Dark Energy from a Space-Based Platform
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GRB 180418A: a Possibly Short Gamma-Ray Burst with a Wide-Angle Outflow in a Faint Host Galaxy
GRB 180418A: A Possibly Short Gamma-Ray Burst with a Wide-angle Outflow in a Faint Host Galaxy Item Type Article; text Authors Rouco Escorial, A.; Fong, W.; Veres, P.; Laskar, T.; Lien, A.; Paterson, K.; Lally, M.; Blanchard, P.K.; Nugent, A.E.; Tanvir, N.R.; Cornish, D.; Berger, E.; Burns, E.; Cenko, S.B.; Cobb, B.E.; Cucchiara, A.; Goldstein, A.; Margutti, R.; Metzger, B.D.; Milne, P.; Levan, A.; Nicholl, M.; Smith, N. Citation Rouco Escorial, A., Fong, W., Veres, P., Laskar, T., Lien, A., Paterson, K., Lally, M., Blanchard, P. K., Nugent, A. E., Tanvir, N. R., Cornish, D., Berger, E., Burns, E., Cenko, S. B., Cobb, B. E., Cucchiara, A., Goldstein, A., Margutti, R., Metzger, B. D., … Smith, N. (2021). GRB 180418A: A Possibly Short Gamma-Ray Burst with a Wide-angle Outflow in a Faint Host Galaxy. Astrophysical Journal, 912(2). DOI 10.3847/1538-4357/abee85 Publisher IOP Publishing Ltd Journal Astrophysical Journal Rights © 2021. The American Astronomical Society. All rights reserved. Download date 28/09/2021 16:20:20 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/660724 The Astrophysical Journal, 912:95 (19pp), 2021 May 10 https://doi.org/10.3847/1538-4357/abee85 © 2021. The American Astronomical Society. All rights reserved. GRB 180418A: A Possibly Short Gamma-Ray Burst with a Wide-angle Outflow in a Faint Host Galaxy A. Rouco Escorial1, W. Fong1 , P. Veres2 , T. Laskar3 , A. Lien4,5, K. Paterson1 , M. Lally1 , P. K. -
GRIPS-Gamma-Ray Imaging, Polarimetry and Spectroscopy
Experimental Astronomy manuscript No. (will be inserted by the editor) GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy www.grips-mission.eu? Jochen Greiner · Karl Mannheim · Felix Aharonian · Marco Ajello · Lajos G. Balasz · Guido Barbiellini · Ronaldo Bellazzini · Shawn Bishop · Gennady S. Bisnovatij-Kogan · Steven Boggs · Andrej Bykov · Guido DiCocco · Roland Diehl · Dominik Els¨asser · Suzanne Foley · Claes Fransson · Neil Gehrels · Lorraine Hanlon · Dieter Hartmann · Wim Hermsen · Wolfgang Hillebrandt · Rene Hudec · Anatoli Iyudin · Jordi Jose · Matthias Kadler · Gottfried Kanbach · Wlodek Klamra · J¨urgenKiener · Sylvio Klose · Ingo Kreykenbohm · Lucien M. Kuiper · Nikos Kylafis · Claudio Labanti · Karlheinz Langanke · Norbert Langer · Stefan Larsson · Bruno Leibundgut · Uwe Laux · Francesco Longo · Kei'ichi Maeda · Radoslaw Marcinkowski · Martino Marisaldi · Brian McBreen · Sheila McBreen · Attila Meszaros · Ken'ichi Nomoto · Mark Pearce · Asaf Peer · Elena Pian · Nikolas Prantzos · Georg Raffelt · Olaf Reimer · Wolfgang Rhode · Felix Ryde · Christian Schmidt · Joe Silk · Boris M. Shustov · Andrew Strong · Nial Tanvir · Friedrich-Karl Thielemann · Omar Tibolla · David Tierney · Joachim Tr¨umper · Dmitry A. Varshalovich · J¨orn Wilms · Grzegorz Wrochna · Andrzej Zdziarski · Andreas Zoglauer Received: 21 April 2011 / Accepted: 2011 ? See this Web-site for the author's affiliations. Jochen Greiner Karl Mannheim MPI f¨urextraterrestrische Physik Inst. f. Theor. Physik & Astrophysik, Univ. W¨urzburg arXiv:1105.1265v1 [astro-ph.HE] 6 May 2011 85740 Garching, Germany 97074 W¨urzburg,Germany Tel.: +49-89-30000-3847 Tel.: +49-931-318-500 E-mail: [email protected] E-mail: [email protected] 2 Abstract We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range (COMPTEL, INTEGRAL; see Fig. -
Report from the Dark Energy Task Force (DETF)
Fermi National Accelerator Laboratory Fermilab Particle Astrophysics Center P.O.Box 500 - MS209 Batavia, Il l i noi s • 60510 June 6, 2006 Dr. Garth Illingworth Chair, Astronomy and Astrophysics Advisory Committee Dr. Mel Shochet Chair, High Energy Physics Advisory Panel Dear Garth, Dear Mel, I am pleased to transmit to you the report of the Dark Energy Task Force. The report is a comprehensive study of the dark energy issue, perhaps the most compelling of all outstanding problems in physical science. In the Report, we outline the crucial need for a vigorous program to explore dark energy as fully as possible since it challenges our understanding of fundamental physical laws and the nature of the cosmos. We recommend that program elements include 1. Prompt critical evaluation of the benefits, costs, and risks of proposed long-term projects. 2. Commitment to a program combining observational techniques from one or more of these projects that will lead to a dramatic improvement in our understanding of dark energy. (A quantitative measure for that improvement is presented in the report.) 3. Immediately expanded support for long-term projects judged to be the most promising components of the long-term program. 4. Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors. 5. An immediate start for nearer term projects designed to advance our knowledge of dark energy and to develop the observational and analytical techniques that will be needed for the long-term program. Sincerely yours, on behalf of the Dark Energy Task Force, Edward Kolb Director, Particle Astrophysics Center Fermi National Accelerator Laboratory Professor of Astronomy and Astrophysics The University of Chicago REPORT OF THE DARK ENERGY TASK FORCE Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. -
NASA's Goddard Space Flight Center Laboratory for High Energy
1 NASA’s Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 @S0002-7537~99!00301-7# This report covers the period from July 1, 1997 to June 30, Toshiaki Takeshima, Jane Turner, Ken Watanabe, Laura 1998. Whitlock, and Tahir Yaqoob. This Laboratory’s scientific research is directed toward The following investigators are University of Maryland experimental and theoretical research in the areas of X-ray, Scientists: Drs. Keith Arnaud, Manuel Bautista, Wan Chen, gamma-ray, and cosmic-ray astrophysics. The range of inter- Fred Finkbeiner, Keith Gendreau, Una Hwang, Michael Loe- ests of the scientists includes the Sun and the solar system, wenstein, Greg Madejski, F. Scott Porter, Ian Richardson, stellar objects, binary systems, neutron stars, black holes, the Caleb Scharf, Michael Stark, and Azita Valinia. interstellar medium, normal and active galaxies, galaxy clus- Visiting scientists from other institutions: Drs. Vadim ters, cosmic-ray particles, and the extragalactic background Arefiev ~IKI!, Hilary Cane ~U. Tasmania!, Peter Gonthier radiation. Scientists and engineers in the Laboratory also ~Hope College!, Thomas Hams ~U. Seigen!, Donald Kniffen serve the scientific community, including project support ~Hampden-Sydney College!, Benzion Kozlovsky ~U. Tel such as acting as project scientists and providing technical Aviv!, Richard Kroeger ~NRL!, Hideyo Kunieda ~Nagoya assistance to various space missions. Also at any one time, U.!, Eugene Loh ~U. Utah!, Masaki Mori ~Miyagi U.!, Rob- there are typically between twelve and eighteen graduate stu- ert Nemiroff ~Mich. Tech. U.!, Hagai Netzer ~U. Tel Aviv!, dents involved in Ph.D. research work in this Laboratory. Yasushi Ogasaka ~JSPS!, Lev Titarchuk ~George Mason U.!, Currently these are graduate students from Catholic U., Stan- Alan Tylka ~NRL!, Robert Warwick ~U. -
Arxiv:1707.01004V1 [Astro-Ph.CO] 4 Jul 2017
July 5, 2017 0:15 WSPC/INSTRUCTION FILE coc2ijmpe International Journal of Modern Physics E c World Scientific Publishing Company Primordial Nucleosynthesis Alain Coc Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Universit´eParis–Saclay, Bˆatiment 104, F–91405 Orsay Campus, France [email protected] Elisabeth Vangioni Institut d’Astrophysique de Paris, UMR-7095 du CNRS, Universit´ePierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France), Sorbonne Universit´es, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France) [email protected] Received July 5, 2017 Revised Day Month Year Primordial nucleosynthesis, or big bang nucleosynthesis (BBN), is one of the three evi- dences for the big bang model, together with the expansion of the universe and the Cos- mic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. However, there remains a yet–unexplained discrepancy of a factor ≈3, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. The precision in deuterium observations in cosmological clouds has recently improved dramatically, so that nuclear cross sections involved in deuterium BBN need to be known with similar precision. We will shortly discuss nuclear aspects re- lated to BBN of Li and D, BBN with non-standard neutron sources, and finally, improved sensitivity studies using Monte Carlo that can be used in other sites of nucleosynthesis. -
The High Energy Astrophysics Division Newsletter
SPRING 2017 The High Energy Astrophysics Division Newsletter In this Issue: View from the Chair — special advertising section — hidden black holes revealed, and others — second running — finding a path through spacetime — announcing mysteries under the ice — performance enhancements for Chandra — milestones for XMM — the hunt continues for Swift — ULXNS — on the trail of the wild neutrino with INTEGRAL — searching at home with Fermi — energetic electrons seen at the ISS — news from the cosmos — of scientific interest — a Universe of learning — NICER launch prep — SRG progress — the wisdom of Athena — the slant on IXPE — the XARM — building CTA — all-seeing Lynx — in memoriam From the Chair for the discovery of merging black hole binaries, and for beginning the new era of gravitational-wave astronomy. CHRIS REYNOLDS (U. MD) Prof. González will give the Rossi Prize Lecture at the All systems are go for our 16th Divisional meeting to 231st AAS meeting to be held at National Harbor, MD be held in Sun Valley, Idaho, 20-24 August 2017! Regis- in January 2018. Please join me in congratulating all of tration and abstract submission is now open and we’re this year’s HEAD prize winners. looking forward to an exciting scientific program cover- ing all aspects of high-energy astrophysics, kicked off by The past few months has been eventful in the world a total solar eclipse! of high-energy astrophysics missions. NICER and ISS- CREAM are at the Kennedy Space Center and ready for One of the most important aspects of these meet- launch to the International Space Station. Further in the ings is the chance to honor a new batch of HEAD future, NASA has formally selected the Imaging X-ray Po- prize winners. -
The Reionization of Cosmic Hydrogen by the First Galaxies Abstract 1
David Goodstein’s Cosmology Book The Reionization of Cosmic Hydrogen by the First Galaxies Abraham Loeb Department of Astronomy, Harvard University, 60 Garden St., Cambridge MA, 02138 Abstract Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA’s successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. -
DARK AGES of the Universe the DARK AGES of the Universe Astronomers Are Trying to fill in the Blank Pages in Our Photo Album of the Infant Universe by Abraham Loeb
THE DARK AGES of the Universe THE DARK AGES of the Universe Astronomers are trying to fill in the blank pages in our photo album of the infant universe By Abraham Loeb W hen I look up into the sky at night, I often wonder whether we humans are too preoccupied with ourselves. There is much more to the universe than meets the eye on earth. As an astrophysicist I have the privilege of being paid to think about it, and it puts things in perspective for me. There are things that I would otherwise be bothered by—my own death, for example. Everyone will die sometime, but when I see the universe as a whole, it gives me a sense of longevity. I do not care so much about myself as I would otherwise, because of the big picture. Cosmologists are addressing some of the fundamental questions that people attempted to resolve over the centuries through philosophical thinking, but we are doing so based on systematic observation and a quantitative methodology. Perhaps the greatest triumph of the past century has been a model of the uni- verse that is supported by a large body of data. The value of such a model to our society is sometimes underappreciated. When I open the daily newspaper as part of my morning routine, I often see lengthy de- scriptions of conflicts between people about borders, possessions or liberties. Today’s news is often forgotten a few days later. But when one opens ancient texts that have appealed to a broad audience over a longer period of time, such as the Bible, what does one often find in the opening chap- ter? A discussion of how the constituents of the universe—light, stars, life—were created. -
Dark Energy and CMB
Dark Energy and CMB Conveners: S. Dodelson and K. Honscheid Topical Conveners: K. Abazajian, J. Carlstrom, D. Huterer, B. Jain, A. Kim, D. Kirkby, A. Lee, N. Padmanabhan, J. Rhodes, D. Weinberg Abstract The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group \Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv. arXiv:1309.5386v2 [astro-ph.CO] 24 Sep 2013 2 1 Cosmology and New Physics Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy. Cosmologists have historically turned to fundamental physics to understand the early Universe, successfully explaining phenomena as diverse as the formation of the light elements, the process of electron-positron annihilation, and the production of cosmic neutrinos. -
Controlling and Leveraging Small-Scale Information in Tomographic Galaxy-Galaxy Lensing
MNRAS 000,1{13 (2015) Preprint 19 March 2019 Compiled using MNRAS LATEX style file v3.0 Controlling and leveraging small-scale information in tomographic galaxy-galaxy lensing Niall MacCrann1;2?, Jonathan Blazek3, Bhuvnesh Jain4 and Elisabeth Krause5 1 Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA 2 Department of Physics, The Ohio State University, Columbus, OH 43210, USA 3 Institute of Physics, Laboratory of Astrophysics, Ecole´ Polytechnique F´ed´erale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA 5 Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The tangential shear signal receives contributions from physical scales in the galaxy- matter correlation function well below the transverse scale at which it is measured. Since small scales are difficult to model, this non-locality has generally required strin- gent scale cuts or new statistics for cosmological analyses. Using the fact that uncer- tainty in these contributions corresponds to an uncertainty in the enclosed projected mass around the lens, we provide an analytic marginalization scheme to account for this. Our approach enables the inclusion of measurements on smaller scales with- out requiring numerical sampling over extra free parameters. We extend the analytic marginalization formalism to retain cosmographic (\shear-ratio") information from small-scale measurements that would otherwise be removed due to modeling uncer- tainties, again without requiring the addition of extra sampling parameters. We test the methodology using simulated likelihood analysis of a DES Year 5-like galaxy- galaxy lensing and galaxy clustering datavector. -
High Redshift Quasar Hunting with the Dark Energy Survey
High Redshift Quasar Hunting with the Dark Energy Survey Quasars in the Epoch of Reionisation Sophie Reed Supervisors: Richard McMahon, Manda Banerji 1 Why? ★ Theories of black hole formation and evolution z = 6 - 15 z = 2 WORDS Epoch of peak of galaxy Reionization and quasar ★ Metal abundances in the early universe activity ★ Gas distribution and reionisationv z = 20 - 30 z = 6 - 8 Start of z = 1100 first stars Reionization matter-radiation “Population III” decoupling (CMB) 2 Quasar Spectrum at z ~ 6 Spectrum of a z = 5.86 quasar from Venemans et al 2007 Continuum break across rest frame Lyman-alpha (λrest = 121.6nm) gives distinctive colours 3 Quasar Spectrum at z ~ 6 480 nm 640 nm 780 nm 920 nm 990 nm 1252 nm 2147 nm 4 The Dark Energy Survey (DES) First Light September 2012 Very large area when completed: ~5000 deg2, currently have ~2000 deg2 Deep imaging: 10 σ limits for i and z are AB = 23.4 and AB = 23.2 Sophisticated camera, DECam Credit: DES Collaboration 5 DECam Mosaic of 62 2k by 4k CCDs (0.27” pixels) Multi waveband imaging: Visible (400 nm) to Near IR (1050 nm), g, r, i, z and Y bands covered Much more sensitive to red light than SDSS Credit: DES Collaboration 6 DES - SDSS Comparison SDSS was most sensitive to bluer light in the r band DES is most sensitive to redder light in the z band u g r i z Y 7 The VISTA Hemisphere Survey (VHS) Will cover 10,000 deg2 in the infrared when completed VHS-DES (J, H and K) overlaps DES and is deeper VHS-ATLAS (Y, J, H and K) is a shallower survey 8 Currently Known Objects Lots of quasars known -
Small-Scale Anisotropies of the Cosmic Microwave Background: Experimental and Theoretical Perspectives
Small-Scale Anisotropies of the Cosmic Microwave Background: Experimental and Theoretical Perspectives Eric R. Switzer A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF PHYSICS [Adviser: Lyman Page] November 2008 c Copyright by Eric R. Switzer, 2008. All rights reserved. Abstract In this thesis, we consider both theoretical and experimental aspects of the cosmic microwave background (CMB) anisotropy for ℓ > 500. Part one addresses the process by which the universe first became neutral, its recombination history. The work described here moves closer to achiev- ing the precision needed for upcoming small-scale anisotropy experiments. Part two describes experimental work with the Atacama Cosmology Telescope (ACT), designed to measure these anisotropies, and focuses on its electronics and software, on the site stability, and on calibration and diagnostics. Cosmological recombination occurs when the universe has cooled sufficiently for neutral atomic species to form. The atomic processes in this era determine the evolution of the free electron abundance, which in turn determines the optical depth to Thomson scattering. The Thomson optical depth drops rapidly (cosmologically) as the electrons are captured. The radiation is then decoupled from the matter, and so travels almost unimpeded to us today as the CMB. Studies of the CMB provide a pristine view of this early stage of the universe (at around 300,000 years old), and the statistics of the CMB anisotropy inform a model of the universe which is precise and consistent with cosmological studies of the more recent universe from optical astronomy.