<<

Exploring in the through acoustic oscillation

WMAP CMB power SDSS correlation

Yasushi Suto Department of Physics, University of Tokyo KEKKEK AnnualAnnual TheoryTheory MeetingMeeting onon ParticleParticle PhysicsPhysics PhenomenologyPhenomenology (KEKPH07):(KEKPH07): MarchMarch 3,3, 20072007 1 Without dark nights, one could have never imagined …

2 what really dominates our world

3 a planet with six Suns

„ no “night” except the total eclipse due to another planet every 2050 years „ People realized the true world for the first

time through the darkness full of “stars” 4 Darkness is the key to understanding our world better

„ Beyond the edge of our current horizon (= “darkness”, “dark night”) „ philosophy, astronomy, and therefore physics started from thinking in the dark „ Should still apply now „ Another element: , dark energy „ Another Earth: extrasolar planet „ Another world: Multiverse „ Another life: extra-terrestrial intelligence 5 Dark energy in the universe

cosmic acceleration Universal repulsion? Cosmological constant? Dark energy? universe Size of the Modified gravity? time 13.7 Gyr 6 From cosmological constant to dark energy

„ 1916: general relativity „ 1917: Einstein’s static universe „ After 1980’s: vacuum energy density 1 =Λ+− 8π TGggRR μν 2 μν μν μν Dark energy Cosmological constant (matter ) (geometrical quantity) 1 ⎛ Λ ⎞ μν μν =− 8π ⎜TGgRR μν − gμν ⎟ 2 ⎝ 8π G ⎠ „ Natural value: the units 5 c 93 3 Λ 121 ×≈=Λ g/cm102.5 Λ ≡Ω⇔ 2 ≈ 10 hG 3H0 The worst discrepancy „ Observed value: ΩΛ ≈ 7.0 in the history of physics ! 7 Dark energy and the equation of state of the universe „ Parameterized equation of state „ (pressure) = w x (density) „ w=0: dark matter, „ w=1/3: radiation „ w=-1: cosmological constant „ Poisson eq. in GR : Δφ=4πG(ρ+3p)=4πGρ(1+3w) w<-1/3 ⇒ repulsion force „ Negative pressure: dark energy „ More generally w may be time-dependent 8 Why important ? „ New physics „ Steven Weinberg „ major but unknown component of the universe ? “Right now, not only for „ Breakdown of general relativity but for at cosmological scales? elementary particle „ Astronomy is the key theory this is the bone in 10000 the throat” Total number „ Edward Witten 1000 “Would be number one Papers posted on on my list of things to 100 astro-ph figure out” Dark energy „ Frank Wilczek 10 related papers “Maybe the most fundamentally ysterious 1 thing in basic science” 3 4 5 6 7 8 9 0 1 2 3 5 6 199199 199 199199 199 199200 200 200200 2004200200 9 Signatures of dark energy

„ cosmic acceleration „ geometry of the universe „ evolution of structure „ Probes „ Supernova Hubble diagram „ Cosmic Microwave Background „ Gravitational lensing „ Baryon Acoustic Oscillation R

t 10 Standard candle: observed flux: F absolute SN Ia : L ×× Distance: D SN2001cw (z=0.93) dark energy parameter can be read off from the L comparison between D = the model and the 4πF observation observational estimate 11 Accelerating universe from SN Ia data Dimmer SN Legacy Survey (Astier et al. 2006) (more distant) SN Ia

×× acceleration

normalized by empty universe prediction

deceleration

Brighter Relative observational flux of SNe Relative (closer) present past time 12 Standard ruler: baryon- acoustic oscillation length

„ Sound horizon length at recombination(=cs×0.37Myr) 2 -0.25 2 -0.08 „ rs=147 (Ωm h / 0.13) (Ωb h / 0.024) Mpc „ Estimate the distance to the CMB last-scattering surface using the above as a standard ruler 13 Acoustic oscillation illustrated (1)

„ in the early universe, the major components of the Mass excess profile universe, i.e., dark around a perturbation matter, , , neutrinos, behave as a strongly-coupled single fluid

http://cmb.as.arizona.edu/~eisenste/acousticpeak/acoustic_physics.html 14 Acoustic oscillation „ neutrinos decouple earlier and illustrated (2) start free-streaming „ dark matter stays around the center due to its self-gravity Mass excess profile „ baryons and around a perturbation photons behave as a single fluid. The central concentration induces pressure and generates an outward acoustic spherical wave http://cmb.as.arizona.edu/~eisenste/acousticpeak/acoustic_physics.html 15 Acoustic oscillation illustrated (3)

„ After recombination (z=1000, t=0.37Myr) , baryons and photons decouple. photons start free- streaming while baryons keep the acoustic features

http://cmb.as.arizona.edu/~eisenste/acousticpeak/acoustic_physics.html16 Acoustic oscillation illustrated (4) „ after decoupled from photons, baryons fall into the Final mass (baryons gravitational + dark matter) density profile potential due to dark matter „ dark matter acquires the baryon acoustic feature via their gravitational evolution http://cmb.as.arizona.edu/~eisenste/acousticpeak/acoustic_physics.html 17 Evolution of density profile around a peak

http://cmb.as.arizona.edu/~eisenste/acousticpeak/acoustic_physics.html 18 CMB acoustic oscillation

NASA/WMAP Science Team 19 BAO as a standard ruler

25.02 08.02 rs = Ωmh Ωbh Mpc)/024.0()/13.0(147

„ Distant measurement at different epochs „ Promising methodology to observationally constrain dark energy

Picture credit: Bob Nichol 20 Acoustic scales and geometry of the universe

NASA/WMAP Science Team

21 Power spectrum of mass density fluctuations with baryon acoustic oscillation effect

(A.Taruya, T. Nishimichi) 22 Acoustic oscillations detected CMB photons WMAP 3yr z=0.4 Eisenstein et al. (Spergel et al. 2007) (2005)

z=1000

SDSS galaxy correlation function

25.02 08.02 rs = Ωmh Ωbh Mpc)/024.0()/13.0(147 23 WMAP3

Ωm=0.24 best-fit WMAP model CMB acoustic peaks

SDSS

Percival et al. (2007) Baryon acoustic oscillation

24 Combined constraints from SN and BAO SN Legacy Survey (Astier et al. 2006)

SDSS galaxy BAO (Eisenstein et al. 2005)

Dark energy density parameter Dark energy density Matter density parameter w=-1.023±0.090(systematic) ± ( ) Matter density parameter 0.054 statistical25 future dark energy survey projects „ DES: Dark Energy Survey (Fermi Lab+, 2011-?) „ Imaging galaxy survey „ 5000 deg2@Chile 4m telescope „ HSC: Hyper Suprime-Cam (Subaru+Princeton, 2011-) „ Imaging galaxy survey 1.5deg FOV „ 2000 deg2@Subaru 8m telescope „ LSST: Large Synoptic Survey Telescope (SLAC+, 2014-?) „ Imaging galaxy survey „ 20000 deg2@Chile 8.4m dedicated telescope „ WFMOS: Wide Field Multi-Objects Spectrograph (Subaru+Gemini+???, 2015-???) „ Spectroscopic galaxy survey 1.5deg FOV „ 4000 fibers, 20000 galaxy a night

26 Hyper Suprime-Cam project

„ Ministry of Education, Special Priority Area Grant-in-Aid: 2006-2011 “Study of Dark Energy from Wide-Field Deep Survey of the Universe” „ Constraining dark energy via gravitational lensing survey „ PI: Hiroshi Karoji (NAOJ) „ CCD: Satoshi Miyazaki (NAOJ) „ DAQ: Hiroaki Aihara (U.Tokyo) „ Theory groups at NAOJ, Univ. of Tokyo, Nagoya Univ. Tohoku Univ. „ Princeton Univ. will join officially 27 WFMOS proposal: Subaru+Gemini spectroscopic survey

„ Observational constraints on dark energy „ Accurate measurement of the baryon acoustic scales in galaxy distribution „ 4000 multi-fiber spectrograph on 1.5deg FOV cameta at Subaru prime focus „ 0.5

„ modified Friedmann equation (spatially flat) /2 n 2 H 8πG H − /22 n =− ρ rc 3 „ n=2: DGP model, n=∞ : cosmological constant

„ rc: key parameter ~1/H0

„ rrc: 5D space-time „ if spatially flat n−2/2 0rH c 1)( Ω−= m 29 Predicted shifts of BAO peaks

purely linear theory, observation in ΛCDM assumed Yamamoto et al. (2006) 30 Current constraints from the SDSS LRG sample

data from Hütsi (astro-ph/0409278)

fit to linear theory for k<0.2hMpc-1 observation in ΛCDM assumed

Yamamoto et al. (2006) 31 Expected constraints from future WFMOS z=1 sample

Yamamoto et al. (2006) 32 International Research Network for Dark Energy (JSPS, core-to-core program 2007-2008)

Princeton U. Caltech Dept. of Dept. of Astron. Astrophys. Sci. Univ. of Tokyo Res. Center for coordinator coordinator the Early Universe Richard Ellis Edwin Turner coordinator Yasushi Suto CMB Supernova Weak lens mapping Tohoku NAOJ Baryon oscillation Univ. Kyoto Hiroshima Univ. Univ. Nagoya Edingburgh U. Univ. Royal Obs. coordinator Theoretical model Baryon oscillation John Peacock Weak lens mapping 33 We now realize an amazing fact that our world beyond this blue sky is dominated by dark energy

34 Let us thank our Earth for wonderful dark nights 35