Anatomy Syllabus a Note on Normal Variants

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy Syllabus a Note on Normal Variants Anatomy Syllabus A Note on Normal Variants Categorisation of Required Skills Understanding and recognizing normal variants is a crucial part of being a radiologist, so as to avoid and Knowledge for Anatomical potentially damaging confusion with serious pathology. Structures This is to be distinguished from congenital anomalies, although sometimes the distinction between these Knowledge of pathologically relevant anatomy needs categories is somewhat blurred. In general however, to be learned in the early stages of training to ensure normal variants are not the cause of significant disease trainees have a baseline of knowledge to undertake the but may mimic significant abnormalities such as fractures, Anatomy exam. tumours, dysplasias etc. As a result it is important for trainees to become very familiar with these variants early Application of anatomical knowledge to disease will be in their training, and consequently, these are examined learned throughout all stages of training. formally in the Part 1 examination. Anatomical tasks of a radiologist that provide the basis Lists of radiologically relevant Normal Variants as they for the categories: pertain to clinical practice and specific body systems are contained in the section on body systems. All Part 1 1. Identification of a structure in projectional modalities examination candidates should specifically refer to this list and in cross sectional modalities. This includes to learn some of the common normal variants, especially identification of the structure’s expected location and those listed in Category 1. relations and size even if not visible. Category 1 • Projectional modalities: radiography, fluoroscopy, angiography (including spin angiography), Critical anatomical structures planar nuclear medicine studies. The multitude of radiography and fluoroscopy specific adaptations Must recognise and interpret, must know and explain. (e.g. OPG, planar arthrography, contrast studies, etc) are all subsumed in this. These structures comprise core basic radiologic anatomy, and a deficiency of anatomical knowledge and skills • Cross sectional modalities: CT, MR, US, SPECT and for these structures will jeopardise a radiology trainee’s PET nuclear medicine studies; includes CT variants ability to perform to a satisfactory level during radiology such as angio-CT. training. 2. Identification of a structure as normal or abnormal. Projectional identification: identifies confidently on all This requires the knowledge of the range of normality and common projectional modalities, also of normal variants, particularly those that simulate recognises normal variants and knows range of normality, disease or are on the borderlands with disease. can identify and point out expected location, shape and size even if not visible, and the adjacent category 1 3. Coherent communication with referrers, colleagues, structures. patients and the entire health care team regarding a particular anatomical structure or structures (normal Cross sectional identification: identifies confidently or abnormal as the case may be) in a language that on all common cross-sectional modalities, in standard is anatomically correct, radiologically relevant, and radiological planes and any dedicated planes (straight meaningful to the intended audience. or curved) commonly used for that structure, recognises normal variants and knows range of normality, can trace This is anatomical competence required at a basic level of structure from plane to plane in an interactive stack; Part 1 exit standard. Knowledge of pathologically relevant can identify and point out expected location, shape anatomy is a competence to be developed during training and size even if not visible, and the adjacent category 1 and to be assessed at the level of Part 2 exam. ANATOMY © 2014 RANZCR. Radiodiagnosis Training Program – Curriculum Version 2.2 Page 81 structures; can point out this expected location and size in functional anatomy. Knows and can concisely describe a interactive scrolling stack. clinically important anatomical variants, particularly those that endanger the structure or those that simulate Knowledge base: can give a structured coherent verbal disease. account (oral or written) of the anatomical structure in language applicable to radiology reporting and to inter- Category 3 specialty communication; this includes all common and important anatomical characteristics of the structure, for Useful radiologic anatomical structures example course, parts, relations, distribution, etc. Knows and can concisely describe normal anatomical variants, Good to recognise, good to know. particularly those that endanger the structure or other structures, and those that simulate disease. Can draw a Anatomical structures in this category must be known to basic diagram (artistic skills not required) to illustrate key category 2 level for satisfactory sub-specialist radiology morphology, internal composition and external relations performance. A radiology trainee at the end of radiology of the structure in a way applicable to radiology image training would not be expected to know these structures analysis and identification. to category 2 level, but is aware of their existence. A radiology trainee at the beginning of radiology training is Category 2 unlikely to know these structures. Important anatomical structures Projectional identification: with increasing training and experience able to identify on all common projectional Must recognise, must know. modalities on which it is visible, and distinguish normal structure from abnormality of either this or other Anatomical structures in this category must be known structures. for competent generalist radiologist performance. For radiology trainees at the beginning of radiology training, Cross sectional identification: with increasing training anatomical knowledge of these structures is needed to and experience able to identify on all common cross- permit the acquisition of skills and knowledge of imaging sectional modalities on which it is visible in key working manifestations of disease. standard planes (transverse and coronal), and distinguish normal structure from abnormality of either this or other Projectional identification: identifies confidently on all structures. common projectional modalities, recognises normal variants, can differentiate normal from abnormal Knowledge base: with increasing training and experience appearance, can describe and point out the nearest aware of the structure’s existence, name, and functional category 1 structures to which it relates when not visible. anatomy. SAME AS FOR CATEGORY 1 STRUCTURES. Cross sectional identification: identifies confidently on all common cross sectional modalities in key working standard planes (transverse and coronal), recognises normal variants, can differentiate normal from abnormal appearance, can describe and point out the nearest category 1 structures to which it relates when not visible. Knowledge base: can give a concise, coherent verbal account (oral or written) of the anatomical structure in language applicable to radiology reporting and to inter- speciality communication; this includes all the clinically important anatomical characteristics of the structure, for example course, area of supply, location of vulnerability, Page 82 © 2014 RANZCR. Radiodiagnosis Training Program – Curriculum Version 2.2 Anatomy of the Head & Face (Excluding CNS) Category 1 Category 2 Category 3 1. INTRACRANIAL CAVITY (EXTRA AXIAL) Anterior Cranial Fossa • Ethmoid bone • Meningeal coverings • Frontal bone & sinus • Crista galli • Sphenoid: Lesser wing • Olfactory bulb and tract Middle Cranial Fossa • Sphenoid body, greater wing • Meningeal coverings & sinus • Temporal bone & apex • Middle meningeal artery • Foramina of middle cranial fossa • Vidian canal & contents • Foramen spinosum ¡ Optic canal • Foramen lacerum ¡ Superior orbital fissure ¡ Foramen rotundum ¡ Foramen ovale ¡ Carotid canal Posterior Cranial Fossa • Temporal bone • Meningeal coverings • Occipital bone • Foramina of posterior cranial fossa • Ganglia of CN IX & X in jugular & contents foramen ¡ Internal auditory meatus with CN VII & VIII ¡ Jugular foramen & contents ¡ Hypoglossal canal & CN XII ¡ Foramen magnum 2. CRANIAL VAULT Bones • Layers of skull • Dural coverings • Bones including prominences, • Arachnoid granulations foramina and key vascular • Sutures markings: ¡ Frontal ¡ Parietal ¡ Sphenoid ¡ Temporal ¡ Occipital ANATOMY © 2014 RANZCR. Radiodiagnosis Training Program – Curriculum Version 2.2 Page 83 Scalp • Galea • Frontalis muscle • Blood supply to scalp • Occipitalis muscle Nerves • Meningeal • Skull bones • Scalp 3. THE ORBIT Bony Orbit • Boundaries & walls, including • Lacrimal fossa/crest contributions from specific skull • Periorbita bones • Medial & lateral tubercles • Foramina & contents • Orbital septum • Optic canal • Superior orbital fissure • Inferior orbital fissure Preseptal Structures • Lacrimal sac & duct • Lids & tarsal plates • Lateral and medial check • Blood supply & venous drainage ligaments of the globe • Levator palpebrae superioris & nerve supply • Conjunctival sac boundaries • Lacrimal canaliculi Extraocular Muscle Cone • Intraconal fat • Tendon annulus • Extraocular muscles & their nerve supplies Extraconal Space • Lacrimal gland • Nerve & blood supply to the lacrimal gland • Extraconal fat Globe & Contents • Cornea & sclera • Canal of Schlemm • Choroid & retina • Macula position • Iris & lens • Short ciliary arteries • Nerve supply ¡ Short and long ciliary
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Imaging Options in Retinal Vein Occlusion Management of This Condition Should Take Direction from Clinical Trial Results
    Imaging Options in Retinal Vein Occlusion Management of this condition should take direction from clinical trial results. BY NIDHI RELHAN, MD; WILLIAM E. SMIDDY, MD; AND DELIA CABRERA DEBUC, PHD etinal vein occlusion (RVO) is the Objectively assessing RVO severity Laser Photocoagulation second leading cause of retinal and determining prognosis of the The Branch Vein Occlusion Study vascular disease, with reported condition depend on imaging stud- (BVOS) recommended focal laser pho- cumulative annual incidence of ies. All clinical trials in RVO have tocoagulation for BRVO causing visual 1.8% for branch RVO (BRVO) and relied heavily on various imaging acuity of 20/40 or worse and macular R0.5% for central RVO (CRVO),1,2 and modalities to standardize eligibil- edema.13,14 Evidence of center-involving bilateral or subsequent incidences of ity and treatment monitoring. This macular edema on fluorescein angiogra- 6.4% and 0.9%, respectively.1,3,4 article reviews the use of some phy (FA) was the critical entry criterion. The postulated mechanism of action established imaging modalities in Separately, scatter photocoagulation involves impingement of venules at these important clinical trials and to the involved segment was found to the shared adventitial sheath by cross- looks ahead at some promising new prevent occurrence of vitreous hemor- ing arterioles leading to turbulence, imaging technologies. rhage if neovascularization developed. stasis, thrombosis, and occlusion.5,6 The Central Vein Occlusion Study Response to anti-VEGF and antiinflam- ESTABLISHED TREATMENT OPTIONS (CVOS) reported that panretinal matory agents has empirically dem- Management of RVO with laser photocoagulation reduced visual onstrated that inflammatory factors photocoagulation, anti-VEGF agents, loss when 2 or more clock hours of play a more important role in RVO and corticosteroids has been well iris neovascularization or more than than previously presumed, beyond established (Tables 1 and 2).13-29 10 disc areas of capillary nonperfusion the obvious ischemia.
    [Show full text]
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Basic Biomechanics
    Posture analysis • A quick evaluation of structure and function • Doctor views patient from behind (P-A) and from the side (lateral) • References points of patient’s anatomy relative to plumb (a position of balance) 9/3/2013 1 Posture analysis • Lateral View – Knees (anterior, posterior, plumb, genu recurvatum) – Trochanter (anterior, posterior, plumb) – Pelvis (anterior, posterior, neutral pelvic tilt) – Lumbar lordosis (hypo-, hyper-, normal) – Mid-axillary line (anterior, posterior, plumb) – Thoracic kyphosis (hyp-, hyper- normal) – Acromion (anterior, posterior, plumb) – Scapulae (protracted, retracted, normal) – Cervical lordosis (hypo-, hyper-, normal) – External auditory meatus (anterior, posterior, plumb) – Occiput (extended, neutral, flexed) 9/3/2013 2 Posture analysis • Posterior – Anterior View – Feet (pronation, supination, normal) – Achilles tendon (bowed in/out, normal) – Knees (genu valga/vera, normal - internal/external rotation) – Popliteal crease heights (low, high, level) – Trochanter heights (low, high, level) – Iliac crest heights (low on the right/left, normal) – Lumbar scoliosis (right/left, or no signs of) – Thoracic scoliosis (right/left, or no signs of) – Shoulder level (low on the right/left, or normal) – Cervical scoliosis (right/left, or no signs of) – Cervical position (rotation, tilt, neutral) – Mastoid (low on the right/left, or normal) 9/3/2013 3 …..poor postures 9/3/2013 4 Functional Anatomy of the Spine • The vertebral curvatures – Cervical Curve • Anterior convex curve (lordosis) develop in infancy
    [Show full text]
  • Gross Anatomy
    www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H.
    [Show full text]
  • Applied Anatomy of the Hip RICARDO A
    Applied Anatomy of the Hip RICARDO A. FERNANDEZ, MHS, PT, OCS, CSCS • Northwestern University The hip joint is more than just a ball-and- bones fuse in adults to form the easily recog- socket joint. It supports the weight of the nized “hip” bone. The pelvis, meaning bowl head, arms, and trunk, and it is the primary in Latin, is composed of three structures: the joint that distributes the forces between the innominates, the sacrum, and the coccyx pelvis and lower extremities.1 This joint is (Figure 1). formed from the articu- The ilium has a large flare, or iliac crest, Key PointsPoints lation of the proximal superiorly, with the easily palpable anterior femur with the innomi- superior iliac spine (ASIS) anterior with the The hip joint is structurally composed of nate at the acetabulum. anterior inferior iliac spine (AIIS) just inferior strong ligamentous and capsular compo- The joint is considered to it. Posteriorly, the crest of the ilium ends nents. important because it to form the posterior superior iliac spine can affect the spine and (PSIS). With respect to surface anatomy, Postural alignment of the bones and joints pelvis proximally and the PSIS is often marked as a dimple in the of the hip plays a role in determining the femur and patella skin. Clinicians attempting to identify pelvic functional gait patterns and forces associ- distally. The biomechan- or hip subluxations, leg-length discrepancies, ated with various supporting structures. ics of this joint are often or postural faults during examinations use There is a relationship between the hip misunderstood, and the these landmarks.
    [Show full text]
  • How to Perform a Transrectal Ultrasound Examination of the Lumbosacral and Sacroiliac Joints
    DIAGNOSTIC IMAGING How to Perform a Transrectal Ultrasound Examination of the Lumbosacral and Sacroiliac Joints Erik H.J. Bergman, DVM, Diplomate ECAR, Associate Member LA-ECVDI*; Sarah M. Puchalski, DVM, Diplomate ACVR; and Jean-Marie Denoix, DVM, PhD, Agre´ge´, Associate Member LA-ECVDI Authors’ addresses: Lingehoeve Veldstraat 3 Lienden 4033 AK, The Netherlands (Bergman); Uni- versity of California, Davis, One Shields Avenue, School of Veterinary Medicine, Davis, CA 95616 (Puchalski); E´ cole Nationale Ve´te´rinaire d’Alfort, 7 Avenue du Ge´ne´ral de Gaulle, 94700 Maisons- Alfort, France (Denoix); e-mail: [email protected]. *Corresponding and presenting author. © 2013 AAEP. 1. Introduction have allowed for identification of these structures 5 There is increasing interest in pathology of the and the inter-transverse joints. These authors urge lumbosacral and sacroiliac joints giving rise to stiff- caution in the interpretation of lesions identified on ness and/or lameness and decreased performance radiography in the absence of other diagnostic im- in equine sports medicine.1–3 Pain arising from aging and clinical examination. Nuclear scintigra- these regions can be problematic alone or in con- phy is an important component of work-up for junction with lameness arising from other sites sacroiliac region pain, but limitations exist. Sev- 9,10 (thoracolumbar spine, hind limbs, or forelimbs).4 eral reports exist detailing the anatomy and tech- Localization of pain to this region is critically impor- nique findings in normal horses11,12 and findings in tant through clinical assessment, diagnostic anes- lame horses.13 Patient motion, camera positioning, thesia, and imaging. and muscle asymmetry can cause errors in interpre- In general, diagnostic imaging of the axial skele- tation.
    [Show full text]
  • Head & Neck Surgery Course
    Head & Neck Surgery Course Parapharyngeal space: surgical anatomy Dr Pierfrancesco PELLICCIA Pr Benjamin LALLEMANT Service ORL et CMF CHU de Nîmes CH de Arles Introduction • Potential deep neck space • Shaped as an inverted pyramid • Base of the pyramid: skull base • Apex of the pyramid: greater cornu of the hyoid bone Introduction • 2 compartments – Prestyloid – Poststyloid Anatomy: boundaries • Superior: small portion of temporal bone • Inferior: junction of the posterior belly of the digastric and the hyoid bone Anatomy: boundaries Anatomy: boundaries • Posterior: deep fascia and paravertebral muscle • Anterior: pterygomandibular raphe and medial pterygoid muscle fascia Anatomy: boundaries • Medial: pharynx (pharyngobasilar fascia, pharyngeal wall, buccopharyngeal fascia) • Lateral: superficial layer of deep fascia • Medial pterygoid muscle fascia • Mandibular ramus • Retromandibular portion of the deep lobe of the parotid gland • Posterior belly of digastric muscle • 2 ligaments – Sphenomandibular ligament – Stylomandibular ligament Aponeurosis and ligaments Aponeurosis and ligaments • Stylopharyngeal aponeurosis: separates parapharyngeal spaces to two compartments: – Prestyloid – Poststyloid • Cloison sagittale: separates parapharyngeal and retropharyngeal space Aponeurosis and ligaments Stylopharyngeal aponeurosis Muscles stylohyoidien Stylopharyngeal , And styloglossus muscles Prestyloid compartment Contents: – Retromandibular portion of the deep lobe of the parotid gland – Minor or ectopic salivary gland – CN V branch to tensor
    [Show full text]
  • Ultrasound Enhanced Thrombolysis in Experimental Retinal Vein Occlusion in the Rabbit
    1438 Br J Ophthalmol 1998;82:1438–1440 Ultrasound enhanced thrombolysis in experimental retinal vein occlusion in the rabbit Jörgen Larsson, Jonas Carlson, S Bertil Olsson Abstract such as myocardial infarction, which is life Aims—To investigate if it was possible to threatening, this incidence of haemorrhage is lower the dose of streptokinase and main- acceptable, but in a patient with a retinal vein tain an eVective thrombolysis by adding occlusion it is hard to accept life threatening pulsed low energy ultrasound. side eVects. Methods—53 retinal veins in 27 rabbits Dye enhanced photothrombosis is a method were occluded by rose bengal enhanced where a dye that absorbs maximally at a laser treatment. Six rabbits were treated specific wavelength is injected intravenously with streptokinase (50 000 IU/kg), 10 rab- immediately before laser treatment in order to bits were treated with a low dose of strep- enhance the absorption of the laser light and tokinase (25 000 IU/kg), and 11 rabbits thus making it possible to use less laser energy. were treated with a low dose of streptoki- This method easily produces thrombi in the nase (25 000 IU/kg) and pulsed ultrasound vessels.18–20 during 1 hour. Fluorescein angiography Based on earlier in vitro experiences21 22 we was performed immediately before the wanted to investigate whether it was possible to thrombolytic treatment and after 12 lower the dose of streptokinase by adding hours. pulsed low energy ultrasound towards a Results—In the group treated with strep- thrombus in the eye. We investigated this in a tokinase (50 000 IU/kg) all vessels were model of experimental retinal vein occlusion in open.
    [Show full text]
  • Endovascular Approach to Ruptured Sphenopalatine Artery: a Case Report and Literature Review
    J Spine Res Surg 2021; 3 (2): 037-044 DOI: 10.26502/fjsrs0028 Case Report Endovascular Approach to Ruptured Sphenopalatine Artery: A Case Report and Literature Review Ram Saha1, Abu Bakar Siddik2, Masum Rahman3, Samar Ikram3, Cecile Riviere-cazaux4, Abdullah Alamgir5, Badrul Alam Mondal6, Quazi Deen Mohammad6, Sirajee Shafiqul Islam 7* 1Department of Neurology, Virginia Commonwealth University, VA, USA 2Department of Pain Medicine, Mayo Clinic, Jacksonville, Florida, USA 3Department of Neurological Surgery, Mayo Clinic, MN, USA 4Mayo Clinic Alix school of medicine, Rochester, MN, USA 5Department of Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh 6Department of Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh 7Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh *Corresponding Author: Dr. Sirajee Shafiqul Islam, Associate Professor, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh Received: 14 May 2021; Accepted: 25 May 2021; Published: 31 May 2021 Citation: Ram Saha, Abu Bakar Siddik, Masum Rahman, Samar Ikram, Cecile Riviere-cazaux, Abdullah Alamgir, Badrul Alam Mondal, Quazi Deen Mohammad, Sirajee Shafiqul Islam. Endovascular Approach to Ruptured Sphenopalatine Artery: A Case Report and Literature Review. Journal of Spine Research and Surgery 3 (2021): 037- 044. Abstract Epistaxis is a rare complication following the endonasal skull-base chordoma through an endonasal approach. approach of skull base surgery. Conservative methods An endovascular catheter digital subtraction angiogram like anterior and posterior nasal packing can be useful, identified the cause of epistaxis as a rupture of the left but when these fail, a neuro-interventional technique sphenopalatine artery branch of the left external carotid can be used as a last-resort measure in cases of severe artery.
    [Show full text]
  • 17 Blood Supply of the Central Nervous System
    17 Blood supply of the central nervous system Brain Lateral aspect of cerebral hemisphere showing blood supply Central sulcus Motor and sensory strip Visual area Broca area Circle of Willis Anterior cerebral artery Anterior communicating artery Optic chiasm IIIrd cranial nerve Middle cerebral artery IVth cranial Internal carotid artery nerve Pons Posterior communicating artery Posterior cerebral artery Auditory area and Vth cranial Wernicke's area in left nerve Superior cerebellar artery dominant hemisphere VIth cranial Pontine branches nerve Basilar artery Anterior cerebral Posterior cerebral artery supply artery supply VII and Anterior inferior cerebellar artery Middle cerebral VIII cranial artery supply nerves Vertebral artery Coronal section of brain showing blood supply IX, X, XI Anterior spinal artery cranial nerves Posterior inferior cerebellar artery XII cranial nerve Caudate Globus Cerebellum nucleus pallidus Lateral ventricle C3/C4 Branch of left Spinal cord cord thyrocervical trunk Thalamus Cervical Red nucleus Subthalamic T5/T6 Intercostal nucleus cord branch area of damage Thoracic ischaemic Watershed T10 Great-anterior L2 Anterior choroidal medullary artery artery (branch of of Adamkiewicz internal carotid cord Hippocampus Lumbar artery to lower two thirds of Reinforcing internal capsule, cord inputs globus pallidus and Penetrating branches of Blood supply to Sacral limbic system) middle cerebral artery spinal cord Posterior spinal arteries Dorsal columns Corticospinal tract supply Anterior Spinothalamic tract spinal artery Medullary artery— Anterior spinal artery replenishing anterior spinal artery directly 42 The anatomical and functional organization of the nervous system Blood supply to the brain medulla and cerebellum. Occlusion of this vessel gives rise to the The arterial blood supply to the brain comes from four vessels: the right lateral medullary syndrome of Wallenberg.
    [Show full text]
  • Deep Neck Infections 55
    Deep Neck Infections 55 Behrad B. Aynehchi Gady Har-El Deep neck space infections (DNSIs) are a relatively penetrating trauma, surgical instrument trauma, spread infrequent entity in the postpenicillin era. Their occur- from superfi cial infections, necrotic malignant nodes, rence, however, poses considerable challenges in diagnosis mastoiditis with resultant Bezold abscess, and unknown and treatment and they may result in potentially serious causes (3–5). In inner cities, where intravenous drug or even fatal complications in the absence of timely rec- abuse (IVDA) is more common, there is a higher preva- ognition. The advent of antibiotics has led to a continu- lence of infections of the jugular vein and carotid sheath ing evolution in etiology, presentation, clinical course, and from contaminated needles (6–8). The emerging practice antimicrobial resistance patterns. These trends combined of “shotgunning” crack cocaine has been associated with with the complex anatomy of the head and neck under- retropharyngeal abscesses as well (9). These purulent col- score the importance of clinical suspicion and thorough lections from direct inoculation, however, seem to have a diagnostic evaluation. Proper management of a recog- more benign clinical course compared to those spreading nized DNSI begins with securing the airway. Despite recent from infl amed tissue (10). Congenital anomalies includ- advances in imaging and conservative medical manage- ing thyroglossal duct cysts and branchial cleft anomalies ment, surgical drainage remains a mainstay in the treat- must also be considered, particularly in cases where no ment in many cases. apparent source can be readily identifi ed. Regardless of the etiology, infection and infl ammation can spread through- Q1 ETIOLOGY out the various regions via arteries, veins, lymphatics, or direct extension along fascial planes.
    [Show full text]