2016 Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Long-Term Memory Vs. Short-Term Memory
Long-term Memory vs. Short-term Memory Chapter 6 Learning Objective Topics ¢ Divisions of LTM ¢ Are LTM and STM two separate processes? ¢ How do we get information from STM into LTM? l Modal Model l Levels of Processing 1 Division of LTM Working Memory Autobiographical Prospective Other types: source memory, false memory, meta-memory, memory for discourse, memory for pictures, everyday memory, recent vs. remote LTM … 2 Modal Model Decay Focus of Today’s Class… Decay 3 Focus of Today’s Class… Decay Questions for Today Are short term and long term memory are two distinct processes?" " " How do we get information from short term memory into long term memory?" " 4 Nature of Short-Term Memory vs. Long-Term Try to remember these words as I read them aloud Nature of Short-Term Memory vs. Long-Term Now write down all the words that you remember from the list We will tally responses for each word (excel sheet) 5 Two distinct memory stores? ¢! Why does this happen?" ¢! What were you doing to remember them?" ¢! How does this relate to short and long term memory?" Evidence for two distinct memory stores Serial position effect in recall Primacy effect = LTM Recency effect = STM 6 Primacy Effect: Rehearsal" ¢! What do you think would happen if you slowed down the presentation rate?" 7 Evidence for two distinct memory stores Primacy effect boosted by slower Recency effect presentation unaffected by rate presentation rate ¢! What do you think would happen if we added a 30 second delay after I read the list?" 8 Evidence for two distinct memory stores -
Vision Science Meets Visualization
Vision Science Meets Visualization Organizers: Christine Nothelfer Zoya Bylinskii Madison Elliott Cindy Xiong Danielle Albers Szafir Northwestern Massachusetts Institute University of British Northwestern University of Colorado University of Technology Columbia University Boulder Panelists: Ronald Rensink Todd Horowitz Steven Franconeri Karen Schloss Ruth Rosenholtz University of British National Cancer Northwestern University of Massachusetts Institute Columbia Institute University Wisconsin-Madison of Technology presenters each year. Recent developments in these research ABSTRACT topics (e.g., in visual attention, scene understanding, and quantity Vision science can explain what people see when looking at a perception) can inform our understanding of how people interpret visualization--what data features people attend to, what statistics visualized information. However, historically, few VIS they ascertain, and what they ultimately remember. These findings researchers have attended VSS, and few vision scientists have have significant relevance to visualization and can guide effective attended IEEE VIS. This limited overlap has stifled the exchange techniques and design practices. Intersections between of information, ideas, and questions between the two visualization and vision science have traditionally built upon communities. topics such as visual search, color perception, and pop-out. However, there is a broader space of vision science concepts that Further, while crossover between vision science and visualization could inform and explain ideas in visualization but no dedicated is not without precedent (e.g., work by Cleveland & McGill [2] venue for collaborative exchanges between the two communities. and Healey & Enns [8]), these interactions can benefit from This panel provides a space for this exchange by bringing five exposure to a broader set of vision science topics, such as object vision science experts to IEEE VIS to survey the modern vision tracking, ensemble statistics, and visual crowding. -
1 Human Color Vision
CAMC01 9/30/04 3:13 PM Page 1 1 Human Color Vision Color appearance models aim to extend basic colorimetry to the level of speci- fying the perceived color of stimuli in a wide variety of viewing conditions. To fully appreciate the formulation, implementation, and application of color appearance models, several fundamental topics in color science must first be understood. These are the topics of the first few chapters of this book. Since color appearance represents several of the dimensions of our visual experience, any system designed to predict correlates to these experiences must be based, to some degree, on the form and function of the human visual system. All of the color appearance models described in this book are derived with human visual function in mind. It becomes much simpler to understand the formulations of the various models if the basic anatomy, physiology, and performance of the visual system is understood. Thus, this book begins with a treatment of the human visual system. As necessitated by the limited scope available in a single chapter, this treatment of the visual system is an overview of the topics most important for an appreciation of color appearance modeling. The field of vision science is immense and fascinating. Readers are encouraged to explore the liter- ature and the many useful texts on human vision in order to gain further insight and details. Of particular note are the review paper on the mechan- isms of color vision by Lennie and D’Zmura (1988), the text on human color vision by Kaiser and Boynton (1996), the more general text on the founda- tions of vision by Wandell (1995), the comprehensive treatment by Palmer (1999), and edited collections on color vision by Backhaus et al. -
Chapter 8: Memory SW
Chapter 8: Memory SW By: Stephen E. Wisecarver Chapter 8: Memory SW By: Stephen E. Wisecarver Online: < http://cnx.org/content/col11816/1.1/ > OpenStax-CNX This selection and arrangement of content as a collection is copyrighted by Stephen E. Wisecarver. It is licensed under the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). Collection structure revised: June 8, 2015 PDF generated: June 9, 2015 For copyright and attribution information for the modules contained in this collection, see p. 37. Table of Contents 1 8.0 Introduction to Memory .....................................................................1 2 8.1 How Memory Functions ......................................................................5 3 8.2 Parts of the Brain Involved with Memory .................................................13 4 8.3 Problems with Memory .....................................................................19 5 8.4 Ways to Enhance Memory ..................................................................27 Glossary .............................................................................................32 Index ................................................................................................35 Attributions .........................................................................................37 iv Available for free at Connexions <http://cnx.org/content/col11816/1.1> Chapter 1 8.0 Introduction to Memory1 Figure 1.1: Photographs can trigger our memories and bring past experiences back to -
Pnas11052ackreviewers 5098..5136
Acknowledgment of Reviewers, 2013 The PNAS editors would like to thank all the individuals who dedicated their considerable time and expertise to the journal by serving as reviewers in 2013. Their generous contribution is deeply appreciated. A Harald Ade Takaaki Akaike Heather Allen Ariel Amir Scott Aaronson Karen Adelman Katerina Akassoglou Icarus Allen Ido Amit Stuart Aaronson Zach Adelman Arne Akbar John Allen Angelika Amon Adam Abate Pia Adelroth Erol Akcay Karen Allen Hubert Amrein Abul Abbas David Adelson Mark Akeson Lisa Allen Serge Amselem Tarek Abbas Alan Aderem Anna Akhmanova Nicola Allen Derk Amsen Jonathan Abbatt Neil Adger Shizuo Akira Paul Allen Esther Amstad Shahal Abbo Noam Adir Ramesh Akkina Philip Allen I. Jonathan Amster Patrick Abbot Jess Adkins Klaus Aktories Toby Allen Ronald Amundson Albert Abbott Elizabeth Adkins-Regan Muhammad Alam James Allison Katrin Amunts Geoff Abbott Roee Admon Eric Alani Mead Allison Myron Amusia Larry Abbott Walter Adriani Pietro Alano Isabel Allona Gynheung An Nicholas Abbott Ruedi Aebersold Cedric Alaux Robin Allshire Zhiqiang An Rasha Abdel Rahman Ueli Aebi Maher Alayyoubi Abigail Allwood Ranjit Anand Zalfa Abdel-Malek Martin Aeschlimann Richard Alba Julian Allwood Beau Ances Minori Abe Ruslan Afasizhev Salim Al-Babili Eric Alm David Andelman Kathryn Abel Markus Affolter Salvatore Albani Benjamin Alman John Anderies Asa Abeliovich Dritan Agalliu Silas Alben Steven Almo Gregor Anderluh John Aber David Agard Mark Alber Douglas Almond Bogi Andersen Geoff Abers Aneel Aggarwal Reka Albert Genevieve Almouzni George Andersen Rohan Abeyaratne Anurag Agrawal R. Craig Albertson Noga Alon Gregers Andersen Susan Abmayr Arun Agrawal Roy Alcalay Uri Alon Ken Andersen Ehab Abouheif Paul Agris Antonio Alcami Claudio Alonso Olaf Andersen Soman Abraham H. -
Annual Report
Annual Report 2002/2003 The academic year 2002/2003 was marked by continued excellence in research, teaching and outreach, in service of humanity’s intellectual, social and technological needs. Provost & President’s Outreach Statement In accordance with its UCL is committed to founding principles, UCL using its excellence in continued to share the research and teaching highest quality research to enrich society’s and teaching with those intellectual, cultural, who could most benefit scientific, economic, from it, regardless of environmental and their background or medical spheres. circumstances. See page 2 See page 8 Research & Teaching Achievements UCL continued to UCL’s academics challenge the boundaries conducted pioneering of knowledge through its work at the forefront programmes of research, of their disciplines while ensuring that the during this year. most promising students See page 12 could benefit from its intense research-led teaching environment. See page 4 The UCL Community Financial Information UCL’s staff, students, UCL’s annual income has alumni and members of grown by almost 30% in Council form a community the last five years. The which works closely largest component of this together to achieve income remains research the university’s goals. grants and contracts. See page 18 See page 24 Supporting UCL Contacting UCL UCL pays tribute to Join the many current those individuals and and former students and organisations who staff, friends, businesses, have made substantial funding councils and financial contributions agencies, governments, in support of its research foundations, trusts and and teaching. charities that are See page 22 involved with UCL. See page 25 Developing UCL With the help of its supporters, UCL is investing in facilities fit for the finest research and teaching in decades to come. -
Abstracts (PDF)
Abstracts of the Psychonomic Society — Volume 4 — November 1999 40th Annual Meeting — November 18–21, 1999 — Los Angeles, California Posters 1–6 Thursday Evening Papers and Posters Presented at the 40th Annual Meeting of the Psychonomic Society Century Plaza Hotel, Los Angeles, California November 18–21, 1999 POSTER SESSION I other animal forms (e.g., birds, cats, horses). We will also report vari- California Showroom, Thursday Evening, 7:00–8:30 ations across these displays in the orientation specificity of sensitiv- ity, discussing possible implications for accounts of biological mo- •PERCEPTION • tion perception. (1) (4) Deficits of Complex Form Perception and Attention in a Patient Representing the “What” and the “Where” of Undetected With Partial Achromatopsia. RACHEL E. SHOUP, University of Change. IAN M. THORNTON, Nissan Cambridge Basic Research, California, Davis, & JAMIE A. MAZER & JACK L. GALLANT, & DIEGO FERNANDEZ-DUQUE, University of Oregon—Studies of University of California, Berkeley—Physiological studies in non- change blindness demonstrate that we are seldom aware of everything human primates suggest that cortical area V4 is important for the per- that is before our eyes. However, these studies may be telling us more ception of both color and form. Cells in V4 are also modulated by at- about the limits of visual awareness than about the limits of visual rep- tention. Because humans with V4 lesions typically exhibit severe resentation. Specifically, we have suggested that the explicit reports achromatopsia, most studies of these patients have focused on color used for most change blindness tasks underestimate the visual system’s vision. We assessed form vision and attention in a patient, A.R., with ability to represent change. -
Color Vision and Night Vision Chapter Dingcai Cao 10
Retinal Diagnostics Section 2 For additional online content visit http://www.expertconsult.com Color Vision and Night Vision Chapter Dingcai Cao 10 OVERVIEW ROD AND CONE FUNCTIONS Day vision and night vision are two separate modes of visual Differences in the anatomy and physiology (see Chapters 4, perception and the visual system shifts from one mode to the Autofluorescence imaging, and 9, Diagnostic ophthalmic ultra- other based on ambient light levels. Each mode is primarily sound) of the rod and cone systems underlie different visual mediated by one of two photoreceptor classes in the retina, i.e., functions and modes of visual perception. The rod photorecep- cones and rods. In day vision, visual perception is primarily tors are responsible for our exquisite sensitivity to light, operat- cone-mediated and perceptions are chromatic. In other words, ing over a 108 (100 millionfold) range of illumination from near color vision is present in the light levels of daytime. In night total darkness to daylight. Cones operate over a 1011 range of vision, visual perception is rod-mediated and perceptions are illumination, from moonlit night light levels to light levels that principally achromatic. Under dim illuminations, there is no are so high they bleach virtually all photopigments in the cones. obvious color vision and visual perceptions are graded varia- Together the rods and cones function over a 1014 range of illu- tions of light and dark. Historically, color vision has been studied mination. Depending on the relative activity of rods and cones, as the salient feature of day vision and there has been emphasis a light level can be characterized as photopic (cones alone on analysis of cone activities in color vision. -
Dr. MASAUD ANSARI REMEMBRING and FORGETTING: MEMORY (Lecture Series-1)
REMEMBRING AND FORGETTING: MEMORY (Lecture Series-1) B.A. Ist (Subsidiary) (Fundamental/General Psychology) BY Dr. MASAUD ANSARI Department of Psychology, A.P.S.M. College, Barauni L. N. M. University, Darbhanga 19th M A Y 2 0 2 0 Memory Memory is learning that has persisted over time, information that has been stored and can be retrieved. To a psychologist, evidence that learning persists takes three forms: ▪ Recall—retrieving information that is not currently in your conscious awareness but that was learned at an earlier time. A fill-in-the-blank question tests your recall. ▪ Recognition—identifying items previously learned. A multiple-choice question tests your recognition. ▪ Relearning—learning something more quickly when you learn it a second or later time. When you study for a final exam or engage a language used in early childhood, you will relearn the material more easily than you did initially. Be thankful for memory. We take it for granted, except when it malfunctions. But it is our memory that accounts for time and defines our life. It is our memory that enables us to recognize family, speak our language, find our way home, and locate food and water. It is our memory that enables us to enjoy an experience and then mentally replay and enjoy it again. Our shared memories help bind us together as Irish or Aussies, as Serbs or Albanians. And it is our memory that occasionally pits us against those whose offenses we cannot forget. Conti… At the other extreme are people who would be gold medal winners in a memory Olympics. -
Vision Science and Adaptive Optics, the State of the Field
Vision Research 132 (2017) 3–33 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Vision science and adaptive optics, the state of the field ⇑ Susana Marcos a, John S. Werner b, Stephen A. Burns c, , William H. Merigan d, Pablo Artal e, David A. Atchison f, Karen M. Hampson g, Richard Legras h, Linda Lundstrom i, Geungyoung Yoon d, Joseph Carroll j, Stacey S. Choi k, Nathan Doble k, Adam M. Dubis l, Alfredo Dubra m, Ann Elsner c, Ravi Jonnal b, Donald T. Miller c, Michel Paques n, Hannah E. Smithson o, Laura K. Young o, Yuhua Zhang p, Melanie Campbell q, Jennifer Hunter d, Andrew Metha r, Grazyna Palczewska s, Jesse Schallek d, Lawrence C. Sincich p a Instituto de Optica, CSIC, Madrid, Spain b University of California, Davis, USA c Indiana University, Bloomington, USA d University of Rochester, New York, USA e Universidad de Murcia, Spain f Queensland University of Technology, Australia g University of Bradford University, UK h Université de Paris Sud, France i KTH (Royal Institute of Technology), Stockholm, Sweden j Medical College of Wisconsin, Milwaukee, USA k The Ohio State University, Columbus, OH, USA l University College London, London, UK m Stanford University, Palo Alto, CA, USA n Pierre et Marie Curie University, Paris o University of Oxford, UK p University of Alabama at Birmingham, Birmingham, USA q University of Waterloo, Canada r University of Melbourne, Australia s Polgenix, Inc., Cleveland, OH, USA article info abstract Article history: Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked Received 20 September 2016 about how the visual system is organized. -
Shiffrin, R. M., & Schneider, W
Psychological Review Copyright 1984 by the 1984, Vol. 91, No. 2, 269-276 American Psychological Association, Inc. Theoretical Note Automatic and Controlled Processing Revisited Richard M. Shiffrin Walter Schneider Indiana University University of Illinois The theory of automatic and controlled processing outlined in Schneider and Shiffrin (1977) and in Shiffrin and Schneider (1977) is defended in the present note. We argue that the criticisms of Ryan (1983) range from irrelevant to incorrect, based on a brief review of data from the 1977 articles and on some more recent publications. The evidence Ryan discusses comes from the prememorized-list paradigm, a par- adigm that undoubtedly involves automatic and controlled processes but probably not automatic detection and controlled search. We argue that a variety of mechanisms consistent with our general theory, some automatic and some controlled, could be operating in the prememorized-list paradigm and can explain the observed results. A theory of automatic and controlled processing effortless process that is not limited by short-term was outlined and given empirical support in the memory capacity, is not under direct subject control, articles of Schneider and Shiffrin (1977) and Shiffrin and performs well-developed skilled behaviors. It and Schneider (1977). The characteristics of both typically develops when subjects process stimuli in types of processes were established through ex- consistent fashion over many trials; it is difficult to amination of particular examples of each of these suppress, modify, or ignore, once learned. Con- classes of processes. These examples, of critical im- trolled processing is often slow, generally serial, ef- portance in many search and attention tasks, were fortful, capacity limited, subject regulated, and is termed automatic detection and controlled search, used to deal with novel or inconsistent information. -
Visual Psychophysics Has Been Around Even Longer Than the Word Psychophysics
City Research Online City, University of London Institutional Repository Citation: Solomon, J. A. (2013). Visual Psychophysics. In: Dunn, S. (Ed.), Oxford Bibliographies in Psychology. New York: OUP. This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5032/ Link to published version: http://dx.doi.org/10.1093/OBO/9780199828340-0128 Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Visual Psychophysics Joshua A. Solomon 1 Introduction Paradigms for attacking the problem of how vision works continue to develop and mutate, and the boundary between them can be indistinct. Nonetheless, this bibliography represents an attempt to delineate one such paradigm: Visual Psychophysics. Unlike, for example, anatomical paradigms, the psychophysical paradigm requires a complete organism. Most of the studies discussed below involve human beings, but psychophysics can be used to study the vision of other organisms too. At minimum, the organism must be told or taught how to respond to some sort of stimulus.