The Optical Depth to Reionization As a Probe of Cosmological and Astrophysical Parameters Aparna Venkatesan University of San Francisco, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Year Wilkinson Microwave Anisotropy Probe (WMAP ) Observations: Determination of Cosmological Parameters
Accepted by the Astrophysical Journal First Year Wilkinson Microwave Anisotropy Probe (WMAP ) Observations: Determination of Cosmological Parameters D. N. Spergel 2, L. Verde 2 3, H. V. Peiris 2, E. Komatsu 2, M. R. Nolta 4, C. L. Bennett 5, M. Halpern 6, G. Hinshaw 5, N. Jarosik 4, A. Kogut 5, M. Limon 5 7, S. S. Meyer 8, L. Page 4, G. S. Tucker 5 7 9, J. L. Weiland 10, E. Wollack 5, & E. L. Wright 11 [email protected] ABSTRACT WMAP precision data enables accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat ¡ −dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data 2 2 £ ¢ ¤ ¢ £ ¢ ¤ ¢ £ ¢ only, the best fit parameters are h = 0 ¢ 72 0 05, bh = 0 024 0 001, mh = 0 14 0 02, ¥ +0 ¦ 076 ¢ £ ¢ § ¢ £ ¢ = 0 ¢ 166− , n = 0 99 0 04, and = 0 9 0 1. With parameters fixed only by WMAP 0 ¦ 071 s 8 data, we can fit finer scale CMB measurements and measurements of large scale structure (galaxy surveys and the Lyman ¨ forest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stel- lar ages, the baryon/photon ratio is consistent with measurements of the [D]/[H] ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experi- ments (ACBAR and CBI), 2dFGRS measurements and Lyman ¨ forest data to find the model’s 1WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. -
Report from the Dark Energy Task Force (DETF)
Fermi National Accelerator Laboratory Fermilab Particle Astrophysics Center P.O.Box 500 - MS209 Batavia, Il l i noi s • 60510 June 6, 2006 Dr. Garth Illingworth Chair, Astronomy and Astrophysics Advisory Committee Dr. Mel Shochet Chair, High Energy Physics Advisory Panel Dear Garth, Dear Mel, I am pleased to transmit to you the report of the Dark Energy Task Force. The report is a comprehensive study of the dark energy issue, perhaps the most compelling of all outstanding problems in physical science. In the Report, we outline the crucial need for a vigorous program to explore dark energy as fully as possible since it challenges our understanding of fundamental physical laws and the nature of the cosmos. We recommend that program elements include 1. Prompt critical evaluation of the benefits, costs, and risks of proposed long-term projects. 2. Commitment to a program combining observational techniques from one or more of these projects that will lead to a dramatic improvement in our understanding of dark energy. (A quantitative measure for that improvement is presented in the report.) 3. Immediately expanded support for long-term projects judged to be the most promising components of the long-term program. 4. Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors. 5. An immediate start for nearer term projects designed to advance our knowledge of dark energy and to develop the observational and analytical techniques that will be needed for the long-term program. Sincerely yours, on behalf of the Dark Energy Task Force, Edward Kolb Director, Particle Astrophysics Center Fermi National Accelerator Laboratory Professor of Astronomy and Astrophysics The University of Chicago REPORT OF THE DARK ENERGY TASK FORCE Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. -
Arxiv:1707.01004V1 [Astro-Ph.CO] 4 Jul 2017
July 5, 2017 0:15 WSPC/INSTRUCTION FILE coc2ijmpe International Journal of Modern Physics E c World Scientific Publishing Company Primordial Nucleosynthesis Alain Coc Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Universit´eParis–Saclay, Bˆatiment 104, F–91405 Orsay Campus, France [email protected] Elisabeth Vangioni Institut d’Astrophysique de Paris, UMR-7095 du CNRS, Universit´ePierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France), Sorbonne Universit´es, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France) [email protected] Received July 5, 2017 Revised Day Month Year Primordial nucleosynthesis, or big bang nucleosynthesis (BBN), is one of the three evi- dences for the big bang model, together with the expansion of the universe and the Cos- mic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. However, there remains a yet–unexplained discrepancy of a factor ≈3, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. The precision in deuterium observations in cosmological clouds has recently improved dramatically, so that nuclear cross sections involved in deuterium BBN need to be known with similar precision. We will shortly discuss nuclear aspects re- lated to BBN of Li and D, BBN with non-standard neutron sources, and finally, improved sensitivity studies using Monte Carlo that can be used in other sites of nucleosynthesis. -
FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) 1 OBSERVATIONS: DETERMINATION of COSMOLOGICAL PARAMETERS D. N. Spergel,2
The Astrophysical Journal Supplement Series, 148:175–194, 2003 September E # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP)1 OBSERVATIONS: DETERMINATION OF COSMOLOGICAL PARAMETERS D. N. Spergel,2 L. Verde,2,3 H. V. Peiris,2 E. Komatsu,2 M. R. Nolta,4 C. L. Bennett,5 M. Halpern,6 G. Hinshaw,5 N. Jarosik,4 A. Kogut,5 M. Limon,5,7 S. S. Meyer,8 L. Page,4 G. S. Tucker,5,7,9 J. L. Weiland,10 E. Wollack,5 and E. L. Wright11 Received 2003 February 11; accepted 2003 May 20 ABSTRACT WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat Ã-dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 Æ 0:05, 2 2 þ0:076 bh ¼ 0:024 Æ 0:001, mh ¼ 0:14 Æ 0:02, ¼ 0:166À0:071, ns ¼ 0:99 Æ 0:04, and 8 ¼ 0:9 Æ 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Ly forest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the [D/H] ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. -
The Reionization of Cosmic Hydrogen by the First Galaxies Abstract 1
David Goodstein’s Cosmology Book The Reionization of Cosmic Hydrogen by the First Galaxies Abraham Loeb Department of Astronomy, Harvard University, 60 Garden St., Cambridge MA, 02138 Abstract Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA’s successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. -
CMBEASY:: an Object Oriented Code for the Cosmic Microwave
www.cmbeasy.org CMBEASY:: an Object Oriented Code for the Cosmic Microwave Background Michael Doran∗ Department of Physics & Astronomy, HB 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755, USA and Institut f¨ur Theoretische Physik der Universit¨at Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany We have ported the cmbfast package to the C++ programming language to produce cmbeasy, an object oriented code for the cosmic microwave background. The code is available at www.cmbeasy.org. We sketch the design of the new code, emphasizing the benefits of object orienta- tion in cosmology, which allow for simple substitution of different cosmological models and gauges. Both gauge invariant perturbations and quintessence support has been added to the code. For ease of use, as well as for instruction, a graphical user interface is available. I. INTRODUCTION energy, dark matter, baryons and neutrinos. The dark energy can be a cosmological constant or quintessence. The cmbfast computer program for calculating cos- There are three scalar field field models implemented, or mic microwave background (CMB) temperature and po- alternatively one may specify an equation-of-state his- larization anisotropy spectra, implementing the fast line- tory. Furthermore, the modular code is easily adapted of-sight integration method, has been publicly available to new problems in cosmology. since 1996 [1]. It has been widely used to calculate spec- In the next section IIA we explain object oriented pro- cm- tra for open, closed, and flat cosmological models con- gramming and its use in cosmology. The design of beasy taining baryons and photons, cold dark matter, massless is presented in section II B, while the graphical and massive neutrinos, and a cosmological constant. -
The Effects of the Small-Scale Behaviour of Dark Matter Power Spectrum on CMB Spectral Distortion
Prepared for submission to JCAP The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion Abir Sarkar,1,2 Shiv.K.Sethi,1 Subinoy Das3 1Raman Research Institute, CV Raman Ave Sadashivnagar, Bengaluru, Karnataka 560080, India 2Indian Institute of Science,CV Raman Ave, Devasandra Layout, Bengaluru, Karnataka 560012, India 3Indian Institute of Astrophysics,100 Feet Rd, Madiwala, 2nd Block, Koramangala, Bengaluru, Karnataka 560034, India E-mail: [email protected], [email protected], [email protected] Abstract. After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark mat- ter, despite successfully explaining the large-scale features of the universe, has long-standing small- scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3Mpc <k< 104 Mpc−1, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates— Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main arXiv:1701.07273v3 [astro-ph.CO] 7 Jul 2017 impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. -
DARK AGES of the Universe the DARK AGES of the Universe Astronomers Are Trying to fill in the Blank Pages in Our Photo Album of the Infant Universe by Abraham Loeb
THE DARK AGES of the Universe THE DARK AGES of the Universe Astronomers are trying to fill in the blank pages in our photo album of the infant universe By Abraham Loeb W hen I look up into the sky at night, I often wonder whether we humans are too preoccupied with ourselves. There is much more to the universe than meets the eye on earth. As an astrophysicist I have the privilege of being paid to think about it, and it puts things in perspective for me. There are things that I would otherwise be bothered by—my own death, for example. Everyone will die sometime, but when I see the universe as a whole, it gives me a sense of longevity. I do not care so much about myself as I would otherwise, because of the big picture. Cosmologists are addressing some of the fundamental questions that people attempted to resolve over the centuries through philosophical thinking, but we are doing so based on systematic observation and a quantitative methodology. Perhaps the greatest triumph of the past century has been a model of the uni- verse that is supported by a large body of data. The value of such a model to our society is sometimes underappreciated. When I open the daily newspaper as part of my morning routine, I often see lengthy de- scriptions of conflicts between people about borders, possessions or liberties. Today’s news is often forgotten a few days later. But when one opens ancient texts that have appealed to a broad audience over a longer period of time, such as the Bible, what does one often find in the opening chap- ter? A discussion of how the constituents of the universe—light, stars, life—were created. -
Dermining the Photon Budget of Galaxies During Reionization with Numerical Simulations, and Studying the Impact of Dust Joseph Lewis
Who reionized the Universe ? : dermining the photon budget of galaxies during reionization with numerical simulations, and studying the impact of dust Joseph Lewis To cite this version: Joseph Lewis. Who reionized the Universe ? : dermining the photon budget of galaxies during reioniza- tion with numerical simulations, and studying the impact of dust. Astrophysics [astro-ph]. Université de Strasbourg, 2020. English. NNT : 2020STRAE041. tel-03199136 HAL Id: tel-03199136 https://tel.archives-ouvertes.fr/tel-03199136 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE 182 UMR 7550, Observatoire astronomique de Strasbourg THÈSE présentée par : Joseph Lewis soutenue le : 25 septembre 2020 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Astrophysique Qui a réionisé l’Univers ? Détermination par la simulation numérique du budget de photons des galaxies pendant l’époque de la Réionisation, et étude de l’impact des poussières THÈSE dirigée par : M. AUBERT Dominique Professeur des universités, Université de Strasbourg RAPPORTEURS : M. GONZALES Mathias Maître de conférences, Université de Paris M. LANGER Mathieu Professeur des universités, Université Paris-Saclay AUTRES MEMBRES DU JURY : M. -
Determining the Redshift of Reionization from the Spectra Of
CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Determining the Redshift of Reionization From the Sp ectra of High{Redshift Sources 1;2 1 Zoltan Haiman and Abraham Lo eb ABSTRACT The redshift at which the universe was reionized is currently unknown. We examine the optimal strategy for extracting this redshift, z , from the sp ectra of reion early sources. For a source lo cated at a redshift z beyond but close to reionization, s 32 (1 + z ) < (1 + z ) < (1 + z ), the Gunn{Peterson trough splits into disjoint reion s reion 27 Lyman , , and p ossibly higher Lyman series troughs, with some transmitted ux in b etween these troughs. We show that although the transmitted ux is suppressed considerably by the dense Ly forest after reionization, it is still detectable for suciently bright sources and can b e used to infer the reionization redshift. The Next Generation Space Telescop e will reach the sp ectroscopic sensitivity required for the detection of such sources. Subject headings: cosmology: theory { quasars: absorption lines { galaxies: formation {intergalactic medium { radiative transfer Submitted to The Astrophysical Journal, July 1998 1. Intro duction The standard Big Bang mo del predicts that the primeval plasma recombined and b ecame predominantly neutral as the universe co oled b elow a temp erature of several thousand degrees at 3 a redshift z 10 (Peebles 1968). Indeed, the recent detection of Cosmic Microwave Background (CMB) anisotropies rules out a fully ionized intergalactic medium (IGM) beyond z 300 (Scott, Silk & White 1995). However, the lack of a Gunn{Peterson trough (GP, Gunn & Peterson 1965) in the sp ectra of high{redshift quasars (Schneider, Schmidt & Gunn 1991) and galaxies (Franx et < al. -
High Redshift Quasar Hunting with the Dark Energy Survey
High Redshift Quasar Hunting with the Dark Energy Survey Quasars in the Epoch of Reionisation Sophie Reed Supervisors: Richard McMahon, Manda Banerji 1 Why? ★ Theories of black hole formation and evolution z = 6 - 15 z = 2 WORDS Epoch of peak of galaxy Reionization and quasar ★ Metal abundances in the early universe activity ★ Gas distribution and reionisationv z = 20 - 30 z = 6 - 8 Start of z = 1100 first stars Reionization matter-radiation “Population III” decoupling (CMB) 2 Quasar Spectrum at z ~ 6 Spectrum of a z = 5.86 quasar from Venemans et al 2007 Continuum break across rest frame Lyman-alpha (λrest = 121.6nm) gives distinctive colours 3 Quasar Spectrum at z ~ 6 480 nm 640 nm 780 nm 920 nm 990 nm 1252 nm 2147 nm 4 The Dark Energy Survey (DES) First Light September 2012 Very large area when completed: ~5000 deg2, currently have ~2000 deg2 Deep imaging: 10 σ limits for i and z are AB = 23.4 and AB = 23.2 Sophisticated camera, DECam Credit: DES Collaboration 5 DECam Mosaic of 62 2k by 4k CCDs (0.27” pixels) Multi waveband imaging: Visible (400 nm) to Near IR (1050 nm), g, r, i, z and Y bands covered Much more sensitive to red light than SDSS Credit: DES Collaboration 6 DES - SDSS Comparison SDSS was most sensitive to bluer light in the r band DES is most sensitive to redder light in the z band u g r i z Y 7 The VISTA Hemisphere Survey (VHS) Will cover 10,000 deg2 in the infrared when completed VHS-DES (J, H and K) overlaps DES and is deeper VHS-ATLAS (Y, J, H and K) is a shallower survey 8 Currently Known Objects Lots of quasars known -
High Redshift Galaxies As Probes of the Epoch of Reionization
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2016 High Redshift Galaxies As Probes Of The Epoch Of Reionization Jessie Frances Taylor University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation Taylor, Jessie Frances, "High Redshift Galaxies As Probes Of The Epoch Of Reionization" (2016). Publicly Accessible Penn Dissertations. 2603. https://repository.upenn.edu/edissertations/2603 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2603 For more information, please contact [email protected]. High Redshift Galaxies As Probes Of The Epoch Of Reionization Abstract Following the Big Bang, as the Universe cooled, hydrogen and helium recombined, forming neutral gas. Currently, this gas largely resides between galaxies in a highly diffuse state known as the intergalactic medium (IGM). Observations indicate that the IGM, fueled by early galaxies and/or accreting black holes, ``reionized'' early in cosmic history--the entire volume of the Universe refilling with ionized gas. This thesis analyzes and develops several ways to use observations of high redshift galaxies to probe this period, the Epoch of Reionization (EoR). We examine the redshift evolution of the Ly-alpha fraction, the percentage of Lyman-break selected galaxies (LBGs) that are Lyman-alpha emitting galaxies (LAEs). Observing a sharp drop in this fraction at z ~ 7, many early studies surmised the z ~ 7 IGM must be surprisingly neutral. We model the effect of patchy reionization on Ly-alpha fraction observations, concluding that sample variance reduces the neutral fraction required.