Assessment of Groundwater Supply Option for Apatity Region

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Groundwater Supply Option for Apatity Region Geological Survey of Finland P 32.4/2007/73 Northern Finland Unit Rovaniemi 12.03.2007 Russian Academy of Sciences Mining Institute of the Kola Science Centre Apatity Apatity Vodokanal Company Apatity Assessment of groundwater supply option for Apatity region FINAL REPORT Jouni Pihlaja and Vladimir Konukhin (eds.) Apatity GW - Final Report 2 Abstract Geological Survey of Finland and Russian partners implemented Apatity GW project near the city of Apatity during year 2006. The project was funded by The Ministry for Foreign Affairs of Finland and by the Russian partners. According to the project schedule, the following tasks were implemented by the project partners during the year 2006: 1. Kick off meeting in Rovaniemi (Kola Science Center / Mining Institute + Apatity Vodokanal + Geological Survey of Finland) 2. Compilation of existing relevant data and selection of target areas (MIK + Vodokanal) 3. The assessment of the existing quality of drinking water in Apatity (MIK + Vodokanal) 4. Health assessment of the impact of drinking water taken from the surface sources for the inhabitants in Apatity area (MIK + Apatity Lab on professional diseases) 5. Finnish experience in using ground water sources for water supply (GTK) 6. GIS processing of the existing maps of selected areas agreed between the parties (GTK) 7. Training of Vodokanal experts in water monitoring, Apatity (GTK) 8. Geophysical field working (3-4 days) with soil and water sampling (GTK + MIK + Vodokanal experts) in Apatity 9. Water monitoring (GTK + Vodokanal) in Apatity 10. Laboratory analyses of ground water (GTK + Vodokanal) 11. Comparative assessment of the ground water supply versus the surface water option (MIK +GTK) 12. Conclusions from the field work results. Meeting in Rovaniemi (MIK +GTK) 13. Development of the guidelines for improvement of drinking water quality in the Apa- tity area (i.e. proving the necessity to build ground water supply facilities instead of taking water from the surface sources) (MIK + GTK) 14. Meeting with discussions of the results of investigations and of the guidelines involv- ing all the stakeholders concerned (MIK + GTK +Vodokanal) in Apatity 15. Final report Apatity GW - Final Report 3 Contents Abstract 1 INTRODUCTION 4 2 TASK DESCRIPTIONS 4 2.1 Kick-off Meeting in Rovaniemi 4 2.2 Compilation of existing relevant data and selection of target 4 2.2.1 Water supply of Apatity city 4 2.2.2 Selection of the deposit of subsurface water 4 2.3 The assessment of the existing quality of drinking water in Apatity 5 2.4 Health assessment of the impact of drinking water taken from the surface sources for the inhabitants in Apatity area 6 2.5 Finnish experience in using ground water sources for water supply 7 2.6 GIS processing of the existing maps of selected areas agreed between the parties 8 2.7 Training of Vodokanal experts in water monitoring 8 2.8 Geophysical field working with soil and water sampling in Apatity 8 2.9 Other tasks 9 3 RESULTS 9 3.1 Water supply of Apatity 9 3.1.1 Reagent treatment of water at the Apatity water treatment facility 12 3.1.2 Population and the main consumers of drinking water 19 3.1.3 Sources of water supply of Apatity and their assessment 19 3.2 Description of the ground water deposit “Malaya Belaya” 23 3.2.1 The knowledge of the ground water deposit “Malaya Belaya” 23 3.2.2 Geography 24 3.2.3 Climate 24 3.2.4 Hydrogeological description of the water intake area 24 3.2.5 Investigation of the quality of the ground water 34 3.2.6 GIS-based 3d-modelling of the study area 55 3.2.7 Reserves of ground water 61 Apatity GW - Final Report 4 1 INTRODUCTION This report was compiled by project partners: GTK / Northern Finland Unit, Mining Institute of Kola Science Centre and Apatity Vodokanal Company. It includes some descriptions how the project tasks were implemented and the results of the project. 2 TASK DESCRIPTIONS 2.1 Kick-off Meeting in Rovaniemi The Kick-off Meeting of the Project was organized by the Northern Finland Office of Geological Survey of Finland in Rovaniemi on April 23-26, 2006. The Deputy Director of the Mining Institute prof. А.А. Kozyrev and the Project Manager prof. V.P. Konukhin took part in the meeting on behalf of the Mining Institute. During the Kick-off Meeting the main goals and tasks of the project were formulated as a final wording. There were set up responsibilities of both partners for every task of the project as well as the terms of implementation of field and laboratory investigations, analytical processing of the materials and preparation of the final report. 2.2 Compilation of existing relevant data and selection of target 2.2.1 Water supply of Apatity city At present it is the lake of Imandra, which is the source for water supply for Apatity. On the lakeshores several sources of man-induced impact are located: “Severonickel” metallurgical works, which is a branch of “Norilski Nikel” JSC and apatite-nepheline producing joint-stock company “Apatit”. The water intake facilities in the Imandra lake are the property of the “Apatit” JSC, which takes water for both economic-communal use and for operational needs. Water is further taken via steel pipes 9 km long to the site of “Apatity Vodokanal”, where it is treated at the water treat- ment facility (WTF) of Apatity. The account is taken of the water consumed from the “Apatit” JSC pipelines, using an ultrasound flowmeter “Vzliot”. 2.2.2 Selection of the deposit of subsurface water When studying the situation in water supply of Apatity an emphasis was made on possible op- tions of Apatity water supply system. This is, first of all, connected with the introduction in Russia of new hygienic requirements to the drinking water quality of the centralized systems of water supply according to “Sanitary Regula- tions and Norms” (SanPiN 2.1.4.1074-01), the requirements to water quality of water supply Apatity GW - Final Report 5 sources have, also, been changed. One of the main principles of the new SanPiN is limitations of the total harmful substances concentrations ratio identified in the water of the source against maximal permissible concentrations of these substances, which make part of one limiting nui- sance indication. Due to this, there is a need in a water source, where the water could have dra- matically less content of harmful substances. The ground water meets all these requirements. The ground water sources undergo to the man-induced impact very little containing, as a rule, very low concentrations of harmful ingredients and are corrosion-inactive. The experts of the Mining Institute have collected and analyzed the geological-geophysical and hydrogeological data available from the geological archive of the region on the most promising deposit of ground water near Apatity – Malaya Belaya river, where preliminary investigations had been carried out during the previous years. The Malaya Belaya ground water deposit is lo- cated in the intramountain valley, composed of quaternary glacier and water-glacier sediments. 2.3 The assessment of the existing quality of drinking water in Apatity The main source of water for Apatity - Imandra lake - is typical to have a high level of man- induced pollution. Table 3.3.1 presents the data on water quality in the lake of Imandra as of 2005, whereas table 3.3.2 provides the data on the quality of the drinking water in Apatity as of 2006. The data on the quality of the drinking water in Apatity, published by different authors are very interesting, in particular by L. K. Sokolova, the president of the Kola regional organization “For the safety of drinking water and food”. As stated by L. K. Sokolova no dioxin was found in the water of the Imandra lake. The investigations implemented by the Institute of Toxicology have, however, revealed some products of water chlorination: carbon tetrachloride (4.5 MPC) and chloroform (0.5 MPC). Car- bon tetrachloride is a most hazardous pollutant. It is, however, not permanently present in Apa- tity water. The color, turbidity, odour and taste, Apatity water meets the GOST (National Standards Sys- tem) requirements as well as with regard to its bacteriological, virologic and parasitologic. By the content of radioactive elements (total volumetric alpha- and beta-activity) Apatity water meets respective regulations. A number of water characteristics are, nevertheless, not safe. An integrated index of the 1-st and 2-nd category toxic substances content exceeds 1.6 times the regulation provided by SanPiN 2.1.4.559-96. Apatity GW - Final Report 6 By its salinity the water is low mineralized. Total content of salts is 30% lower than the mini- mum required level (MNU). Calcium content is 5.5 times below MNU. Magnesium content is 4 times below MNU. The hardness is 4 times below MNU. Alkalinity is 1.6 times lower than MNU. Fluorine concentration is 6 times lower the optimum one for the 2-nd climatic zone. 2.4 Health assessment of the impact of drinking water taken from the surface sources for the inhabitants in Apatity area The fact that our health depends to a great extent on the quality of the drinking water becomes more and more obvious. The negative attitude of Apatity residents to the drinking water is ex- plained by the fact that water is taken from the lake of Imandra, tails to which are dumped by “Apatit” JSC, which can cause cholelithic and nephrolithic pathologies and even cancer. The real situation is, however, not known, because to answer the question about the interrelation between the morbidity and the quality of drinking water it is necessary to carry out deeper investigations of the entire range of safety indices, which are not possible due to bad financial situation in Apa- tity.
Recommended publications
  • Large Russian Lakes Ladoga, Onega, and Imandra Under Strong Pollution and in the Period of Revitalization: a Review
    geosciences Review Large Russian Lakes Ladoga, Onega, and Imandra under Strong Pollution and in the Period of Revitalization: A Review Tatiana Moiseenko 1,* and Andrey Sharov 2 1 Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 2 Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Yaroslavl Oblast, Russia; [email protected] * Correspondence: [email protected] Received: 8 October 2019; Accepted: 20 November 2019; Published: 22 November 2019 Abstract: In this paper, retrospective analyses of long-term changes in the aquatic ecosystem of Ladoga, Onega, and Imandra lakes, situated within North-West Russia, are presented. At the beginning of the last century, the lakes were oligotrophic, freshwater and similar in origin in terms of the chemical composition of waters and aquatic fauna. Three stages were identified in this study: reference condition, intensive pollution and degradation, and decreasing pollution and revitalization. Similar changes in polluted bays were detected, for which a significant decrease in their oligotrophic nature, the dominance of eurybiont species, their biodiversity under toxic substances and nutrients, were noted. The lakes have been recolonized by northern species following pollution reduction over the past 20 years. There have been replacements in dominant complexes, an increase in the biodiversity of communities, with the emergence of more southern forms of introduced species. The path of ecosystem transformation during and after the anthropogenic stress compares with the regularities of ecosystem successions: from the natural state through the developmental stage to a more stable mature modification, with significantly different natural characteristics. A peculiarity of the newly formed ecosystems is the change in structure and the higher productivity of biological communities, explained by the stability of the newly formed biogeochemical nutrient cycles, as well as climate warming.
    [Show full text]
  • Understanding Human and Ecosystem Dynamics in the Kola
    ARCTIC VOL. 57, N0. 4 (DECEMBER 2004) P. 375–388 Understanding Human and Ecosystem Dynamics in the Kola Arctic: A Participatory Integrated Study ALEXEY VOINOV,1,2 LARS BROMLEY,3 ELIZABETH KIRK,3 ANATOLIY KORCHAK,4 JOSHUA FARLEY,1 TATIANA MOISEENKO,5 TATIANA KRASOVSKAYA,6 ZOYA MAKAROVA,7 VLADIMIR MEGORSKI,7 VLADIMIR SELIN,4 GALINA KHARITONOVA4 and ROBERT EDSON8 (Received 18 June 2003; accepted in revised form 26 July 2004) ABSTRACT. The Lake Imandra watershed is located in one of the most developed regions in the Arctic—the Kola Peninsula of Russia. Approximately 300 000 people live on the roughly 27000 km2 watershed, making it one of the most densely populated areas of the Arctic. Most of the people are involved in large-scale mineral extraction and processing and the infrastructure needed to support this industry. This paper reports the results of a pilot project staged for the Lake Imandra watershed that has put human dynamics within the framework of ecosystem change to integrate available information and formulate conceptual models of likely future scenarios. The observation period is one of both rapid economic growth and human expansion, with an overall economic decline in the past decade. We are applying the Participatory Integrated Assessment (PIA) approach to integrate information, identify information gaps, generate likely future scenarios, and link scientific findings to the decision-making process. We found an increasingly vulnerable human population in varying states of awareness about their local environment and fully cognizant of their economic troubles, with many determined to attempt maintenance of relatively high population densities in the near future even as many residents of northern Russia migrate south.
    [Show full text]
  • Ichthyofauna Biodiversity of Freshwater Lakes in the Murmansk Region
    Limnology and Freshwater Biology 2020 (4): 616-617 DOI:10.31951/2658-3518-2020-A-4-616 SI: “The VII-th Vereshchagin Baikal Conference” Short communication Ichthyofauna biodiversity of freshwater lakes in the Murmansk Region Koroleva I.M.*, Terentjev P.M. Institute of the North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, 184209, Apatity, Akademgorodok, 14a, Russia ABSTRACT. The Arctic ichthyofauna has low biodiversity and includes 460 species of fish (2.0% of the world fauna); less than a third of them are freshwater species. There are less than 20 indigenous species in the lakes of the Murmansk Region. Salmoniformes, Perciformes, Osmeriformes, and Cypriniformes build the community core. The species diversity in the lakes of the Kola Peninsula is stable, but there is insignificant growth in the number of species due to the unintentionally introduced aquaculture objects. Water bodies sometimes successfully naturalize the latter. Illegal fishing dramatically causes the disappearance of valuable species in some lakes. Global warming has not yet influenced the penetration of southern fish species. The expansion of native species in new water bodies is the reason for the most critical changes. Unimportant smelt Osmerus eperlamus expands its area extremely fast. A dramatic drop in the number of predators, such as trout and charr, highlights the problem of a rapid increase in paltry and weedy fish. Keywords: Biodiversity, ichthyofauna, Salmoniformes, freshwater lakes, Subarctic. 1. Introduction. (Salmoniformes, Cypriniformes, Gasterosteiformes, Perciformes, Osmeriformes, Gadiformes, and Arctic freshwater bodies belong to the circumpolar Esociformes), 7 families, 18 genera, and 19 species. region, the Iceland province, and are included in the Species bred in aquaculture extend the check-list by North European district.
    [Show full text]
  • Apatity GW II Groundwater Pipeline
    Geological Survey of Finland P 32.4/2009/1 Northern Finland Office Rovaniemi 15.1.2009 Russian Academy of Sciences Mining Institute of Kola Science Center Apatity Apatity GW II Groundwater pipeline - soil map and explanation Juho Kupila, Jouni Pihlaja and Vladimir Zaitsev Apatity GW II GEOLOGICAL SURVEY OF FINLAND DOCUMENTATION PAGE Dale I Rcc. no Authors Type of report Geological Survey ofFinland, Northern Finland Soil map and explanation Offic e, Rovaniemi Commissioned by Russian Academy ofSciences, Mining Institute of the Kola Science Center, Anatitv Title ofreport Groundwater pipeline - soil map and explanation Abstract Soil map of the area was made for giving a detailed picture of the gro undwater pipeline area and to give some guides to the routing. Alternative route to the pipeline was given according to the soil map and field studies. Keywords Groundwater, surficial deposits. ground penetrating radar, mapping, Apatity, Russia Geographical area Russia, Apatity, Malaya Belaya river valley Map sheet Other information Report serial Archive code Archive report P 32.4/2009/1 TOlal pages Language Price Conf id enualiry 10 English Unit and section Project code Northern Finland Office, Land Use and Environment 4905013 Russian Academy ofSciences, Mining Institute of the Kola Scien ce Center. Anatitv Signature/name Signature/name -.. ~ , if~ , - M2- . ~ .u, ~~ I 'l~ ~ JOt,v,; P,'hJ~ '\" c I v GTK GEOLOGIAN TUTKIMUS KESKUS • GEO LOGISKA FORSKNI NGSCENTRALEN • GEOLOGICAL SURVEY OF FINLA ND Apatity GW II Contents Documentation page 1 INTRODUCTION
    [Show full text]
  • 177 Since 1961 Lake Imandra Depression in the Late Glacial And
    since 1961 BALTICA Volume 33 Number 2 December 2020: 177–190 https://doi.org/10.5200/baltica.2020.2.5 Lake Imandra depression in the Late Glacial and early Holocene (Kola Peninsula, north-western Russia) Olga Korsakova, Dmitry Tolstobrov, Svetlana Nikolaeva, Vasily Kolka , AlyonaTolstobrova Korsakova, O., Tolstobrov, D., Nikolaeva, S., Kolka, V., Tolstobrova, A. Lake Imandra depression in the Late Glacial and early Holocene (Kola Peninsula, north-western Russia). Baltica, 33 (2), 177–190. Vilnius. ISSN 0067-3064. Manuscript submitted 28 February 2020 / Accepted 24 November 2020 / Published online 22 December 2020 © Baltica 2020 Abstract. The paper summarizes the evidence of litho-, biostratigraphy and 14C dating of sedimentary se- quences studied in natural outcrops and bottom deposits in small lakes, as well as data on coastal morphol- ogy in the depressions of Ekostrovskaya and Babinskaya Imandra, the southern sub-basins of Lake Imandra. Lithological, 14C and diatom data suggest that the brackish-water reservoir followed by the fresh-water one existed in the Ekostrovskaya Imandra depression during the Younger Dryas chronozone prior to 11,400cal. yr BP. The Fennoscandian Ice Sheet margin is assumed to have been located in the Lake Imandra basin, cover- ing western Babinskaya Imandra earlier than c. 10,250 cal. yr BP. The early Holocene c. 11,400–8,500 cal. yr BP was marked by a significant westward retreat of the ice margin in the western Lake Imandra depression and adjacent areas, and an extensive fresh-water pra-Imandra Lake basin was formed there. At the end of the Preboreal, earlier than c. 9,210–8,500 cal.
    [Show full text]
  • Geochemistry of the Kola River and Lake Imandra, Northwestern Russia
    2005:22 DOCTORAL T H E SI S Geochemistry of the Kola River and Lake Imandra, northwestern Russia Larisa Pekka Luleå University of Technology Department of Chemical Engineering and Geosciences Division of Applied Geology 2005:22|: 02-544|: - -- 05⁄22 -- *HRFKHPLVWU\RIWKH.ROD5LYHUDQG/DNH ,PDQGUDQRUWKZHVWHUQ5XVVLD /DULVD3HNND 'HSDUWPHQWRI&KHPLFDO(QJLQHHULQJDQG*HRVFLHQFHV 'LYLVLRQRI$SSOLHG*HRORJ\ /XOHn8QLYHUVLW\RI7HFKQRORJ\ 6(/8/(c6ZHGHQ $EVWUDFW 7KHLPSDFWIURPPLQLQJDQGODUJHVFDOHDJULFXOWXUDODFWLYLWLHVRQOHYHOVDQGPLJUDWLRQRIPHWDOV ZLWKLQWKH.ROD5LYHUDQG/DNH,PDQGUDKDVEHHQVWXGLHGLQGHWDLO(YDOXDWLRQRIWKHSROOXWLRQ VWDWXVLQWKH.ROD5LYHULVEDVHGRQVDPSOLQJRIWKHGLVVROYHG +P DQGVXVSHQGHG +P IUDFWLRQVDQGDOVRPHWDODFFXPXODWLRQLQDTXDWLFEU\RSK\WHVRQVLWHVDORQJWKH.ROD5LYHUDQG LWVWULEXWDULHVGXULQJDQDQQXDOF\FOH,Q/DNH,PDQGUDWKHVDPSOLQJRIGLVVROYHG P DQG VXVSHQGHG 0 IUDFWLRQVIURPVDPSOLQJOHYHOVZLWKLQWKHZDWHUFROXPQZDVSHUIRUPHG RQWKUHHVDPSOLQJRFFDVLRQV$OVRDVHGLPHQWFRUHDQGSRUHZDWHUZHUHVDPSOHG0DMRUDQGWUDFH HOHPHQWV $O$V%D&G&R&U&X)H0Q0R1L3E6UDQG=Q WRWDODQGSDUWLFXODWHRUJDQLF FDUERQ 72&DQG32& 1DQG3ZHUHDQDO\VHG7KHZRUNZDVSHUIRUPHGLQFORVHFRRSHUDWLRQ ZLWK5XVVLDQDQG)LQQLVKVFLHQWLVWV $QLPSRUWDQWDQGVXUSULVLQJUHVXOWIURPWKHDQDO\VHVRIERWKZDWHUDQGEU\RSK\WHVDPSOHV LVWKHUHODWLYHO\ORZRYHUDOOFRQWDPLQDWLRQLQWKH.ROD5LYHUPXFKORZHUWKDQZDVUHSRUWHGLQ SUHYLRXV VWXGLHV ,Q FRPSDULVRQ ZLWK 6ZHGLVK DQG )LQQLVK UHIHUHQFH GDWD IURP WKH .DOL[ DQG 1llWlP|MRNL5LYHUVRQO\&XDQG1LDUHHOHYDWHG7KHFRQFHQWUDWLRQVRI$V&X0Q0RDQG1L LQEU\RSK\WHVDQGZDWHUZHUHKLJKHVWFORVHWRWKHPLQHDUHDVUHODWLYHO\ORZLQWKHPLGGOHSDUWV RIWKH.ROD5LYHUDQGHOHYDWHGDWWKHULYHUPRXWK(YDOXDWLRQRIWKHVDPSOLQJPHWKRGVDQGWKH
    [Show full text]
  • Small Lakes Ecosystems Under the Impact of Non-Ferrous Metallurgy (Russia, Murmansk Region)
    environments Article Small Lakes Ecosystems under the Impact of Non-Ferrous Metallurgy (Russia, Murmansk Region) Dmitry Denisov, Peter Terentjev, Svetlana Valkova * and Lubov Kudryavtzeva Institute of the North Industrial Ecology Problems (INIEP)-Subdivision of the Federal Research Center, Kola Science Center of the Russian Academy of Sciences, KSC RAS, 14 Fersman str., 184209 Apatity, Russia; [email protected] (D.D.); [email protected] (P.T.); [email protected] (L.K.) * Correspondence: [email protected] Received: 18 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: This paper presents integrated research on ecosystems of small lakes experiencing the direct impact of a copper-nickel ore processing plant, the “Kolskaya GMK” (MS KGMK), near the town of Monchegorsk Kola Peninsula, Russia. An integrated research method with the analysis of both abiotic and biotic components of aquatic ecosystems was used. It was found that the water ecosystems developed under the conditions of extreme pollution depleted the species composition of the hydrobionts and the number indices. Much of the pollution resulted in a transformation in the phytoplankton community structure: the share of mixotrophic algae and Cyanobacteria increased. Anthropogenic eutrophication resulted in a decrease in toxic impact. Despite high anthropogenic load, Salmonid and Coregonid species were found in a number of water bodies. The size and weight indices and the heavy metal accumulation intensity had a distinct gradient nature. The macrozoobenthos in the water bodies studied was characterized by depleted taxonomic composition and extremely low numbers. The basis of the zoobenthos was formed by chironomids Psectrocladius, Procladius, Cricotopus, and Orthocladius, spread widely in water bodies polluted with heavy metals.
    [Show full text]
  • Running with Reindeer: Encounters in Russian Lapland, by Roger Took
    REVIEWS • 311 RUNNING WITH REINDEER: ENCOUNTERS IN Motovskv Gulf, immediately to the west of where the Trakt RUSSIAN LAPLAND. By ROGER TOOK. London: John enters the Barents Sea. Dodging Russian soldiers, the author Murray, 2003. 365 p., 4 maps, 31 photos, index, glossary “had no difficulty imagining [the Bay] as it was sixty years in Russian and Saami, selective annotated bibliography earlier” (p. 96), when it was a diverse Finn/Norwegian/ mostly of English works. Hardbound. US$27.50. Russian settlement visited in summer by nomadic Saami who came to fish and hunt seal. Instead, the author spied today’s Roger Took is a professional art historian and museum transit route for nuclear-powered, Akula class submarines, curator and a Fellow of the Royal Geographic Society in surrounded by terrain devoid of civilian activity for decades. England. He currently spends much of his time in Russia, Later, Took learned from Saami informants in Upper Tuloma according to information from the book’s press agent, with a village that the idyllic pastoral life he was imagining along the multidisciplinary team of social scientists, biologists, and Barents Sea had been destroyed by the Soviet State Security archaeologists. How Took brings his art and museum exper- Service in the 1930s and 1940s during the process of collec- tise to that team is not described. Took’s introduction to the tivization and removal. Nevertheless, he merely hints at the Kola Peninsula came soon after Russia opened the area to brutality that settlers and Saami alike experienced at the foreigners in the early 1990s. He searched for “adventure… hands of Soviet thugs during that time, when Stalin consid- in Europe’s last wilderness” (p.
    [Show full text]
  • Occurrence of Fish Species in the Inland Water of Murmansk Region (Russia): Research in 1972-2021
    Biodiversity Data Journal 9: e68131 doi: 10.3897/BDJ.9.e68131 Data Paper Occurrence of fish species in the inland water of Murmansk Region (Russia): research in 1972-2021 Elena Zubova‡, Nikolay Kashulin‡‡, Petr Terentyev , Alexey Melekhin§, Roman Konstantinovich Fedorov|, Sergei Shalygin¶ ‡ INEP KSC RAS, Apatity, Russia § PABGI KSC RAS, Apatity, Russia | ISDCT SB RAS, Irkutsk, Russia ¶ New Mexico State University, Las Cruces, United States of America Corresponding author: Elena Zubova ([email protected]), Nikolay Kashulin ([email protected]), Petr Terentyev ([email protected]), Alexey Melekhin ([email protected]), Roman Konstantinovich Fedorov ([email protected]), Sergei Shalygin ([email protected]) Academic editor: Yahui Zhao Received: 01 May 2021 | Accepted: 20 May 2021 | Published: 28 May 2021 Citation: Zubova E, Kashulin N, Terentyev P, Melekhin A, Fedorov RK, Shalygin S (2021) Occurrence of fish species in the inland water of Murmansk Region (Russia): research in 1972-2021. Biodiversity Data Journal 9: e68131. https://doi.org/10.3897/BDJ.9.e68131 Abstract Background Knowledge about the distribution of organisms on Earth is important backbone of biological sciences and especially for deeper understanding of biogeography. However, much of the existing distributional data are scattered throughout a multitude of sources (including in different languages), such as taxonomic publications, checklists and natural history collections and often, bringing them together is difficult. Development of the digital storage facilities may prevent loss of important data (Ruchin et al. 2020). Project GBIF is a good example of a successful data storage facility, which allows investigators to publish biodiversity data in one safe place in one uniform format.
    [Show full text]
  • “From Past to Present. Documenting Northwest Russia.” Armi Pekkala and Minna Turunen, University of Lapland, Arctic Centre
    1 Further information for the DVD “From Past to Present. Documenting Northwest Russia.” Armi Pekkala and Minna Turunen, University of Lapland, Arctic Centre * This presentation is based on the DVD made during the AFBARE project (Artic Documentary Films at Risk in Barents Region: Surveying, Protecting and Screening 2002-2006). Therefore, this article focuses on the livelihoods of the Murmansk Region, the Archangel Region and the Nenets Autonomous District. The themes presented here have emerged from the documentary film material used in producing the DVD. Contents Introduction...................................................................................................................2 Natural conditions....................................................................................................2 Population development ..........................................................................................6 History of administration......................................................................................11 Change in society in the Arctic Region ................................................................13 Livelihoods ..................................................................................................................15 Murmansk Region .................................................................................................15 General overview.................................................................................................15 Mining..................................................................................................................16
    [Show full text]
  • Manganese Redox Cycling in Lake Imandra: Impact on Nitrogen and the Trace Title Page Abstract Introduction Metal Sediment Record Conclusions References 1 1 2 3 3 J
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 8, 273–321, 2011 Biogeosciences www.biogeosciences-discuss.net/8/273/2011/ Discussions BGD doi:10.5194/bgd-8-273-2011 8, 273–321, 2011 © Author(s) 2011. CC Attribution 3.0 License. Manganese redox This discussion paper is/has been under review for the journal Biogeosciences (BG). cycling in Lake Please refer to the corresponding final paper in BG if available. Imandra J. Ingri et al. Manganese redox cycling in Lake Imandra: impact on nitrogen and the trace Title Page Abstract Introduction metal sediment record Conclusions References 1 1 2 3 3 J. Ingri , L. Pekka , V. Dauvalter , I. Rodushkin , and E. Peinerud Tables Figures 1Division of Applied geology, Lulea˚ University of technology. 971 87 Lulea,˚ Sweden 2Institute of Problems of Industrial ecology of the North, Kola Scientific Center, Russian J I academy of Sciences, ul, Fersmana 14, Apatity, Murmansk oblast 184 200, Russia J I 3ALS Laboratory Group, ALS Scandinavia AB, Aurorum 10, 977 75 Lulea,˚ Sweden Back Close Received: 11 November 2010 – Accepted: 17 November 2010 – Published: 11 January 2011 Correspondence to: J. Ingri ([email protected]) Full Screen / Esc Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 273 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract BGD Sediment and water samples from the mine-polluted Yokostrovskaya basin in Lake Imandra have been analysed. Three major processes have influenced the accu- 8, 273–321, 2011 mulation and distribution of metals in the sediment: (1) Development of the apatite- 5 nepheline and the sulfide ore mining industries.
    [Show full text]
  • Хибинские Тундры Khibiny Tundra Hiipinätunturit
    ХИБИНСКИЕ ТУНДРЫ ХИБИНСКИЕ ТУНДРЫ KHIBINY TUNDRA KHIBINY TUNDRA HIIPINÄTUNTURIT HIIPINÄTUNTURIT ГЕОЛОГИЧЕСКАЯГЕОЛОГИЧЕСКАЯ КАРТА КАРТА 1:50 1:50 000 000 И ПУТЕВОДИТЕЛЬИ ПУТЕВОДИТЕЛЬ GEOLOGICAL OUTDOOR MAP 1:50 000 GEOLOGICALAND OUTDOOR GUIDEBOOK MAP 1:50 000 AND GUIDEBOOK GEOLOGINEN RETKEILYKARTTA 1:50 000 GEOLOGINEN RETKEILYKARTTAJA OPASKIRJA 1:50 000 JA OPASKIRJA 1 ХИБИНСКИЕ ТУНДРЫ ГЕОЛОГИЧЕСКАЯ КАРТА 1:50 000 И ПУТЕВОДИТЕЛЬ KHIBINY TUNDRA GEOLOGICAL OUTDOOR MAP 1:50 000 AND GUIDEBOOK HIIPINÄTUNTURIT GEOLOGINEN RETKEILYKARTTA 1:50 000 JA OPASKIRJA Редакторы: Юрий Л. Войтеховский, Петер Йоханссон, Лаура С. Лаури, Тамара A. Мирошниченко и Юкка Ряйсянен. Editors, tekijät: Yury L. Voytekhovsky, Peter Johansson, Laura S. Lauri, Tamara A. Miroshnichenko & Jukka Räisänen. Русский текст: Юрий Л. Войтеховский Text in Russian, venäjänkielinen teksti: Yury L. Voytekhovsky Перевод на английский язык: Тамара A. Мирошниченко English translation, englanninkielinen käännös: Tamara A. Miroshnichenko Перевод на финский язык: Петер Йоханссон, Лаура С. Лаури Finnish Translation, suomenkielinen käännös: Peter Johansson, Laura S. Lauri Перевод на английский язиык: AО ААС Глобал English language consultant, englannin kielen tarkastus: AAC Global Oy Издатель: Геологическая служба Финляндии и Геологический институт Кольского научного центра Российской академии наук. http://www.gtk.fi, http://geoksc.apatity.ru Publisher: Geological Survey of Finland and Geological Institute of the Kola Science Centre of the Russian Academy of Sciences. http://www.gtk.fi, http://geoksc.apatity.ru
    [Show full text]