Kali Komarovii (Amaranthaceae) Is a Xero-Halophyte with Facultative
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amaranthaceae Pollens: Review of an Emerging Allergy in the Mediterranean Area M Villalba,1 R Barderas,1 S Mas,1 C Colás,2 E Batanero,1 R Rodríguez1
REVIEWS Amaranthaceae Pollens: Review of an Emerging Allergy in the Mediterranean Area M Villalba,1 R Barderas,1 S Mas,1 C Colás,2 E Batanero,1 R Rodríguez1 1Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain 2Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain Abstract The Amaranthaceae family is composed of about 180 genera and 2500 species. These common weeds have become increasingly relevant as triggers of allergy in the last few years, as they are able to rapidly colonize salty and arid soils in extensive desert areas. The genera Chenopodium, Salsola, and Amaranthus are the major sources of pollinosis from the Amaranthaceae family in southern Europe, western United States, and semidesert areas of Saudi Arabia, Kuwait, and Iran. In Spain, Salsola kali is one of the most relevant causes of pollinosis, together with olive and grasses. To date, 9 Amaranthaceae pollen allergens from Chenopodium album, Salsola kali, and Amaranthus retroflexus have been described and are listed in the International Union of Immunological Societies allergen nomenclature database. The major allergens of Amaranthaceae pollen belong to the pectin methylesterase, Ole e 1–like, and profilin panallergen families, whereas the minor allergens belong to the cobalamin- independent methionine synthase and polcalcin panallergen families. These relevant allergens have been characterized physicochemically, and immunologically at different levels. Recombinant forms, allergenic fusion recombinant proteins, and hypoallergenic derivatives of these allergens have been expressed in bacteria and yeast and compared with their natural proteins from pollen. In this review, we provide an extensive overview of Amaranthaceae pollen allergens, focusing on their physicochemical, and immunological properties and on their clinical significance in allergic patients. -
Guidance Document Pohakuloa Training Area Plant Guide
GUIDANCE DOCUMENT Recovery of Native Plant Communities and Ecological Processes Following Removal of Non-native, Invasive Ungulates from Pacific Island Forests Pohakuloa Training Area Plant Guide SERDP Project RC-2433 JULY 2018 Creighton Litton Rebecca Cole University of Hawaii at Manoa Distribution Statement A Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank 47 Page Intentionally Left Blank 1. Ferns & Fern Allies Order: Polypodiales Family: Aspleniaceae (Spleenworts) Asplenium peruvianum var. insulare – fragile fern (Endangered) Delicate ENDEMIC plants usually growing in cracks or caves; largest pinnae usually <6mm long, tips blunt, uniform in shape, shallowly lobed, 2-5 lobes on acroscopic side. Fewer than 5 sori per pinna. Fronds with distal stipes, proximal rachises ocassionally proliferous . d b a Asplenium trichomanes subsp. densum – ‘oāli’i; maidenhair spleenwort Plants small, commonly growing in full sunlight. Rhizomes short, erect, retaining many dark brown, shiny old stipe bases.. Stipes wiry, dark brown – black, up to 10cm, shiny, glabrous, adaxial surface flat, with 2 greenish ridges on either side. Pinnae 15-45 pairs, almost sessile, alternate, ovate to round, basal pinnae smaller and more widely spaced. -
Salsola Kali, Russian Thistle
Of interest this week at Beal... Russian thistle Salsola kali Family: the Goosefoot family, Chenopodiaceae Also called tumbleweed, prickly saltwort, and windwitch W. J. Beal Botanical Garden The genus name Salsola means ‘salted’ in Latin. This alludes to the fact that many spe- cies of Salsola are salt-loving or halophytic in their preferences. Our species, Salsola kali is one such salt tolerating species. In many parts of the Midwest, Russian thistle is best established along roads that are salted during the winter. This creates a belt of territory along the roadside that is a somewhat halophytic environment. Tumbleweed is a cultural and botanical icon of the American West. Until late in the nineteenth century, the term ‘tumbleweed’ usually meant a native plant, Amaranthus alba. This species of amaranth grows into a rounded bushy configuration connected to the ground only where its taproot enters the soil. When this annual weed dies, the weak attachment to the taproot breaks off allowing it to roll, tumbling across the ground distributing its seeds along the way. However, the tumbling habit is in no way unique to the Amaranthus tumbleweed. In 1874, (the year of Winston Churchill’s birth) Russian thistle arrived in South Da- kota, from Russia, as a contaminant of flax seed. Its habit of becoming a tumbleweed allowed it to spread quickly across the arid, alkaline, and often salty soils of the West. Salsola has been the majority stockholder in the U. S. tumbleweed category for many decades. Today it can be seen forming gigantic drifts along fence rows and actually fill- ing small ravines throughout the plains in the late summer and fall. -
Origin and Age of Australian Chenopodiaceae
ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times. -
CHENOPODIACEAE 藜科 Li Ke Zhu Gelin (朱格麟 Chu Ge-Ling)1; Sergei L
Flora of China 5: 351-414. 2003. CHENOPODIACEAE 藜科 li ke Zhu Gelin (朱格麟 Chu Ge-ling)1; Sergei L. Mosyakin2, Steven E. Clemants3 Herbs annual, subshrubs, or shrubs, rarely perennial herbs or small trees. Stems and branches sometimes jointed (articulate); indumentum of vesicular hairs (furfuraceous or farinose), ramified (dendroid), stellate, rarely of glandular hairs, or plants glabrous. Leaves alternate or opposite, exstipulate, petiolate or sessile; leaf blade flattened, terete, semiterete, or in some species reduced to scales. Flowers monochlamydeous, bisexual or unisexual (plants monoecious or dioecious, rarely polygamous); bracteate or ebracteate. Bractlets (if present) 1 or 2, lanceolate, navicular, or scale-like. Perianth membranous, herbaceous, or succulent, (1–)3–5- parted; segments imbricate, rarely in 2 series, often enlarged and hardened in fruit, or with winged, acicular, or tuberculate appendages abaxially, seldom unmodified (in tribe Atripliceae female flowers without or with poorly developed perianth borne between 2 specialized bracts or at base of a bract). Stamens shorter than or equaling perianth segments and arranged opposite them; filaments subulate or linear, united at base and usually forming a hypogynous disk, sometimes with interstaminal lobes; anthers dorsifixed, incumbent in bud, 2-locular, extrorse, or dehiscent by lateral, longitudinal slits, obtuse or appendaged at apex. Ovary superior, ovoid or globose, of 2–5 carpels, unilocular; ovule 1, campylotropous; style terminal, usually short, with 2(–5) filiform or subulate stigmas, rarely capitate, papillose, or hairy on one side or throughout. Fruit a utricle, rarely a pyxidium (dehiscent capsule); pericarp membranous, leathery, or fleshy, adnate or appressed to seed. Seed horizontal, vertical, or oblique, compressed globose, lenticular, reniform, or obliquely ovoid; testa crustaceous, leathery, membranous, or succulent; embryo annular, semi-annular, or spiral, with narrow cotyledons; endosperm much reduced or absent; perisperm abundant or absent. -
Weed Notes: Salsola Kali Tunyalee Morisawa the Nature Conservancy
Weed Notes: Salsola kali TunyaLee Morisawa The Nature Conservancy Wildland Weeds Management and Research http://tncweeds.ucdavis.edu 12 August 1999 Background: Many common names, russian thistle, tumbleweed, common saltwort, windwitch and prickly glasswort, are listed for Salsola kali. S. kali is a member of the Chenopodiaceae (goosefoot or beet family) and is native to Russia and Siberia. In 1873, russian thistle was brought to the U.S. in contaminated flax seed. Prevalence in the semidesert range of western states is due to its drought tolerance and long-distance method of seed dispersal. Mature plants grow 31-152 cm high and are bushy, dense annuals. Young plants have stems with red or purple stripes. The 1.3 - 6.4 cm long leaves are alternate, thread-like, cylindrical or awl-shaped with pointed tips. The flowers are solitary, small and greenish to white in color and lack petals. Papery spine-tipped bracts are present at the base of each flower. Russian thistle typically blooms from July to October. However, this plant is indeterminate and continues to flower and produce seed until temperatures drop below -3.9° C. Reproduction: Salsola kali is a summer annual that reproduces by seed. Fruit contains a single seed and has 5 wings - one from the back of each sepal. When the plant is mature it breaks off at the ground forming “tumbleweeds” that are tossed by the wind, scattering seeds. A single plant can produce 100 - 200,000 seeds. Little moisture (0.25-0.76 cm of rainfall) is required for germination. Seeds are dormant over winter allowing the seed to germinate in spring over a wide range of temperatures (optimum temperatures ranging from 7.2° C to 35° C) generally in late March or early April. -
December 2020 Volume 45, Issue 12 the Men’S Garden Club of Burlington NC
WE HELP GARDENERS GROW The Seedling — December 2020 Volume 45, Issue 12 The Men’s Garden Club of Burlington NC https://burlingtonmensgarden.club Next Meeting: January 26, 2021 Bring a guest! NO MEETING IN DECEMBER Topic: No Meeting Send suggestions for 2021 programs A Message from President Dirk Sprenger Dear Members and Friends of the passed away. Both were very active Garden Club in this club and we miss them. We achieved many goals. Visitors came Inside this issue: I love December and reading to some of the Zoom meetings. We about Holiday plants. We have learned had some excellent speakers from Editor’s Corner 2 so much about milkweed in recent outside the club. We raised as much weeks. Not a holiday plant, but it is money as we did the year before. Member Birthdays 2 endangered. My belief is that it is not a We enjoyed our first November Upcoming meeting 2 weed at all, but was misnamed by picnic and learned how to use our Club News 3 pioneers who tried to make a casserole gardening skills to grow more food. with it. The monarch butterfly needs it We shared seeds and apple-wood. In Memoriam: John 3 as the staff of life. We need each other Learning the time to get orchids on Black and our last two meetings were sale and how to keep them alive was amazing. a real plus in my book. Thanks Ray! Zoom Meeting 4 My thanks go to Harry for the We canceled the plans to sell Gardening in the 5 program in November about butterflies plants at the Dogwood Festival very and milkweed. -
A Synopsis of the Family Chenopodiaceae in India
Pleione 6(2): 273 - 297. 2012. ISSN: 0973-9467 © East Himalayan Society for Spermatophyte Taxonomy A synopsis of the Family Chenopodiaceae in India T. K. Paul Botanical Survey of India, Central National Herbarium, Howrah-711103, India E- mail: [email protected] Received revised 07.12.2012; Accepted 11.12.2012 Abstract The present paper presents a concise account of Chenopodiaceae in India. In all 19 genera with 50 species, 1 subspecies, 3 varieties have been recognized and another 2 genera and 14 species are cultivated or introduced. The genera and species are arranged in alphabetical order. Within the enumeration Key to genera and species, correct nomenclature, reference to type materials wherever available, phenology and distribution also have been added. Key words: India, Chenopodiaceae, Synopsis, comb. et stat. nov. INTRODUCTION The plants of Chenopodiaceae Ventenat, commonly known as ‘Goosefoot’ family, are mostly grow as weed and some are food plants like spinach, chard, beets, sugar beet and quinoa. The family is placed in the order Caryophyllales by Cronquist (1981), Takhtajan (1969) and Dahlgren (1975). Hutchinson (1959) and Thorne (1968, 1992) included the family in the order Chenopodiales, Ulbrich in Engler & Prantl (1934) in the order Centrospermae and Bentham & Hooker (1880) in the series Curvembryeae. Bentham & Hooker (1880) divided the family into two series, cyclobeae and spirolobeae. Cyclobeae is characterized by annular embryo, albumen copious whereas in spirolobeae the embryo is spiral and albumen scanty or absent. Williams & Ford-Lloyd (1974) recognised three subfamilies: Chenopodieae (embryo cyclical, operculum absent, endosperm absent, ovary superior), Salsoleae (embryo spiral, operculum absent, endosperm absent, ovary superior), Beteae (embryo cyclical, operculum present in fruit, endosperm present, ovary semi-inferior). -
WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia). -
The C4 Plant Lineages of Planet Earth
Journal of Experimental Botany, Vol. 62, No. 9, pp. 3155–3169, 2011 doi:10.1093/jxb/err048 Advance Access publication 16 March, 2011 REVIEW PAPER The C4 plant lineages of planet Earth Rowan F. Sage1,*, Pascal-Antoine Christin2 and Erika J. Edwards2 1 Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S3B2 Canada 2 Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02912, USA * To whom correspondence should be addressed. E-mail: [email protected] Received 30 November 2010; Revised 1 February 2011; Accepted 2 February 2011 Abstract Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C4 photosynthetic pathway. Here, 62 recognizable lineages of C4 photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a Downloaded from minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C3–C4 intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C4 lineage, indicating that they did not share common C3–C4 ancestors with C4 species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to jxb.oxfordjournals.org cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south- central South America, central Asia, northeastern and southern Africa, and inland Australia. -
Curriculum Vitae
Curriculum Vitae Name: Saw Leng Guan, FASc Born: 14 December 1955, Taiping, Perak, MALAYSIA Sex: Male Nationality: Malaysian Home Address: 19 Jalan Tekoma KS6 Bandar Botanic 41200 Klang Selangor Malaysia Tel.: +603-331 82467 Mobile: +6019-274 5512 e-mail: [email protected] or [email protected] Office Address: Penang Botanic Gardens Pavilion Administration Complex Jalan Kebun Bunga 10350 Penang Malaysia Tel: +6019-2745512 Email: [email protected] Academic Qualifications a. Bachelor of Science (Forestry), Agriculture University of Malaysia (UPM), 1981 b. Master of Science (Pure and Applied Plant and Fungal Taxonomy), University of Reading, 1990 c. Doctor of Philosophy, University of Reading, 1994 Thesis 1. Saw L.G. (1981). Progress of crop: Composition, density and growth patterns of Rhizophora dominated stands before first thinning in Matang Mangroves Forest Reserve, Perak. Final year thesis. U.P.M. 2. Saw L.G. (1990). A revision of the genus Licuala (Palmae) subgenus Libericula. M.Sc. thesis. University of Reading. 3. Saw L.G. (1994). The taxonomy and ecology of the genus Licuala (Palmae) in Malaya. Ph.D. thesis, University of Reading. Awards and Conferment National and International Awards, and Conferment 1. Royal Botanic Gardens Edinburgh (RBGE) Medal – 2016. 2. Conferred as Fellow of the Academy of Sciences Malaysia, 2013. 3. National Book Award 2012 – Technical Book – Wild Orchids of Peninsular Malaysia. 4. British High Commission’s Chevening Scholarships Scheme: Royal Society – Malaysian Fellowship, 1999/2000 (15 January 2000 – 15 June 2000) Schools attended a. Anglo Chinese (Primary) School, Malacca 1962–1967 Page 1 of 19 b. Anglo Chinese (Secondary) School, Malacca 1968 c. -
Building of the Us Department of Agriculture
MAIN BUILDING OF THE U. S. DEPARTMENT OF AGRICULTURE. YEARBOOK Olf THK UNITED STATES DEPARTMENT OF AGRICULTURE. 1895. WASHINGTON: GOVERNMENT PRINTING OFFICE. 4 1896. [PUBLIC—No. 15.] An act providing for the public printing and binding and the distribution of public documents, * * ## * if * Section 17, paragraph 2 : The Annual Report of the Secretary of Agriculture shall hereafter be submitted and printed in two parts, as follows : Part one, which shall contain purely busi- ness and executive matter which it is necessary for the Secretary to submit to the President and Congress; part two, which shall contain such reports from the different buïeaus and divisions, and such papers prepared by their special agents, accompanied by suitable illustrations, as shall, in the opinion of the Secretary, be specially suited to interest and instruct the farmers of the country, and to include a general report of the operations of the Department for their information. There shall be printed of part one, one thousand copies for the Senate, two thou- sand copies for the House, and three thousand copies for the Department of Agri- culture ; and of part two, one hundred and ten thousand copies for the use of the Senate, three hundred and sixty thousand copies for the use of the House of Rep- resentatives, and thirty thousand copies for the use of the Department of Agri- culture, tho illustrations for the same to be executed under the supervision of the Public Printer, in accordance with directions of the Joint Committee on Printing, said illustrations to be subject to the approval of the Secretary of Agriculture; and the title of each of the said parts shall be such as to show that such part is complete in itself.