GSMA, the State of Mobile Internet Connectivity Report, 2020

Total Page:16

File Type:pdf, Size:1020Kb

GSMA, the State of Mobile Internet Connectivity Report, 2020 Connected Society The State of Mobile Internet Connectivity 2020 Copyright © 2020 GSM Association GSMA Connected Society The GSMA represents the interests of mobile The Connected Society programme works with operators worldwide, uniting more than 750 the mobile industry, technology companies, the operators with nearly 400 companies in the development community and governments to broader mobile ecosystem, including handset and increase access to and adoption of mobile internet, device makers, software companies, equipment focusing on underserved population groups in providers and internet companies, as well as developing markets. Key activities include: organisations in adjacent industry sectors. The • Generating and disseminating insights and learnings GSMA also produces the industry-leading MWC on the mobile internet coverage and usage gap. events held annually in Barcelona, Los Angeles and Shanghai, as well as the Mobile 360 Series of • Supporting mobile operators to extend coverage regional conferences. and drive usage. For more information, please visit the GSMA • Undertaking advocacy and policy work to corporate website at www.gsma.com ensure that mobile operators’ efforts to achieve greater digital inclusion are being effectively Follow the GSMA on Twitter: @GSMA supported by governments, the international community and other stakeholders. For more information, please visit www.gsma.com/connected-society To get in touch with the Connected Society team, please email [email protected] GSMA Intelligence is the definitive source of global Lead authors: mobile operator data, analysis and forecasts, and Kalvin Bahia, Anne Delaporte publisher of authoritative industry reports and Analysis by: research. Our data covers every operator group, Federico Agnoletto, Stefano Suardi network and MVNO in every country worldwide — from Afghanistan to Zimbabwe. It is the most Contributors: accurate and complete set of industry metrics Kevin Bowman, Genaro Cruz, Claire Sibthorpe, Melle available, comprising tens of millions of individual Tiel Groenestege, Robert Wyrzykowski data points, updated daily. Published: September 2020 GSMA Intelligence is relied on by leading operators, vendors, regulators, financial institutions and third-party industry players, to support strategic decision-making and long-term investment planning. The data is used as an industry reference point and is frequently cited by the media and by the industry itself. Our team of analysts and experts produce regular thought-leading research reports across a range of industry topics. This material has been funded by UK aid from www.gsmaintelligence.com the UK government; however the views expressed do not necessarily reflect the UK government’s [email protected] official policies. THE STATE OF MOBILE INTERNET CONNECTIVITY REPORT 2020 Contents Foreword 5 1. Introduction and key findings 6 2. Overview of state of mobile internet coverage and usage 12 3. Mobile internet adoption and use: barriers and drivers 21 4. Expanding mobile broadband coverage 40 5. Conclusion and outlook 46 Appendix 1: About the Mobile Connectivity Index 48 Appendix 2: GSMA Intelligence Consumers in Focus Survey 51 Appendix 3: Additional figures 54 Appendix 4: Definitions of terms used in this report 60 3 THE STATE OF MOBILE INTERNET CONNECTIVITY REPORT 2020 4 THE STATE OF MOBILE INTERNET CONNECTIVITY REPORT 2020 Foreword We are living in extraordinary times. Many of us coverage gap fell from 10 per cent to 7 per cent of have been impacted by unprecedented restrictions the population - or just under 600 million people. to everyday life, following measures to contain the However, despite the significant advances in mobile rapid spread of COVID-19. The pandemic has broadband deployment and adoption, billions of increased our collective reliance on the internet and people face considerable barriers to going online. in many cases accelerated the use of digital There are still 3.4 billion people who live in an area technologies. As an industry, we recognise the covered by a mobile broadband network but who critical role we play at this time in ensuring and are not using the mobile internet – the usage gap. maintaining connectivity for citizens around the In fact, the usage gap is now 6 times larger than world. It is in this context that it is important to the coverage gap. consider both the progress that has been achieved and challenges that remain to digital inclusion for This lack of internet use not only excludes individuals all as highlighted in this report on the State of Mobile from opportunities to overcome the social and Internet Connectivity. economic impact of the current crisis, but also limits the ability of governments to effectively manage In the face of lockdowns, billions of individuals have the pandemic and its economic fallout. turned to the internet to connect to friends and family, access education or health information, and This report shows that the usage gap is a global safeguard a limited level of economic activity. Mobile challenge, but that significant regional disparities is no longer just a convenient accessory. It has persist. If we don’t take action now, we run the risk become indispensable to our daily lives, especially in of reinforcing existing inequalities in the digital world low- and middle-income countries where mobile and further marginalising vulnerable people. accounts for 87 per cent of all broadband connections. As an industry, we are working hard to overcome the Mobile operators all over the world have been barriers to mobile internet adoption, by improving pro-active, supporting our customers as well as access to affordable devices and data plans, building governments with vital services and robust digital skills, investing in local digital ecosystems to networks. Despite surging data traffic, for example, make services more relevant, and by ensuring that our industry has delivered a seven per cent the internet is safe and secure to use. improvement in download speeds during the pandemic, highlighting the investments that we This crisis reminds us that mobile is more essential have made to ensure networks have sufficient than ever. Connectivity opens a window to the capacity and are resilient. world, over and above the limits of the pandemic. Let’s ensure that together we continue to drive As this report highlights, mobile continues to digital inclusion for all and deliver on the promise accelerate digital inclusion and drive increased of a web that benefits humanity. connectivity with 3.8 billion people now using mobile internet. There has been continued Stéphane Richard expansion of mobile broadband networks and the CEO of Orange and Chairman of the GSMA 5 THE STATE OF MOBILE INTERNET CONNECTIVITY REPORT 2020 1. Introduction and key findings Connectivity has never been more important, and the world’s reliance on the internet has never been greater. The COVID-19 pandemic has underscored the importance of the internet and the critical role of mobile, which is the primary way most people access the internet. Internet access and services have helped to ensure the functioning of emergency services, allowed separated friends and families to stay informed and keep in touch, and enabled large parts of the workforce to continue to be productive throughout the crisis. 6 THE STATE OF MOBILE INTERNET CONNECTIVITY REPORT 2020 Since 2015, 1 billion people have gained access to • What are the key trends in connectivity over the period the internet through a mobile phone – many for and how do these compare across regions, gender and the first time. By the end of 2019, almost half the rural/urban populations? world’s population was using mobile internet. Despite • What are the barriers and drivers to the use of mobile this growth, 51% of the population is still not using internet and how have these changed over time? mobile internet, either because of a lack of mobile • What are the achievements and challenges in broadband coverage or key barriers such as a lack extending broadband coverage? of awareness, affordability, or a lack of literacy and digital skills. The findings of this report are based on two analytical tools – the GSMA Mobile Connectivity Index1 and the Bridging the persistent digital divide and providing GSMA Intelligence Consumers in Focus Survey. The mobile internet access to the 4 billion people still not Mobile Connectivity Index is a tool that measures the connected is more important than ever in the current performance of 170 countries (representing 99% of the context. Meanwhile, it is becoming increasingly global population) against the key enablers of mobile challenging as the unconnected tend to be poorer, internet adoption: infrastructure; affordability; consumer have lower levels of education and live in rural areas. readiness; and content and services. The Consumers in As this report shows, there has been strong progress Focus Survey has been carried out every year since 2017 over the last five years, with significant increases in and in 2019 included 15 low- and middle-income countries. mobile internet coverage and adoption. However, Together, these provide objective, quantitative metrics if current trends continue, more than 40% of the to track the key enablers of mobile internet adoption population in low- and middle-income countries will and usage, as well as insights from consumers on what remain offline in 2025. prevents them from using mobile internet.2 The State of Mobile Internet Connectivity 2020 The analysis contained
Recommended publications
  • SOP 202 Iridium Satellite Phone Provisioning
    Standard Operating Procedure Updated: Apr 27, 2017 DOCUMENT NUMBER: SOP202 TITLE: Iridium Satellite Phone Provisioning PURPOSE: This document describes the provisioning and testing of Iridium Satellite phones. It is intended for all Greenland and Alaska field site personnel. BACKGROUND: A satellite telephone, satellite phone, or satphone is a type of mobile phone that connects to orbiting satellites instead of terrestrial cell sites. They provide similar functionality to terrestrial mobile telephones; voice, short messaging service and low-bandwidth internet access are supported through most systems. Depending on the architecture of a particular system, coverage may include the entire Earth or only specific regions. DETAILS: Components Required for Testing • Activated sim chips with phone number labels from IT&C staff • Preconditioned and charged batteries • External iridium egg antenna deployed outside in order to receive satellite signal inside the building • Updated Iridium phone number cheat sheet and Quick use guide Iridium Satellite Phone Testing Procedures • Insert activated SIM chip into satphone • Insert a preconditioned and charged battery into the satphone.. • Place battery cover on the satphone • Connect the satphone being tested to the external iridium egg antenna using a stubby antenna connector • Turn on the satphone and allow the registration process to complete Page 1 of 3 Standard Operating Procedure Updated: Apr 27, 2017 • Make a phone call using the satphone to a known number (ie your cellphone number, land line or a known working Iridium phone) • Make a phone call using your cellphone number, land line or a known working Iridium phone to the satphone being tested. • Adjust the iridium phone audio speaker to highest volume • Set the iridium phone to Ringer only and adjust the ringer to the highest volume • Turn call Forwarding off • Per each phone, adhere the phone number label to the front of the Iridium phone • If above test passed, continue onto next section.
    [Show full text]
  • 3G/UMTS an Evolutionary Path to Next Generation Networks
    3G/UMTS An evolutionary path to Next Generation Networks ITU/BDT Regional Seminar on Fixed Mobile Convergence and Guidelines on the smooth transition of existing mobile networks to IMT-2000 for Developing Countries for Africa Jean-Pierre Bienaimé …………………………………………………………………………… Chairman, UMTS Forum www.umts-forum.org ITU/BDT Regional Seminar Nairobi 9-12 May 2005 Summary • What is the UMTS Forum? • What is the global status of 3G/UMTS launches? • What terminals, services and tariffs are available? • 3G/UMTS evolution from launch through to Release 6 • A look to the future • Viewpoint on spectrum • Lessons learned in Europe ITU/BDT Regional Seminar Nairobi 9-12 May 2005 1 About The UMTS Forum Who are we? An international, cross-sector industry body comprising operators, manufacturers, regulators, application developers, research organisations and IT industry players. Our mission… To promote a common vision of the development of 3G/UMTS and of its evolutions, and to ensure its worldwide commercial success. Our publications Since 1997, more than 40 reports on Spectrum & Regulation, 3G/UMTS vision, Customer behaviour, Market evolution & Forecasts, Technical studies & Implementation. Recent issues: Strategic Considerations for IMS – the 3G Evolution, Coverage Extension Bands for UMTS/IMT-2000 in the bands between 470-600 MHz, Magic Mobile Future 2010-2020… ITU/BDT Regional Seminar Nairobi 9-12 May 2005 UMTS Forum Key Areas of Activity in 2005 Spectrum & Regulation Studies and contributions on harmonisation of global spectrum and additional
    [Show full text]
  • PDF/Population/ P9p10%20Literacy%20Rates%20By%20District,%20Sex%20An Census and Statistics, Sri Lanka) D%20Sector.Pdf 5 Department of Census and Statistics Sri Lanka
    Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized i | Broadband in Sri Lanka: A Case Study ii | Broadband in Sri Lanka: A Case Study © 2011 The International Bank for Reconstruction and Development / The World Bank 1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org E-mail: [email protected] All rights reserved The findings, interpretations and conclusions expressed herein are entirely those of the author(s) and do not necessarily reflect the view of infoDev, the Donors of infoDev, the International Bank for Reconstruction and Development/The World Bank and its affiliated organizations, the Board of Executive Directors of the World Bank or the governments they represent. The World Bank cannot guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply on the part of the World Bank any judgment of the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly. For permission to photocopy or reprint any part of this work, please send a request with complete information to infoDev Communications & Publications Department; 2121 Pennsylvania Avenue, NW; Mailstop F 5P-503, Washington, D.C.
    [Show full text]
  • Energy Efficiency in Cellular Networks
    Energy Efficiency in Cellular Networks Radha Krishna Ganti Indian Institute of Technology Madras [email protected] Millions 1G 2G:100Kbps2G: ~100Kb/s 3G:~1 Mb/s 4G: ~10 Mb/s Cellular Network will connect the IOT Source:Cisco Case Study: Mobile Networks in India • India has over 400,000 cell towers today • 70%+ sites have grid outages in excess of 8 hours a day; 10% are completely off-grid • Huge dependency on diesel generator sets for power backups – India imports 3 billion liters of diesel annually to support Cell Tower, DG Set, Grid these cell sites – CO2 emission exceeds 6 million metric tons a year – Energy accounts for ~25% of network opex for telcos • As mobile services expand to remote rural areas, enormity of this problem grows 4 Power consumption breakup Core network Radio access network Mobile devices 0.1 W x 7 B = 0.7 GW 2 kW x 5M = 10 GW 10 kW x 10K = 0.1 GW *Reference: Mid-size thermal plant output 0.5 GW Source: Peng Mobicomm 2011 Base station energy consumption 1500 W 60 W Signal processing 150 W 1000 W 100 W Air conditioning Power amplifier (PA) 200 W (10-20% efficiency) Power conversion 150 W Transmit power Circuit power Efficiency of PA Spectral Efficiency: bps/Hz (Shannon) Transmit power Distance Bandwidth Cellular Standard Spectral efficiency Noise power 1G (AMPS) 0.46 Spectral density 2G (GSM) 1.3 3G (WCDMA) 2.6 4G (LTE) 4.26 Energy Efficiency: Bits per Joule 1 Km 2 Km EE versus SE for PA efficiency of 20% Current status Source: IEEE Wireless Comm.
    [Show full text]
  • Cat® B15 Smartphone User Manual Please Read Before Proceeding Safety Precautions
    Cat® B15 Smartphone User manual Please Read Before Proceeding Safety Precautions Please read the safety precautions carefully to ensure the correct use of your mobile phone. Despite the nature of this rugged device, avoid hitting, throwing, dropping, crushing, bending and puncturing, your mobile phone. Avoid using your mobile phone in a damp environment, such as the bathroom. Prevent your mobile phone from being intentionally soaked or washed in liquid. Do not switch on your mobile phone when it is prohibited to use phones or when the phone may cause interference or danger. Do not use your mobile phone while driving. Follow any rules or regulations in hospitals and health care facilities. Switch off your mobile phone near medical equipment. Switch off your mobile phone in aircraft. The phone may cause interference to control equipment of the aircraft. Switch off your mobile phone near high-precision electronic devices. The phone may affect the performance of these devices. Do not attempt to disassemble your mobile phone or its accessories. Only qualified personnel are allowed to service or repair the phone. Do not place your mobile phone or its accessories in containers with a strong electromagnetic field. Do not place magnetic storage media near your mobile phone. Radiation from the phone may erase the information stored on them. Do not put your mobile phone in a high-temperature place or use it in a place with flammable gas such as a gas station. Keep your mobile phone and its accessories away from young children. Do not allow children to use your mobile phone without guidance.
    [Show full text]
  • 5G INDOOR ROUTER Fx2000e USER GUIDE 2
    USER GUIDE Inseego WavemakerTM PRO 5G Indoor Router FX2000e INSEEGO COPYRIGHT STATEMENT © 2021 Inseego Corp. All rights reserved. Complying with all copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), or for any purpose without the expressed written permission of Inseego Corp. SOFTWARE LICENSE Proprietary Rights Provisions: Any software drivers provided with this product are copyrighted by Inseego Corp. and/or Inseego Corp.’s suppliers. Although copyrighted, the software drivers are unpublished and embody valuable trade secrets proprietary to Inseego Corp. and/or Inseego Corp. suppliers. The disassembly, decompilation, and/or Reverse Engineering of the software drivers for any purpose is strictly prohibited by international law. The copying of the software drivers, except for a reasonable number of back-up copies is strictly prohibited by international law. It is forbidden by international law to provide access to the software drivers to any person for any purpose other than processing the internal data for the intended use of the software drivers. U.S. Government Restricted Rights Clause: The software drivers are classified as “Commercial Computing device Software” and the U.S. Government is acquiring only “Restricted Rights” in the software drivers and their Documentation. U.S. Government Export Administration Act Compliance Clause: It is forbidden by US law to export, license or otherwise transfer the software drivers or Derivative Works to any country where such transfer is prohibited by the United States Export Administration Act, or any successor legislation, or in violation of the laws of any other country.
    [Show full text]
  • 1G 2G 3G LTE 4G What's Next
    What’s Next in the Cellular Evolution & How to Leverage it for New Business As you will come to see, this goal can 2006 only be accomplished by phasing out 3G and reallocating the extra bandwidth to 4G LTE. This task can only be described 2001 as daunting and challenging from not just 2018 our security perspective, but more so from theirs. 1989 Looking for more proof? First, because of demand it is necessary to upgrade all cellular networks on a regular basis. Two 2002 billion people on the planet use cellphones, according to James Katz, professor of com- munication at Rutgers University. In fact, as of 2011 there were more cellphone sub- 1999 scribers in the United States than people, ac- LTE cording to a study, underwritten by CTIA, a trade association representing the wireless 1983 1G 2G 3G 4G communications industry in the U.S., as re- ported by Bridget Kelly, author of “What Is Courtesy of Napco StarLink the Role of the Cell Phone in Communica- tion Today?” Ride the New Wave in Cellular for New RMR Society at large is becoming more mo- bile-oriented because of convenience, busi- There’s undeniably a lot of upside system control, remote video monitoring or ness and personal lifestyles. According to for savvy installing security contractors long-distance doorbells. We as an industry market research firm Statista of New York and fire/life-safety professionals whose are on the small screen to the tune of brand City, the number of smartphone users is billable offerings keep pace with the new relevance and new recurring revenue.
    [Show full text]
  • Handover Parameters Optimisation Techniques in 5G Networks
    sensors Article Handover Parameters Optimisation Techniques in 5G Networks Wasan Kadhim Saad 1,2,*, Ibraheem Shayea 2, Bashar J. Hamza 1, Hafizal Mohamad 3, Yousef Ibrahim Daradkeh 4 and Waheb A. Jabbar 5,6 1 Engineering Technical College-Najaf, Al-Furat Al-Awsat Technical University (ATU), Najaf 31001, Iraq; [email protected] 2 Electronics and Communication Engineering Department, Faculty of Electrical and Electronics Engineering, Istanbul Technical University (ITU), Istanbul 34467, Turkey; [email protected] 3 Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia; hafi[email protected] 4 Department of Computer Engineering and Networks, College of Engineering at Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Al Kharj 11991, Saudi Arabia; [email protected] 5 Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia; [email protected] 6 Center for Software Development & Integrated Computing, Universiti Malaysia Pahang, Gambang 26300, Malaysia * Correspondence: [email protected] Abstract: The massive growth of mobile users will spread to significant numbers of small cells for the Fifth Generation (5G) mobile network, which will overlap the fourth generation (4G) network. A tremendous increase in handover (HO) scenarios and HO rates will occur. Ensuring stable and reliable connection through the mobility of user equipment (UE) will become a major problem in future mobile networks. This problem will be magnified with the use of suboptimal handover control parameter (HCP) settings, which can be configured manually or automatically. Therefore, Citation: Saad, W.K.; Shayea, I.; the aim of this study is to investigate the impact of different HCP settings on the performance Hamza, B.J.; Mohamad, H.; of 5G network.
    [Show full text]
  • Long Term Evolution (LTE)
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735. Volume 7, Issue 3 (Sep. - Oct. 2013), PP 36-42 www.iosrjournals.org Long Term Evolution (LTE) 1 2 3 4 Emad Kazi , Rajan Pillai , Uzair Qureshi , Awab Fakih 1,2,3,4 (Electronics and Telecommunication, Anjuman-I-Islam’s Kalsekar technical campus (AIKTC), Mumbai University, India) Abstract:The number of people using mobile phone in the world has exceeded 4.5 billion and this figure is continuing to grow. For the past several years, mobile data traffic such as internet access, the downloading of music and video communication has been nearly tripling every year. With the popularity of smartphones, mobile data traffic will increase 200 times in the 7 to 8 years upto 2020.There are high expectations that Long Term Evolution (LTE) which is known as 3.9G wireless system will be a new service platform that can support a huge amount of mobile data traffic. This paper describes the features, technology and network architecture of LTE & also provides an overview of next generation telecommunication network LTE, which is started commercially in December 2010 in Japan (started by DOCOMO), realizing high speed wireless access. It also outlines the further trends towards a further speed increase. Keywords-Circuit Switching, GSM, HSPA, LTE, Packet Switching, WiMAX I. Introduction In times when mobile devices are getting more popular the mobile network are becoming more and more important too. Websites are not same they used to be 10 years ago. They consist of with quality pictures, animation, flash application and more.
    [Show full text]
  • Internet Freedom in China: U.S. Government Activity, Private Sector Initiatives, and Issues of Congressional Interest
    Internet Freedom in China: U.S. Government Activity, Private Sector Initiatives, and Issues of Congressional Interest Patricia Moloney Figliola Specialist in Internet and Telecommunications Policy May 18, 2018 Congressional Research Service 7-5700 www.crs.gov R45200 Internet Freedom in China: U.S. Government and Private Sector Activity Summary By the end of 2017, the People’s Republic of China (PRC) had the world’s largest number of internet users, estimated at over 750 million people. At the same time, the country has one of the most sophisticated and aggressive internet censorship and control regimes in the world. PRC officials have argued that internet controls are necessary for social stability, and intended to protect and strengthen Chinese culture. However, in its 2017 Annual Report, Reporters Without Borders (Reporters Sans Frontières, RSF) called China the “world’s biggest prison for journalists” and warned that the country “continues to improve its arsenal of measures for persecuting journalists and bloggers.” China ranks 176th out of 180 countries in RSF’s 2017 World Press Freedom Index, surpassed only by Turkmenistan, Eritrea, and North Korea in the lack of press freedom. At the end of 2017, RSF asserted that China was holding 52 journalists and bloggers in prison. The PRC government employs a variety of methods to control online content and expression, including website blocking and keyword filtering; regulating and monitoring internet service providers; censoring social media; and arresting “cyber dissidents” and bloggers who broach sensitive social or political issues. The government also monitors the popular mobile app WeChat. WeChat began as a secure messaging app, similar to WhatsApp, but it is now used for much more than just messaging and calling, such as mobile payments, and all the data shared through the app is also shared with the Chinese government.
    [Show full text]
  • LTE-M Deployment Guide to Basic Feature Set Requirements
    LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS JUNE 2019 LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS Table of Contents 1 EXECUTIVE SUMMARY 4 2 INTRODUCTION 5 2.1 Overview 5 2.2 Scope 5 2.3 Definitions 6 2.4 Abbreviations 6 2.5 References 9 3 GSMA MINIMUM BAseLINE FOR LTE-M INTEROPERABILITY - PROBLEM STATEMENT 10 3.1 Problem Statement 10 3.2 Minimum Baseline for LTE-M Interoperability: Risks and Benefits 10 4 LTE-M DATA ARCHITECTURE 11 5 LTE-M DePLOYMENT BANDS 13 6 LTE-M FeATURE DePLOYMENT GUIDE 14 7 LTE-M ReLEAse 13 FeATURes 15 7.1 PSM Standalone Timers 15 7.2 eDRX Standalone 18 7.3 PSM and eDRX Combined Implementation 19 7.4 High Latency Communication 19 7.5 GTP-IDLE Timer on IPX Firewall 20 7.6 Long Periodic TAU 20 7.7 Support of category M1 20 7.7.1 Support of Half Duplex Mode in LTE-M 21 7.7.2 Extension of coverage features (CE Mode A / B) 21 7.8 SCEF 22 7.9 VoLTE 22 7.10 Connected Mode Mobility 23 7.11 SMS Support 23 7.12 Non-IP Data Delivery (NIDD) 24 7.13 Connected-Mode (Extended) DRX Support 24 7.14 Control Plane CIoT Optimisations 25 7.15 User Plane CIoT Optimisations 25 7.16 UICC Deactivation During eDRX 25 7.17 Power Class 26 LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS 8 LTE-M ReLEAse 14 FeATURes 27 8.1 Positioning: E-CID and OTDOA 27 8.2 Higher data rate support 28 8.3 Improvements of VoLTE and other real-time services 29 8.4 Mobility enhancement in Connected Mode 29 8.5 Multicast transmission/Group messaging 29 8.6 Relaxed monitoring for cell reselection 30 8.7 Release Assistance Indication
    [Show full text]
  • Difference Between GSM, GPRS, EDGE, 3G, WCDMA, HSDPA and 4G
    Difference between GSM, GPRS, EDGE, 3G, WCDMA, HSDPA and 4G It's a very basic and non-technical comparison. GSM GSM, stands for Global Systems for Mobile Communications, is basic standard bearer of 2G technologies. It is mainly used in mobile communication. Short Messaging System (SMS) was introduced into GSM networks along with capability to download content from various service providers. The content could ring tone, logos and picture messages. It can support Voice telephony and data however the data rate is only 9.6Kb/s, that is very low bit rate for date communication. GPRS GPRS, stands for General Packet Radio Service, is used to give higher data speed over GSM. It is not the replacement of GSM. It is just an extension to the older GSM technology to gain faster speed. Multimedia Messaging System or MMS is the feature of GPRS. It allowed subscribers to send videos, pictures, or sound clips to each other just like text messages. GPRS also provided mobile handset the ability to surf the Internet at dial-up speeds through WAP enabled sites. GPRS offers higher bit rate (Up to 171kb/s) by usage of A packet-linked technology over GSM. EDGE EDGE stands for Enhanced Data Rates for GSM Evolution. This technology, also termed as Enhanced GPRS. This is a technology that uses the same equipment as GSM with only a few minor modifications to provide faster data speeds and is often regarded as a stepping stone towards 3G thus it is called 2.5G. EDGE gives the users the inimitable chance to increase the throughput capacity and the data speed at least 3 to 4 times higher to what GPRS offers.
    [Show full text]