7752749-1-9 (digital version) Library and Archives Canada Printed in Canada, February 2018 100% Carbon Neutral Print by Hemlock Printers © 1986 Panda symbol WWF-World Wide Fund For Nature (also known as World Wildlife Fund). ® “WWF” is a WWF Registered Trademark. Background Image: Phytoplankton— The foundation of the oceanic food chain. (photo: NOAA MESA Project) BOTTOM OF THE FOOD WEB The diatom, Nitzschia frigida, is a common type of phytoplankton that lives in Arctic sea ice. PHYTOPLANKTON Natural history BOTTOM OF THE Introduction Cultural significance Marine phytoplankton are single-celled organisms that grow and develop in the upper water column of oceans and in polar FOOD WEB The species that make up the base of the marine food Seasonal blooms of phytoplankton serve to con- sea ice. Phytoplankton are responsible for primary productivity—using the energy of the sun and transforming it via pho- web and those that create important seafloor habitat centrate birds, fishes, and marine mammals in key areas, tosynthesis. -
Pelagic Deep-Sea Fauna Observed on Video Transects in The
Polar Biology (2021) 44:887–898 https://doi.org/10.1007/s00300-021-02840-5 ORIGINAL PAPER Pelagic deep‑sea fauna observed on video transects in the southern Norwegian Sea Philipp Neitzel1 · Aino Hosia2 · Uwe Piatkowski1 · Henk‑Jan Hoving1 Received: 15 June 2020 / Revised: 24 February 2021 / Accepted: 2 March 2021 / Published online: 22 March 2021 © The Author(s) 2021 Abstract Observations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlan- tic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusa Aglantha digitale and appendicularians were the three most abundant taxa. The high numbers of fshes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores, Beroe spp., Euplokamis sp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the frst record for the Norwegian Sea. Keywords Norwegian Sea · Zooplankton · Micronekton · Macroplankton · In situ observations · Vertical migration · Aglantha Introduction 2006). -
A Case Study with the Monospecific Genus Aegina
MARINE BIOLOGY RESEARCH, 2017 https://doi.org/10.1080/17451000.2016.1268261 ORIGINAL ARTICLE The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae) Dhugal John Lindsaya,b, Mary Matilda Grossmannc, Bastian Bentlaged,e, Allen Gilbert Collinsd, Ryo Minemizuf, Russell Ross Hopcroftg, Hiroshi Miyakeb, Mitsuko Hidaka-Umetsua,b and Jun Nishikawah aEnvironmental Impact Assessment Research Group, Research and Development Center for Submarine Resources, Japan Agency for Marine- Earth Science and Technology (JAMSTEC), Yokosuka, Japan; bLaboratory of Aquatic Ecology, School of Marine Bioscience, Kitasato University, Sagamihara, Japan; cMarine Biophysics Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan; dDepartment of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; eMarine Laboratory, University of Guam, Mangilao, USA; fRyo Minemizu Photo Office, Shimizu, Japan; gInstitute of Marine Science, University of Alaska Fairbanks, Alaska, USA; hDepartment of Marine Biology, Tokai University, Shizuoka, Japan ABSTRACT ARTICLE HISTORY Online biogeographic databases are increasingly being used as data sources for scientific papers Received 23 May 2016 and reports, for example, to characterize global patterns and predictors of marine biodiversity and Accepted 28 November 2016 to identify areas of ecological significance in the open oceans and deep seas. However, the utility RESPONSIBLE EDITOR of such databases is entirely dependent on the quality of the data they contain. We present a case Stefania Puce study that evaluated online biogeographic information available for a hydrozoan narcomedusan jellyfish, Aegina citrea. This medusa is considered one of the easiest to identify because it is one of KEYWORDS very few species with only four large tentacles protruding from midway up the exumbrella and it Biogeography databases; is the only recognized species in its genus.