Fuel Performance Studies

Total Page:16

File Type:pdf, Size:1020Kb

Fuel Performance Studies Foreword The OECD Halden Reactor project is fuel, including mechanical deformations, an agreement between OECD member thermal behaviour, fission gas release, countries. It was first signed in 1958 and and corrosion. since then regularly renewed every third In the area of computer application, year. The activities at the Project is cen- the studies of the communication bet- tred around the Halden heavy water ween operator and process, and the sur- reactor, the HBWR. The research pro- veillance and control of the reactor core, gramme comprizes studies of fuel per- arc of particular interest for rcactor ope- formance under various operating condi- ration. tions, and the application of computers 1988 represents the 30th year since for process control. the Project was started, and this publica- The HBWR is equipped for exposing tion is produced to mark this event. It fuel rods to temperatures and pressures, contains a reprint of major part of the and at heat ratings met in modern BWR's publication produced at the 25th anni- and PWR's. A range of in-core instru- versary. In addition an account of the ments are available permitting detailed developments through the years 1983- measurements of the reactions of the 1988 is given. Contents J 958-83 HOW IT STARTED 1 ORGANIZATION OF THE PROJECT 5 Agreements 5 Steering Bodies " Staff 6 RESEARCH AND DEVELOPMENT REVIEW 7 FUEL PERFORMANCE STUDIES 10 Background 10 Fuel Rod Thermal Behaviour 11 Fuel Rod Mechanical Interaction 14 Fission Gas Release and Fuel Defection Studies 16 Loss of Coolant Experiments 19 COMPUTER CONTROL RESEARCH 21 Background History 21 The Computer Age 22 Present Activities 24 Operator Interfaces 24 Man-Machine Communication . 25 Highly Reliable Computer Systems 26 Software Reliability 28 Computerized Operator Manual for Reactor Safety Systems ... 28 Alarm Handling 29 Core Surveillance and Control 31 Computer Control Experimental Facility 32 FUEL RESEARCH FACILITIES 34 HBWR as a Fuel Test Facility 35 Fuel Handling and Inspection Equipment 36 Irradiation Rigs 38 In-Core Instruments 44 Test Fuel Data Bank System 48 1983-88 FUEL PERFORMANCE STUDIES 1983-88 49 Introduction 49 Fuel Rod Thermal Behaviour 49 Fission Product Release 50 Pellet Cladding McchanicaJ Interaction 51 Cyclic and Transient Operation 52 Extended Burnup Operation 52 COMPUTERIZED MAN-MACHINE COMMUNICATION 54 Introduction 54 Man-Machine Interaction Research 54 The Alarm Handling System HALO 54 The Success Path Monitoring System SPMS 55 System for Early Fault Detection 55 System for Plant Diagnosis 56 The Process Operator Station CAMPS 56 The Core Surveillance System SCORPIO 56 Training Simulator for Off-Shore Oil/Gas Production Platform . 57 The Power System Simulator SASIM 57 Control Room Design 57 The Computerized Procedure Manual System COPMA 58 Software Reliability 58 FUEL RESEARCH FACILITIES . 59 High Pressure Light Water Loops in HBWR 59 PWR Waterside Corrosion Test Loop 60 Automatic Control of Experimental Conditions 60 In-Core Instruments '.,. - 61 Irradiation Rigs - - - • 62 Test Fuel Data Aquisition and Processing 63 STEERING BODIES AND PROJECT STAFF ......... 64 How it started Cunnar Randers, astrophysicist by edu- cation, internationally recognized as a pioneer in the development of nuclear energy for peaceful applications, founder of the Norwegian Institute for Atomic Energy, ivas the key person behind the developments which resulted in the design and construction of the Halden Boiling Heavy Water Reactor and the establishing of the OEEC (later OECD) Halden Reactor Project in 195S. He has been hind enough to supply the editors of this publication with his own account of the events leading up to the successful international co-operation around the Haldcn Reactor: The Halden Reactor is truly a remarkable during the 25th year of the Halden Pro- water reactors by Dr. Zinn in the U.S.A. animal! It was planned, designed and ject, became the first leader of the neu- Within a couple of months the NUPOP under construction before any nuclear tron physics division at JENER). plans were replaced by a boiling heavy power rcactor had been built commer- After three years of operating the water concept, and the proposed Joint cially in the world. Today it is still an reactor JENER wanted to move forward Dutch - Norwegian project was replaced activc experimental station for advanced by building a power experiment with by a pure Norwegian project even studies of problems in nuclear power. high temperature and pressure. There after the original project had been in- It has therefore functioned during the was a gentlemen's agreement that this se- cluded in the budget proposal in 1955 in whole life of nuclear power production. cond reactor should be built in the Norway. The new project was, as men- It seems like using the first spinning Netherlands. The power level should be tioned, approved preliminarily on 14th machine from the industrial revolution at least 20,000 kVV at an operating tem- June 1955, but with a condition that the for experiments in textile production perature of at least 200°C. Since ura- detailed financial and technical plans today. nium was impossible to buy, and we had should be placed before the parliament The design and plans for construction only a few tons of natural uranium by the end of the year for the final go were placed before the Norwegian »Stor- (from the Netherlands' remaining store) ahead signal. ting» by the government on 14th June we had to build a heavy water reactor. The fall of 1955 became a hectic 1955 and preliminarily approved. Some The thought of risking boiling in the period of negotiations for arranging bar- of you will discover by using your heavy water led us to a variety of diffi- tering between U.K., the Netherlands, pocket calculator thaL this is three years cult designs from pressure tank to the U.S.A. and Norway of heavy water, too early to fit with todays 25 years organic cooling and beryllium oxide or uranium, fuel element production services anniversary. The reason is simple: We are aluminium oxide for cooling channels. and securing industrial participation in celebrating the silver wedding of Norway IF A and our wi/.x.ard engineer Odd Dahl Norway. Norsk Hydro, the heavy water and the countries participating in the settled in 1954 on a form of aluminium producing company in Norway, became OECD Halden Rcactor Project, but the foil around the cooling channels. It was our basic economic supporter. Saugbrug- Halden Rcactor is not a legitimate child called the NUPOI1 (natural uranium foreningen, the paper and pulp factory of that union. It was conceived and power only pile). But the Dutch wizzard in Halden, at the time considering nu- practically born before the wedding. Dr. Wendt then produced a series of clear energy for process steam supply, Maybe a few short words about the more exotic proposals like »slurry» provided the site. On the 4th November, prehistory are appropriate: reactors and »suspension» reactors. This the last day, we delivered the complete The Institute for Atomic Energy (IFA) resulted in a year of discussions and package to the minister of industry, and in Norway had put its first experimental indecision in the Netherlands. the government decided the same day to heavy water reactor in operation in 1951. In the meantime came the U.S-A.'s place it before parliament. Earlier that year, the Senior Dutch astro- Atoms for Peace programme in 1955,and Considering the unending bureaucracy phycisist H. Kramers had combined the Dutch decided to use the opportunity involved in such nuclear decisions one efforts with his younger astrophysicist to buy a ready made American testing may today look upon this with pleasure friend in Norway to form JENER (Joint reactor. The Norwegians were not inter- or horror according to ones belief in Establishment for Nuclear Energy Re- ested in this, but highly interested in nuclear power. However, the speed of search. Dr. J.A. Goedkoop, who happens another new development: the demon- the approval process initiated a concer- to be the chairman of the Halden Board stration of the stability of boiling light ted effort by all the opposing quarters, 1 and only after two months of public protests and newspaper discussions, mainly from university quarters, and a public discussion with 500 people in the Norwegian Society of' Engineers, the plan was approved by parliament. The interesting point, when looking back, is that safety was not an issue. It was the question of distribution of funds between university research and i n d LI s t ri a I d e ve I o p me n t. We had already started blazing the big hole in the mountain in Maiden before the final permission from the parliament. We could do that because we had esta- blished IFA as an independent non-profit organization with its own capital, which wc could risk even if the final answer should be 110. In that case, however, we would have been sitting with a big hole in the mountain and no money, not a very attractive situation. Now we could turn Lo the technical problems. The first pressing one was: Would we dare to construct a flat lid on top of the pressure vessel? Some of the engineers with a good university training said: j\'o, it must be curved for safety reasons! However, our basic idea was to build a reactor where you could change the fuel elements easily without unscrew- ing the lid. Only a flat top with holes in il could achieve that. Odd Dahl was con- vinced that a thick flat lid with an alumi- nium packing against the tank flange would work. Others were convinced it would curve, leak or blow off. The de- cision had to be made to meed the dead- line for the tank order.
Recommended publications
  • NORSK DATA AS SINTRAN Iii Reference Manual
    SINTRAN Il Reference Manual NORSK DATA AS SINTRAN IiI Reference Manual ND-60.128.03 NOTICE The information in this document is subject to change without notice. Norsk Data A.S assumes no responsibility for any errors that may appear in this document. Norsk Data A.S assumes no responsibility for-the use or reliability of its software on equipment that is not furnished or supported by Norsk Data A.S. The information described in this document is protected by copyright. It may not be photocopied, reproduced or translated without the prior consent of Norsk Data A.S. Copyright © 1983 by Norsk Data A.S This manual is in loose leaf form for ease of updating. Old pages may be removed and new pages easily inserted if the manual is revised. The loose leaf form also allows you to place the manual in a ring binder (A) for greater protection and convenience of use. Ring binders with 4 rings corre- sponding to the holes in the manual may be ordered in two widths, 30 mm and 40 mm. Use the order form below. The manual may also be placed in a plastic cover (B). This cover is more suitable for manuals of less than 100 pages than for large manuals. Plastic covers may also be ordered below. M= | ~ . IB== B 'S NORSK DATA AS NORSK DATA AS Bil=i & e lll\ ® A Ring Binder B Plastic Cover Please send your order to the local ND office or {in Norway) to: Documentation Department Norsk Data A.S P.0O. Box 4, Lindeberg gérd Oslo 10 ORDER FORM | would like to order Ring Binders, 30 mm, at nkr 20,- per binder Ring Binders, 40 mm, at nkr 25,- per binder Plastic Covers at nkr 10,- per cover NAME ..
    [Show full text]
  • EVOLUTION of Cowtrot SYSTEMS for Aecelsiato&S
    - 271 - EVOLUTION OF COWTROt SYSTEMS FOR AeCELSiAtO&S M.C. Crovley-Milling CRM, Geneva 1, HISTORICAL The ««liest accelerator* wer« quite •»*'. 1, and their controls few, as can be seen from fig. 1 which ahow* the 11-inch eye lot ron built by Lawrence and Livingstone in 1932. Control wm by switches sai variable resistors and indication by a variety of Meters, wired directly iota the appropriate circuit, Where the control eleaemt had to be at high vol• tage, a loop of string vat often uted Co operate it. I1* Figur* t : the 11-inch Cyclotron at Berkeley As the si«* and power of the accelerator* increased, they had to be surrounded by heavier and heavier »hielding, and the controls and indications had to be taken away from the accelerator lt»el£ and transferred to a separate control roo». At first this was done by ju»t extending the cables, keeping each control and indication separate, but the increa• sing number* of value» to be indicated led to some manual switching of instruments between different circuit* to save panel apace. In the 1980's, even though the cyclic, accelerators had grown up to 200 » in diameter, the expense of taking cables for every control element to the control too» was not exce««ive. However, in the i960'», project* of auch larger siae were being considered, where this would no longer be true. The first of theae was the "2-mile" electron lime at SLAC. This is composed of 240 alraott identical taodule*, each aodule having very many controls and indications of interest to the operators, The enormous number of cables which would be required to take all these to the control room was reduced considerably by rentóte awl t i- plexing; that is switching one particular control or indication from each «©«Joie in turn onto the s«se set of cables.
    [Show full text]
  • TU-P20 How to Survive the Upgrade Treadmill
    HOW TO SURVIVE THE UPGRADE TREADMILL Kirsten Hinsch, Ursula Lauströer, Rüdiger Schmitz, Winfried Schütte - DESY Hamburg, Germany Abstract Lets look a little closer on the impact of changes in Here at DESY we have nine large particle accelerators each part of our environment. and correspondingly a large and complex control system. It consists of subsystems of many generations of hard and 3 IMPACT OF CHANGES software. Until recently we even had to support Norsk Data mini computers so called NORDs. The number of 3.1 Changes in the accelerator applications is considerably more than a thousand. The This is a true place of peace and tranquility. Of course a control team consists of a dozen people aged typically in new accelerator needs a new control system. A closed one the fifties. This large, diverse and understaffed system in- does not need one anymore. Still a major change in the troduces a considerable amount of (healthy) inertia. On accelerator does not necessary have any imp act on the the other hand we have a fast hard- and software upgrade technologies used. It is just a good and most welcome op- cycle in the general computing scene. There is every few portunity to change things now. years a major operating system upgrade. This conflict produces tension and stimulation. 3.2 Network Network upgrades have moderate impact on the other 1 INTRODUCTION areas (fair degree of orthogonality). The major problem we have now is CISCOs mediocre IPX support. We ex- Everybody who works a few years in our field physical- pect this to get worse.
    [Show full text]
  • The Founding, Fantastic Growth, and Fast Decline of Norsk Data AS Tor Steine
    The Founding, Fantastic Growth, and Fast Decline of Norsk Data AS Tor Steine To cite this version: Tor Steine. The Founding, Fantastic Growth, and Fast Decline of Norsk Data AS. 3rd History of Nordic Computing (HiNC), Oct 2010, Stockholm, Sweden. pp.249-257, 10.1007/978-3-642-23315- 9_28. hal-01564615 HAL Id: hal-01564615 https://hal.inria.fr/hal-01564615 Submitted on 19 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License The Founding, Fantastic Growth, and Fast Decline of Norsk Data AS Tor Olav Steine Formerly of Norsk Data AS [email protected] Abstract. Norsk Data was a remarkable company that in just twenty years went from a glimmer in the eyes of some computer enthusiasts to become number two in share value at the Oslo Stock Exchange. Within a few years thereafter, it collapsed, for no obvious reason. How was this tremendous success possible and why did the company collapse? Keywords: Collapse, computer, F16, industry, minicomputer, Norsk Data, Nord, simulator, success, Supermini 1 The Beginning 1.1 FFI A combination of circumstances led to the founding of Norsk Data1 in June 1967.
    [Show full text]
  • Fifty-Year Anniversaries in Norwegian Computing History
    EVENTS AND SIGHTINGS Editor: Chigusa Kita Fifty-Year Anniversaries in Norwegian Computing History wo fifty-year anniversaries in computing history were celebrated in Oslo in September 2017: the fifty-year T anniversary of the creation of the Simula program- ming language, and the fifty-year anniversary of the found- ing of the Norsk Data computer company. Simula The Simula 67 programming language, first formally defined in 1967, was a step in a series of developments by Ole-Johan Dahl and Kristen Nygaard that began in the early 1960s.1 Dahl and Nygaard were given the 2001 IEEE John von Neumann Medal and the ACM 2001 A.M. Turing Award for their creation of Simula. A fifty-year anniversary celebration for Simula took place (in the “Simula Auditorium” in the “Ole-Johan Dahl Building”) at the University of Oslo on 27 September 2017. PHOTO 1. Photo credit: Harald Brombach/digi.no. The celebration began with unveiling of a plaque from the IEEE History Committee’s Milestone program. The plaque reads: chaired by Eric Jul (“Whither Programming Languages? Can IEEE Milestone We Still Celebrate Simula 50 Years from Now?”) with partic- Object-oriented Programming, 1961–1967 ipation of the prior three speakers and Ole Lehrmann Mad- Ole-Johan Dahl and Kristen Nygaard created the sen and Olaf Owe.2 Videos from the event are available.3 Simula programming languages in the 1960s at the The previous afternoon, the Association of Simula Norwegian Computer Center, and in so doing intro- Users (ASU) held a several-hour meeting at which there duced a new way of modeling and simulating complex were six presentations and a wrap-up session.
    [Show full text]
  • The Oslo Cyclotron Data Acquisition System
    NO9100105 UNIVERSITY OF OSLO DAISY the Oslo Cyclotron Data Acquisition System T. Ramsøy Department of Physics, University of Oslo, Norway £>uf*-- Report91-21 • Received 1991-08-30 ISSN-0332 5571 *__' ,*.a-",' J";"^'^" DEPARTMENT OF PHYSICS REPORT SERIES Hi Ail lill JU ILI mil ..J Ji Jl lll'feiliili' Preface This document is intended for anyone that will use the Oslo cyclotron data acquisition system or wants to get some deeper understanding of the structure of the system. Each chapter is opened with a more general description. The contents should be known to all users. More technical information is found in the last part of the chapter. The source code listing is found in a separate volume, "DAISY - Volume 2, Appendix " available at the cyclotron laboratory. Oslo 30-08-1991 'T&H. (jo Tore Ramsøsøyy // Contents 1. Introduction 3 2. VME front-end system ........— „ 4 2.1 Getting started 4 2.1.1 Preparing for a run 6 2.1.2 Starting the data acquisition 9 2.1.3 Resetting the VME system 9 2.2 Hardware 11 2.2.1 Processor unit 11 2.2.2 Trigger pattern unit 12 2.2.3 NIM interface system 13 2.2.4 CAMAC interface 14 2.2.5 Power supply and crate 14 2.3 Software 15 2.3.1 Event_Builder 15 2.3.2 Memory allocation 17 2.3.3 Data format 18 2.3.4 Pattern bit allocation 19 2.3.5 Compilation and loading 21 3. VME to ND link 22 3.1 Operating the link 22 3.1.1 Restarting the DOMINO controller 22 3.2 Hardware 24 3.2.1 The DOMINO controller 24 3.2.2 Internal VMEbt) - crate 24 3.2.3 VME-VME link 24 3.2.4 Architecture 25 3.3 Software 26 3.3.1 Memory mapping 27 3.3.2 Compilation and loading 28 4.
    [Show full text]
  • The Pioneer Era in Norwegian Scientific Computing (1948 -1962)
    THE PIONEER ERA IN NORWEGIAN SCIENTIFIC COMPUTING (1948 -1962) Drude Berntsen Director of the Norwegian Computing Center 1970 – 1989; [email protected] Abstract: This paper gives a survey of the pioneer era in Norwegian scientific computing. Right after the Second World War research councils and research institutions were established and young scientists got scholarships to study abroad. Many caught interest in the new mathematical machines. In 1950, the Royal Norwegian Council for Scientific and Industrial Research decided to build a Norwegian computer, later called NUSSE, and by 1952 the Norwegian Computing Center for pure and applied research, was organized. The paper describes activities at the universities in Oslo, Bergen, and Trondheim, as well as at the Norwegian Defense Research Establishment at Kjeller. In the late 1950s, both the Central Bureau of Statistics and the Norwegian Meteorological Institute installed their first general-purpose computers. This was before such computers were installed at the University of Oslo and at the NTH, the technical university in Trondheim. The paper closes noting the contract signed in 1962 for the first UNIVAC 1107 to Europe. Key words: Scientific computing, pioneers, NUSSE, Norwegian 1. THE PERIOD BEFORE 1949 (BEFORE THE REAL START) The Central Bureau of Statistics in Norway ordered their first Hollerith tabulator in 1894. Norway used it for the censuses in 1900 and 1910. When the war broke out in 1940, there were 27 punched card installations in the country mostly in public offices, insurance companies, and in industry, but also some in the universities. Professor Svein Rosseland at the Institute of Theoretical Astrophysics at the University of Oslo (UiO) searched for tools and new methods for solving 24 Drude Berntsen differential equations.
    [Show full text]
  • Data Acquisition Using the 168/~ J
    SLAGPUB-3673 CERN/DD/83/4 March 1983 (W DATA ACQUISITION USING THE 168/~ J. T. CARROLL* Stanford Linear Accelerator Center Stanford University, Stanford, California 9&?&i and CERN, 1211 Geneva 23, Switzerland SCITTOLIN, M. DEMOULIN, A.FucqB. MARTIN A. NORTON, J.P. PORTE,P.Ross~ AND K.M STORR CERN, 1211 Genetie 23, Switierland - ABSTRACT Event sizes and data rates at the CERN i>p collider compose a formidable environ- ment for a high level trigger. A system using three 168/~ processors for experiment UAl real-time event selection is described. With 168/E data memory expanded to 512K bytes, each processor holds a complete event allowing a FORTRAN trigger al- gorithm accessto data from the entire detector. A smart CAMAC interface reads five Remus branches in parallel transferring one word to the target processor every 0.5 ps. The NORD host computer can simultaneously read an accepted event from another processor. -. Presented at the Three Day In-Depth Review on the Impact of Specialized Processors in Elementary Particle Physics, Padova, Italy, March 23-25, 1983. * Work supported by the Department of Energy, contract DEAC03-76SFOO515. 1. INTRODUCTION The UAl experiment uses a large image chamber central detector in a dipole mag- netic field. The Central Detector (CD) surrounded by electromagnetic and hadronic calorimeters, muon chambers and forward detectors is described extensively else- where.l The full detector has about 20,000 channels generating 1.6M bytes of raw data for each event. For the CD which produces most of this, zero suppression and data compaction yield an average of 38K bytes which must be recorded on tape.
    [Show full text]
  • Norsk Data AS, the Fenomenon (Brief) Content
    Norsk Data AS, The Fenomenon (brief) Tor Olav Steine, with the help of former colleaguesi . Abstract. Norsk Data was a remarkable company that went in just 20 years from a glimmer in the eyes of some computer enthusiasts to become number 2 in stock value at Oslo Stock Exchange. Then within a few years it collapsed, without obvious reason. How was this tremendous success possible and why did it collapse? NOTE: This history brief of the Norsk Data Company is based upon a Springer Verlag publication resulting from the HINC3 Conference in Stockholm 2010. It is ONLY for personal use, and not allowed for distribution or publishing. Content 1 The beginning ................................................................................................................................................. 2 2. The demanding customers .............................................................................................................................. 4 3 The years of fast growth ................................................................................................................................. 7 4. Crisis and downfall ......................................................................................................................................... 9 6. About the Author .......................................................................................................................................... 11 7. References ...................................................................................................................................................
    [Show full text]
  • Internett.No/Historie
    Unn Kristin Daling og Øyvind Thomassen Internett.no/historie NTNU Trondheim 2006 Innhald Kapittel 1: Innleiing 1 Måtar å forstå og forklare Internett på 2 Internett som teknologipolitikk 3 Internett - resultat av forsvarspolitikk eller vitskapleg idealisme 5 Utfordringar i det å skrive om Internett 6 Kapittel 2: Galaktisk nett 9 Internettet som ein "endelaus frontier" 10 ”Galactic Network” 13 Kald krig - networking for fred 16 Pakkesvitsjing 18 Todelt arkitektur 22 ARPAnet – Fugl Fønix stig opp 23 Europa koplast til ARPAnet 27 Larry Roberts og Bob Kahn på besøk hos FFI 29 Eksperimentelle nett i ARPAnet og Xerox 31 SATNET 34 Eit nett av nett 35 Noreg blir først på ARPAnet 37 Det var ganske alvorlig altså…. ingen ville snakke om det… 38 FFI koplast til ARPAnet 41 Eit nett utan grenser 44 Avslutning 46 Kapittel 3: Internett 55 ARPAnet delast i to nett 56 CSNet, BITNET og NSFNET 57 På veg mot noko nytt… 59 This software’s going to change everything… 60 www legg grunnlaget for det globale Internett 61 Nettlesarkrigen 65 Verda går online 69 Det idealistiske Internett 72 USENET til Noreg 75 Hacker-rørsla tar form 76 Free Software versus Open Source 78 Phreaks og Crackers 82 Avslutning 85 Kapittel 4: Forskingsnett 91 Dele på datamaskinkapasitet ved distribuert datahandsaming 92 Televerket sitt prøvedatanett – eit nordisk prosjekt 94 Pakkesvitsj eller linesvitsj? 98 Kontaktgruppa for televerkssamarbeid 99 Distribuert datahandsaming og fleksibel brukerterminal 104 Lokalnettplanar i Trondheim 106 Frå lastebil til fjerndataterminal 107 Lokalnettplanar
    [Show full text]
  • The Founding, Fantastic Growth, and Fast Decline of Norsk Data AS
    The founding, fantastic growth, and fast decline of Tor Olav Steine [email protected] The best view of Rondane.. The Ronde Castle, 2178m The High Ronde 2118m ..is seen from one of the lesser tops (the High Ronde in the back) www.norsk-data.no FFI Cipher Group 1966? The First Three and the Chairman Rolf Skår Lars Monrad-Krohn Per Bjørge TerjeMikalsen Product maturation through projects SAM2 Nord1 F-16 sim. Mac, Fortran ND 5,50,500.. SINTRAN NORTEXT LFK Net NOTIS TSS, QED CAD/CAM SIBAS, TPS ADMIN SW NSB, KOS, LEO The Nord 1 Wilh. Wilhelmsen Taimyr 1968: Nord 1 Radar support anti-collision Tokke hydro power stations Dave Walden in the Arpanet team D a v e ARPANET Logical Map, March 1977 Rolf Skår summed it up as follows: No Bo Lewendal, no TSS. No TSS, no CERN contract, Bo Lewendal ca 1971 No Cern contract, ND bankrupt in 1973! LHC: The Large Hadron Collider Geneva Airport Norsk Data delivered Nord 10 computers To control the SPS ring, starting in 1974. Robert Cailliau, Tim Berners-Lee (left) and Ted Nelson (right) at a WWW conference in Tokyo 1997. F16 simulator Saving flight hours in the air NSB Cargo Car Supervision (1976): - Wagon rating - Maintenance - Tracking Product maturation through projects SAM2 Nord1 F-16 sim. Mac, Fortran ND 5,50,500.. SINTRAN 1-3 NORTEXT LFK Net NOTIS TSS, QED CAD/CAM SIBAS, TPS ADMIN SW NSB, KOS, LEO The ND 10 Panel The NOTIS Concept The NOTIS Keyboard How do you inspire people to perform at a maximum level? The ND Spirit • Work: You spend at least half of your time awake at work—get the most out of it! • Solutions: Do not choose the easiest one, choose the one you think is right! • Work pressure: The reward usually is proportional with the difficulties.
    [Show full text]
  • Output Devices
    TUGboat, Volume 2, No. 1 OUTPUT DEVICES: A NEW COLUMN familiar?) Along with this came other smaller prob- Barry Doherty lems, including the problem of making PASCAL mn,in an interactive mode in Om(Stanford's To aid the development of output device inter- timesharing system). My primary objective wss to faces, we would like to collect and report informa- get PASCAL/VS up and running for the Stanford tion on work in progress on interfaces. It would community. Hence, this is where the main burst greatly help both those who are considering install- of activity is taking place. Of course, will be ing an output device and those who are working on the first major program to be run using interactive interfaces to have information on who is working on PASCAL. Projections about when a working version interfaces for which devices. If you are involved in of 'l)jX will be available run in the neighborhood of such a project, please send TUGboat the following the end of February to mid-March (1981), although information for this column: no ked commitment is being made at this time. - host computer (and operating system); Some initial looking into the hardware to be used - output device; for printing 'I$$at Stanford has begun, but this is a - status of the work; separate project and nothing substantial can be said - your name and phone number and your or- at this time. ganiration's name and address. Those interested in information on the availability Please send all information to TUGboat. We'll start of the 'I?@implementation at C.I.T.
    [Show full text]