Boos, J. O. 1993. Experiencing Urospathas. Aroideana 16
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Araceae), with P
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326850; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taxonomic revision of the threatened African genus Pseudohydrosme Engl. (Araceae), with P. ebo, a new, Critically Endangered species from Ebo, Cameroon. Martin Cheek¹, Barthelemy Tchiengue2, Xander van der Burgt¹ ¹Science, Royal Botanic Gardens, Kew, Richmond, Surrey, U.K. 2 IRAD-Herbier National Camerounais, Yaoundé, BP 1601, Cameroon Corresponding author: Martin Cheek¹ Email address: [email protected] ABSTRACT This is the first revision in nearly 130 years of the African genus Pseudohydrosme, formerly considered endemic to Gabon. Sister to Anchomanes, Pseudohydrosme is distinct from Anchomanes because of its 2–3-locular ovary (not unilocular), peduncle concealed by cataphylls at anthesis and far shorter than the spathe (not exposed, far exceeding the spathe), stipitate fruits and viviparous (vegetatively apomictic) roots (not sessile, roots non-viviparous). Three species, one new to science, are recognised, in two sections. Although doubt has previously been cast on the value of recognising Pseudohydrosme buettneri, of Gabon, it is here accepted and maintained as a distinct species in the monotypic section, Zyganthera. However, it is considered to be probably globally extinct. Pseudohydrosme gabunensis, type species of the genus, also Gabonese, is maintained in Sect. Pseudohydrosme together with Pseudohydrosme ebo sp.nov. of the Ebo Forest, Littoral, Cameroon, the first addition to the genus since the nineteenth century, and which extends the range of the genus 450 km north from Gabon, into the Cross-Sanaga biogeographic area. -
Mitotic Index Studies on Edible Cocoyams (Xanthosoma and Colocasia Spp.)
International Scholars Journals African Journal of Virology Research ISSN 3421-7347 Vol. 8 (6), pp. 001-004, June, 2014. Available online at www.internationalscholarsjournals.org © International Scholars Journals Author(s) retain the copyright of this article. Full Length Research Paper Mitotic index studies on edible cocoyams (Xanthosoma and Colocasia spp.) Ekanem, A.M. and Osuji, J.O.* Department of Plant Science and Biotechnology, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria. Accepted 12 March, 2014 Mitotic index studies were carried out on three cultivars of Xanthosoma and four cultivars of Colocasia. Young healthy roots (about 15 mm) were collected at 2 hourly intervals from 6:00 am to 8:00 pm. Root tips were fixed in 1:3 ethanol : acetic acid for 24 h and stored in 70% ethanol prior to squashing in FLP orcein. Microscopic counts showed that the dynamics of mitosis varied slightly between the two groups of cultivars. The peak of metaphase remained between 12:00 noon and 2:00 pm for most of cultivars but one (NCY 00Sa), which had its metaphase rising to a peak between 2:00 and 4:00 pm. This suggests that the best time to harvest root samples for optimum metaphase is immediately before 12:00 noon. Key words: Chromosomes, cocoyam, mitotic division, metaphase, young healthy root tips. INTRODUCTION Cocoyam, a member of the Araceae family is an ancient .Ukpong (NCY 006), Ede Ghana (NCY 008) and Ede Ofe crop grown throughout the humid tropics for its edible corms, (NCY 00Sa). The edible aroids are very nutritious. -
The Evolution of Pollinator–Plant Interaction Types in the Araceae
BRIEF COMMUNICATION doi:10.1111/evo.12318 THE EVOLUTION OF POLLINATOR–PLANT INTERACTION TYPES IN THE ARACEAE Marion Chartier,1,2 Marc Gibernau,3 and Susanne S. Renner4 1Department of Structural and Functional Botany, University of Vienna, 1030 Vienna, Austria 2E-mail: [email protected] 3Centre National de Recherche Scientifique, Ecologie des Foretsˆ de Guyane, 97379 Kourou, France 4Department of Biology, University of Munich, 80638 Munich, Germany Received August 6, 2013 Accepted November 17, 2013 Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. An- tagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was recon- structed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precon- dition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences. -
Anaphyllopsis: a New Neotropical Genus of Araceae-Lasieae
A. Hay, 1988 25 Anaphyllopsis: A New Neotropical Genus of Araceae-Lasieae Alistair Hay Department of Plant Sciences South Parks Road Oxford England During the course of revising the spe phyllous (under normal conditions of cies of Cyrtosperma in the Far East, it growth) in C. americanum, whereas in became necessary to review generic limits Dracontioides it is rhizomatous and pol in the tribe Lasieae sensu Engler ( 1911 ) as phyllous, and in Dracontium it is cormous amended by Bogner ( 1973 ). It has become and monophyllous. apparent that the pantropical Cyrtosperma It is proposed here that a new genus, circumscribed by Engler (loc. cit.) is Anaphyllopsis, be erected as an alternative heterogeneous. to "lumping" Dracontium, Dracontioides Three species of Cyrtosperma have and C. americanum. Were the latter been recognized for the New World. Two course to be adopted, the resulting broad of these belong in extant genera--C. generic concept of Dracontium would be wurdackii Bunting (Urospatba) and C. inconsistent with the existing rather nar spruceanum (Schott) Engler (Dra row limits between other genera of the contium). The necessary new combina Lasieae such as Podolasia, Urospatba, tions are to be made elsewhere, in a Lasia and Cyrtosperma s.s. forthcoming revision of Cyrtosperma. The Two new species of Anapbyllopsis are third species, C. americanum Engler, can described, both, sadly, from single frag not be fitted into any presently recognised mentary collections. Their leaf blades genus. however, are so distinctive as to justify drawing attention to these plants as repre Subtribal and generic limits in the sentatives of new and apparently rare Lasieae are also to be dealt with elsewhere. -
Pollinators and Visitors of Aroid Inflorescences
66 AROJDEANA, Vol. 26 Pollinators and Visitors of Aroid Inflorescences Marc Gibernau Laboratoire d'Evolution & Diversite Biologique Universite de Toulouse m 118 Route de Narbonne, B§t. IV R 3-B 2 31062 Toulouse Cedex 4 France e-mail: [email protected] ABSTRACf view of this subject, as Thomas Croat (2000) did in his history and current status Data on aroid pollinators was first sum of systematic research with Araceae, but to marized by Grayum (1984) who docu give, in the first place, a statement of the mented 35 genera and about 90 species. A subject and to develop some remarks on second summary was published in 1997 in aroid pollination. The Genera ofAraceae (Mayo et al., 1997) with 38 genera and less than 100 species listed including data from Grayum 0986, RESULTS 1990). This paper brings the reference list Summarizing data from Grayum (1984, up to date since 1997, documenting the 1990) and Mayo et al. (997), and includ pollinators of 49 genera and about 125 ing omitted and new publications, the pol species. These numbers are still very low linators of 49 genera and about 125 spe in comparison with the diversity of the Ar cies are documented in Table 1. These aceae family which contains 105 genera numbers are still very low in comparison and about 3,300 species. Some questions with the diversity of the Araceae family on aroid pollination are developed in the which contains 105 genera and about discussion. 3,300 species (Mayo et at., 1997). Thus, KEYWORDS pollinators are cited for only 47% of the genera. -
Morfologia Polínica Do Gênero Urospatha Schott (Araceae
ARTIGO DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v3n2p68-73 Morfologia polínica de duas espécies de Urospatha Schott (Araceae), ocorrente no Estado do Amapá, Brasil. Luciedi Cássia Leoncio Tostes1, Zenaide Palheta Miranda2, Léa Maria Medeiros Carreira3 1. Mestre em Ciências Biológicas, Instituto de Pesquisa Científica e Tecnológica do Estado do Amapá, Brasil. E-mail: [email protected] 2. Bióloga mestre em Biodiversidade Tropical, docente do Curso de Ciências Biológicas da Faculdade de Macapá, Brasil. E-mail: [email protected] 3. Doutora em Ciências Biológicas (Botânica), pesquisadora titular do Museu Paraense Emílio Goeldi, Brasil. E-mail: [email protected] RESUMO. As espécies de Urospatha são ervas aquática, perenes que ocorrem em áreas de várzea e igapó. Apresentam grande diversidade de sinônimos, devido ao alto grau de variabilidade morfológica, o que torna complicado sua identificação, sendo assim este trabalho descreveu a morfologia polínica das espécies U. caudata (Poepp) Schott e U. sagittifolia (Rudge) Schott. Botões florais adultos foram coletados no Estado do Amapá e de amostras depositadas no Herbário Amapaense- HAMAB, e foram submetidos à acetólise para preparo de lâminas. Os grãos de pólen foram medidos, descritos e fotomicrografados. O tamanho dos grãos das espécies varia de pequeno a médio, são heteropolares, de simetria bilateral, elíptico, e em vista frontal, esferoidal. Em vista polar são monosulcados quanto ao número de aberturas; a ornamentação da exina é reticulada, variando apenas no tamanho das perfurações. O sulco é longo e acompanha o comprimento do eixo equatorial maior. As espécies não apresentam diferenças na morfologia polínica, contudo as características polínicas podem auxiliar os estudos taxonômicos. -
Bogner, J. 1987. Morphological Variation in Aroids. Aroideana 10(2)
4 AROIDEANA, Vol. 10, No.2 Morphological Variation in Aroids J. Bogner Menzinger Strasse 63 0-8000 Munich 19 West Germany INTRODUCTION The Araceae or aroid., are a large family or roasted (or otherwise heated) to of about 2400 species, grouped in 107 become edible. Essentially, plants have genera and these again in nine subfami produced poisons to protect themselves lies. The aroids are mainly a tropical from being eaten by animals. Several aroids family and are distributed world-wide. also have uses in folk-medicine. For in They show great variation in their mor stance, Acorus calamus has been used phological characters, which will be de since ancient times for stomach ailments. scribed in this paper along with some Tjlphonium blumei Nicolson & Sivadasan other data. is used to treat diarrhea in tropical Asia and was brought by man (probably from USES India) to Africa, Madagascar and to the Neotropics (Brazil, Venezuela), where it Many aroids are very handsome orna is naturalized today. The Indians in Co mental plants and often cultivated, to men lombia use Urospatha antisylleptica R. E. tion just a few: Monstera deliciosa Liebm., Schultes, Philodendron dyscarpium R. E. Dieffenbachia maculata (Ladd.) G. Don, Schultes and Anthurium tessmannii Krause Epipremnum aureum (Linden & Andre) for contraceptive purposes. Roots ofHeter Bunting, many Philodendron species etc. opsis spruceanum Schott are used for Monstera deliciosa also has a delicious basket-weaving and certain aroids as arrow fresh infructescence tasting like pineap poisons for hunting by indigenous people. ple. Others are important food plants, like These are just a few examples of the uses Colocasia esculenta (L) Schott, the Taro, of aroids, about which much more is in which the tuberous stems and the known. -
Fossil Araceae from a Paleocene Neotropical Rainforest in Colombia1
American Journal of Botany 95(12): 1569-1583. 2008. FOSSIL ARACEAE FROM A PALEOCENE NEOTROPICAL RAINFOREST IN COLOMBIA1 FABIANY A. HERRERA,2'35 CARLOS A. JARAMILLO,2 DAVID L. DILCHER,3 SCOTT L. WING,4 AND CAROLINA G6MEZ-N.2 ^Smithsonian Tropical Research Institute, CTPA, Panama City, Panama; 'Florida Museum of Natural History and Geology Department, University of Florida, Gainesville, Florida 32611-7800, USA; ^Department of Paleobiology, Smithsonian Museum of Natural History, Washington DC, USA Both the fossil record and molecular data support a long evolutionary history for the Araceae. Although the family is diverse in tropical America today, most araceous fossils, however, have been recorded from middle and high latitudes. Here, we report fossil leaves of Araceae from the middle-late Paleocene of northern Colombia, and review fossil araceous pollen grains from the same interval. Two of the fossil leaf species are placed in the new fossil morphogenus Petrocardium Herrera, Jaramillo, Dilcher, Wing et Gomez-N gen. nov.; these fossils are very similar in leaf morphology to extant Anthurium; however, their relationship to the genus is still unresolved. A third fossil leaf type from Cerrejon is recognized as a species of the extant genus Montrichardia, the first fossil record for this genus. These fossils inhabited a coastal rainforest -60-58 million years ago with broadly similar habitat preferences to modern Araceae. Key words: Anthurium; Araceae; Colombia; fossils; monocotyledons; Montrichardia; Paleocene; systematics. Araceae is one of the most diverse monocotyledonous fami- (-124-117 milion years ago [Ma]) of Portugal (Fig. 1; Friis lies, comprising nine subfamilies, 106 genera, and -3300 spe- et al., 2004, 2006), but this age has been questioned and re- cies (Croat, 1979; French et al., 1995; Mayo et al., 1997; mains problematic (Heimhofer et al., 2007). -
Flowering Plants of Samoa
FLOWERING PLANTS OF SAMOA BY ERLING CHRISTOPHERSEN HONOLULU, HAWAII PUBLISHEDBY THE MUSEUM February 21, 1935 KRAUS REPRINT CO. New York 1971 CONTENTS PAGS Introduction ...................................................................................................................................... 3 Mono~otyledon~ae.......................................................................................................................... 6 Family 1. Pandanaceae ........................................................................................................ 6 Family 2. Hydrocharitaceae 6 Family 3. Gramineae ............................................................................................................ 6 Family 4. Cyperageae .......................................................................................................... 15 Family 5. Palmae .................................................................................................................. 25 Family 6- Araceae ................................................................................................................ 39 Family 7. Lemnaceae ............................................................................................................ 44 Family 8. Flagellariaceae 44 Family g. Bromeliaceae ...................................................................................................... 47 Family lo. Commelinaceae .................................................................................................. 48 . Family -
The European Aroid Community New Interest in the Age of Social Media Tom Croat Thomas B
The IAS Newsletter Vol. 42 No. 4 – December, 2020 ISSN 2330-295X A Quarterly Publication for Members of the International Aroid Society Table of Contents The European Aroid Community New Interest in the Age of Social Media Tom Croat Thomas B. Croat, P. A. Schulze Curator The European Aroid Community Missouri Botanical Garden Traveling to Germany .................. Page 1 Meeting with European Aroiders . Page 2 Traveling to Germany Established Aroiders ..................... Page 7 On the 5th of September 2019 I flew to Germany on the invitation ofAlex Pollen and Pollination Experts ... Page 12 Portilla of Ecuagenera. Alex was planning an aroid sales event at the Röllke Aroid Growers ........................... Page 14 Orchideen, a greenhouse complex in Schloss Holte-Stukenbrock and wanted Aquatic Aroid Specialists ............ Page 15 me to present information on Araceae to the participants at his sale. Alex is Index to European Aroiders ....... Page 17 the company’s representative in Europe and had received good responses from people all over northern Europe and thought that it would be good to solidify Sappasiri Chaovanich & Rahul Thampi relationships with a number of new potential members for the International Thailand Best Aroid Show 2020 ... Page18 Aroid Society. I was eager to help by meeting these new European aroid enthu- siasts, talk about aroids and try to find some new young members for the IAS. Dmitry A. Loginov Easy Solution for Difficult Things did not go well from the outset with my flight to Stockholm leaving 3 Cryptocoryne Species .................. Page 20 hours late out of Washington Dulles Airport. When I arrived in Copenhagen at 10:00 AM the next day on Friday, I learned that there was a baggage han- Zach DuFran dler’s strike and that my now rescheduled connecting flight to Hannover was Mid America Chapter likely to not leave. -
The Garden's Bulletin
Gardens’ Bulletin Singapore 62 (2): 291–295. 2011 291 Pycnospatha (Araceae: Lasioideae), a new generic record for the flora of Cambodia and Vietnam V.D. Nguyen1 and P.C. Boyce2 1 Institute of Ecology and Biological Resources, 18 Hoàng Quốc Việt, Nghĩa Đô, Cầu Giấy, Hà Nội, Việt Nam [email protected] (corresponding author) 2 Pusat Pengajian Sains Kajihayat (School of Biological Sciences), Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia [email protected] ABSTRACT. Pycnospatha arietina Gagnep. (Araceae–Lasioideae) is recorded as a new species and genus record for Cambodia and Vietnam. An updated species description and a key to both species of Pycnospatha are provided. The Cambodian plant is figured. Keywords. Araceae, Cambodia, Laos, Lasioideae, Pycnospatha, Pycnospatha arietina, Vietnam Introduction The first author has for over 15 years been undertaking Araceae-related fieldwork in Vietnam and following easing of access, more recently in Cambodia and Lao. In 2007, during fieldwork in the Peah Ream National Park, Sihanouk Ville, Cambodia, material was collected of Pycnospatha arietina Gagnep. (Araceae - Lasioideae), representing a new genus and species record for Cambodia. This new Cambodian collection locality is only approximately 30 km N of Phu Quoc island (Vietnam) from where Hô (1993, 2000) illustrated, as Amorphophallus sp., what is undoubtedly also P. arietina. Thus the genus Pycnospatha, represented by P. arietina, is also present in Vietnam. Pycnospatha comprises two species. The type, P. palmata Thorel ex Gagnep. (Gagnepain 1941) was described from Lao P.D.R. based on a collection made by Clovis Thorel during his 1886-1868 Mekong Delta expedition. Although as yet not recollected from Lao, P. -
Leaf and Inflorescence Evidence for Near-Basal Araceae and an Unexpected Diversity of Other Monocots from the Late Early Cretaceous of Spain
Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain Luis Miguel Sender, James A. Doyle, Garland R. Upchurch Jr, Uxue Villanueva- Amadoz & José B. Diez To cite this article: Luis Miguel Sender, James A. Doyle, Garland R. Upchurch Jr, Uxue Villanueva-Amadoz & José B. Diez (2018): Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2018.1528999 To link to this article: https://doi.org/10.1080/14772019.2018.1528999 View supplementary material Published online: 09 Nov 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2018 Vol. 0, No. 0, 1–34, http://doi.org/10.1080/14772019.2018.1528999 Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain aà b c d e Luis Miguel Sender , James A. Doyle , Garland R. Upchurch Jr , Uxue Villanueva-Amadoz and Jose B. Diez aDepartment of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo, Japan; bDepartment of Evolution and Ecology,