Anaphyllopsis: a New Neotropical Genus of Araceae-Lasieae

Total Page:16

File Type:pdf, Size:1020Kb

Anaphyllopsis: a New Neotropical Genus of Araceae-Lasieae A. Hay, 1988 25 Anaphyllopsis: A New Neotropical Genus of Araceae-Lasieae Alistair Hay Department of Plant Sciences South Parks Road Oxford England During the course of revising the spe­ phyllous (under normal conditions of cies of Cyrtosperma in the Far East, it growth) in C. americanum, whereas in became necessary to review generic limits Dracontioides it is rhizomatous and pol­ in the tribe Lasieae sensu Engler ( 1911 ) as phyllous, and in Dracontium it is cormous amended by Bogner ( 1973 ). It has become and monophyllous. apparent that the pantropical Cyrtosperma It is proposed here that a new genus, circumscribed by Engler (loc. cit.) is Anaphyllopsis, be erected as an alternative heterogeneous. to "lumping" Dracontium, Dracontioides Three species of Cyrtosperma have and C. americanum. Were the latter been recognized for the New World. Two course to be adopted, the resulting broad of these belong in extant genera--C. generic concept of Dracontium would be wurdackii Bunting (Urospatba) and C. inconsistent with the existing rather nar­ spruceanum (Schott) Engler (Dra­ row limits between other genera of the contium). The necessary new combina­ Lasieae such as Podolasia, Urospatba, tions are to be made elsewhere, in a Lasia and Cyrtosperma s.s. forthcoming revision of Cyrtosperma. The Two new species of Anapbyllopsis are third species, C. americanum Engler, can­ described, both, sadly, from single frag­ not be fitted into any presently recognised mentary collections. Their leaf blades genus. however, are so distinctive as to justify drawing attention to these plants as repre­ Subtribal and generic limits in the sentatives of new and apparently rare Lasieae are also to be dealt with elsewhere. species. However, the species in question differs from Cyrtosperma s.S. in the presence of both prophylls and cataphylls on the Anapbyllopsis A. Hay, gen. nov. rhizome, and in having fenestrate foliage. Herbae terrestres paludosae; caudex The absence of cataphylls may be used as a hypogaeus rhizomatosus, prophyllis diagnostic character for the subtribe La­ cataphyllis euphyllisque praeditus, siinae which includes the. Far Eastern orthotropus; folii lamina fenestrata species of Cyrtosperma and in which vel pinnata; spatha spiraliter torta; fenestrate leaves are unknown. Fenestrate flores hermaphroditi tepalati; sem­ leaves are present however, in Dracontioi­ des and Dracontium. Cyrtosperma ina campylotropa albuminosa; testa americanum appears to be more closely crassa ornata. related to Dracontioides and Dracontium, Solitary herbs with subterranean but differs from both in the form of the orthotropic rhizomes (where spathe which is spirally twisted rather like known) bearing prophylls, cata­ that of the Indian Anapbyllum wigbtii phylls and euphylls; leaves generally Schott in C. americanum, and hood­ solitary with unarmed tubercular to forming to erect in the other genera. Of the smooth often mottled petioles; lami­ vegetative characteristics, the stem is nas dissected by fenestration or rhizomatous and the sympodium mono- ternate with fenestrate segments or 26 AROIDEANA, Vol. 11, No. 1 simply pinnate; inflorescence termi­ Stem unknown; leaf solitary; petiole nal, solitary, on long peduncles simi­ mottled, warty, ca. 1.5 m long, ca .1 lar to the petioles; spathe mem­ cm diam. (dry); lamina pinnate; branaceous, papery when dry, lowermost leaflets (= posterior marcescent, convolute towards the lobes) stalked for ca. 3 cm, their base, spirally twisted in the mid and blades ca. 30 cm long, 11cm wide, upper part; spadix with a stipe oblong-ovate, more or less symmet­ adnate for most of its length to the rical, with the tips acuminate for ca. spathe; flowers hermaphrodite 2 cm; primary lateral veins (of throughout the length of the spadix, leaflets) pinnate, ca. 12 on each side tepalate, maturing (like the fruits) in of the midrib, brochidodromous, a basipetal sequence; perianth and collected into a more or less undu­ androecium tetramerous; stamens lating sub-marginal vein, not promi­ with short, strap-like filaments and nent below (in dry state ); secondary extrorse bilocular anthers opening venation reticulate, faint; anterior by apical pore-like slits; pollen rachis ca. 13 cm long, with two pairs ovoid, monosukate, with more or of opposite leaflets similar to basal less smooth exine; ovary superior, pair but progressively smaller, ter­ unilocular, uni-or biovulate with minating in an incompletely divided basal placentation; stigma not nec­ pair of segments; peduncle smooth tariferous; fruit ovoid to obpyrami­ otherwise similar to, and winding dal, indehiscent; seed campylotro­ round the petiole; spathe membra­ pous, pachychalazal, albuminous; nous and papery (dry), ca. 16 cm seed-coat thick, verruculose to long, ca. 7 cm wide at widest, deeply channelled. Type species: A. ovate-Ian ceo late (flattened), convo­ americana (Engler) A. Hay: (ba­ lute in the lower quarter, spirally sionym Cyrtosperma americanum twisted in the upper 2/3 greenish Engler). Distribution: Tropical South outside, reddish brown within; spa­ America - Venezuela, Surinam, dix 2.3 cm long, 8 mm diam., French Guiana and Brazil. Widely stipitate for ca. 6 mm with the stipe dispersed, the collecting sites of the adnate to the spathe; flowers tetra­ three species (Fig. 4.) fall within merous; ovary unilocular; ovules three of the Pleistocene forest refu­ two; stigma raised for ca. 1 mm on a gia proposed by Prance ( 1982). conical style; fruit and seed un­ known, Fig. 1. Type: Venezuela, Territorio Amazonas, Rio Negro, Key to species of Anapbyllopsis near the Brazilian border around 1. Lamina pinnater; leaflets ovate, petio­ Piedra de Cucuy (approx. 66 51" W; lulate . A. pinnata 1 13" N), 2 Nov. 1968,]. G. Wessels 1. Anterior lobe pinnatifid, or if inter­ Boer 2387 (U! holotype). Distribu­ preted as pinnate then the leaflets sessile tion: known only from the type with broad insertions . 2 collection from tropical rain forest 2. Lateral segments of anterior lobe with on granitic soil; altitude 100-350 m. retuse to bifurcate apices . Anaphyllopsis americana (Engler) . A. americana A. Hay, comb. nov. 2. Lateral segments of anterior lobe with Cyrtosperma americanum Engler in rounded apices. A. cururuana Martius, Fl. Bras. 3,2 (8178) 117, t. 22 & in DC, Monog. Phanerogam. 2 (1879) 272 & Anapbyllopsis pinnata A. Hay, sp. in Pflanzenr. 48 (IV. 23C)(1911) 22, fig. 8; nov. Pulle Enum. Vasco PI. Suriname ( 1906) 78; A ceteribus speciebus Anaphyllopsidis Jonker-Verhoef & Jonker in Acta Bot. folio veriter pinnato differt. Neerl. 15 (1966) 130. Type: French Gui- A. Hay, 1988 27 'A Fig. l. A. americana mottled green, grey and brown, weakly pustular, unarmed, spongy, ana, Leprieur 152 (P! lectotype, selected conspicuously geniculate at apex; here; US!) sheath very short, rarely to 8 cm, Herb to 1.5 m tall; rhizome straight, membranous; lamina dark green, subterranean, orthotropic, brittle, glossy above, dull below, sagittate; ca. 2-3 cm diam., to ca. 15 cm long anterior lobe pinnatisect by fenes­ with few scattered roots (in anero­ tration (juvenile expanded leaves bic conditions); or short with copi­ sometimes remaining fenestrate ), ous roots (aerobic conditions); leaf lateral segments opposite, separated solitary, rarely to three together; to near midrib, unicostate, with petiole to l.5 m long (usually less), submarginal veins, costae divided 28 AROIDEANA, Vol. 11, No.1 and running to the extremities of the ca. 6cm wide at widest point, retuse or bifurcate tips; terminal lanceolate, convolute below, segment rhomboid; posterior lobes twisted above, erect, pale greenish­ naked in the sinus for ca. 5 cm, brown to reddish outside, ivory with entire on the posterior side, more or purpose margins below within; spa­ less pedately divided by fenestration dix on a stipe completely adnate to on the anterior side; inflorescence the spathe and thus displaced at an solitary; rarely with an inflorescence angle to the peduncle, ca. 2.5 cm and infructescence present together long, ca. 7 mm wide; flowers tetra­ on one plant; peduncle slightly merous, ovary unilocular; stigma shorter than and similar to the dry, button-like, very small; ovule petiole, present with leaf; spathe solitary, with basal placentation; (and spadix) drying black and turn­ fruit obpyramidal, ca. 1 X 1 cm, ing black in alcohol, to 18. cm long, flat-topped and closely spaced form- Fig. 2. A. pinnata A. Hay, 1988 29 ing channels in between, Fig. 2. the structure of the seed. Engler's illustra­ Distribution: Surinam and French tion (loc. cit.) gives the impression of a Guiana; growing in lowland swamp thin testa surrounding a thick runinate forest, swamp forest regrowth, endosperm enclosing the embryo. This is swampy woodland and scrub. not so. His "embrog" is endosperm con­ I observed this species in August 1984 taining the embryo. His "endosperm" is growing in and near the ORSTROM forest the seed coat, and his "testa" is the regeneration plots along the Piste Ste. Elie seed-coat's outer pigmented layer. The near Sinnamary in French Guiana. Plants channelled petiole and the inflorescence were growing in the shade of swamp forest emerging without a leaf from the mounts floor, and were rare, in individuals widely of two cataphylls are at best atypical, at scattered. They were found to have the worst fictitious. rhizome below the water table, with the Specimens seen: apical bud situated at the interface of French Guiana, Saut Mais ± 20km E. of slate-grey waterlogged (ferrous) and the Saul, Cremers 6107 (CAY!, K!); overlying brown (ferric) aerobic soil. The Piste Ste elie, nr. Sinnamary, Hay bases of the rhizomes lay level with the top 2818 (M!); Leprieur 152 (P!, US!), of an underlying layer of sand. In such s.n. leg. 1838 (P!), leg. 1847 (P!); conditions the rhizomes bore very few Marecages de Mt. Sineri, Melinon roots, scattered along the length. Some of 52 (P!), 98 (P!), 115 (P!). these were wrinkled, suggesting they are Surinam, confluence of the Ta­ contractile. A few plants were also found panahoney and Paloemeu rivers, growing in an area flooded by a stream blocked off by the road which had been Wessels Boer 1223 (Kl, NY!, U!, built eleven years previously.
Recommended publications
  • Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food.
    [Show full text]
  • Araceae), with P
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326850; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taxonomic revision of the threatened African genus Pseudohydrosme Engl. (Araceae), with P. ebo, a new, Critically Endangered species from Ebo, Cameroon. Martin Cheek¹, Barthelemy Tchiengue2, Xander van der Burgt¹ ¹Science, Royal Botanic Gardens, Kew, Richmond, Surrey, U.K. 2 IRAD-Herbier National Camerounais, Yaoundé, BP 1601, Cameroon Corresponding author: Martin Cheek¹ Email address: [email protected] ABSTRACT This is the first revision in nearly 130 years of the African genus Pseudohydrosme, formerly considered endemic to Gabon. Sister to Anchomanes, Pseudohydrosme is distinct from Anchomanes because of its 2–3-locular ovary (not unilocular), peduncle concealed by cataphylls at anthesis and far shorter than the spathe (not exposed, far exceeding the spathe), stipitate fruits and viviparous (vegetatively apomictic) roots (not sessile, roots non-viviparous). Three species, one new to science, are recognised, in two sections. Although doubt has previously been cast on the value of recognising Pseudohydrosme buettneri, of Gabon, it is here accepted and maintained as a distinct species in the monotypic section, Zyganthera. However, it is considered to be probably globally extinct. Pseudohydrosme gabunensis, type species of the genus, also Gabonese, is maintained in Sect. Pseudohydrosme together with Pseudohydrosme ebo sp.nov. of the Ebo Forest, Littoral, Cameroon, the first addition to the genus since the nineteenth century, and which extends the range of the genus 450 km north from Gabon, into the Cross-Sanaga biogeographic area.
    [Show full text]
  • Mitotic Index Studies on Edible Cocoyams (Xanthosoma and Colocasia Spp.)
    International Scholars Journals African Journal of Virology Research ISSN 3421-7347 Vol. 8 (6), pp. 001-004, June, 2014. Available online at www.internationalscholarsjournals.org © International Scholars Journals Author(s) retain the copyright of this article. Full Length Research Paper Mitotic index studies on edible cocoyams (Xanthosoma and Colocasia spp.) Ekanem, A.M. and Osuji, J.O.* Department of Plant Science and Biotechnology, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria. Accepted 12 March, 2014 Mitotic index studies were carried out on three cultivars of Xanthosoma and four cultivars of Colocasia. Young healthy roots (about 15 mm) were collected at 2 hourly intervals from 6:00 am to 8:00 pm. Root tips were fixed in 1:3 ethanol : acetic acid for 24 h and stored in 70% ethanol prior to squashing in FLP orcein. Microscopic counts showed that the dynamics of mitosis varied slightly between the two groups of cultivars. The peak of metaphase remained between 12:00 noon and 2:00 pm for most of cultivars but one (NCY 00Sa), which had its metaphase rising to a peak between 2:00 and 4:00 pm. This suggests that the best time to harvest root samples for optimum metaphase is immediately before 12:00 noon. Key words: Chromosomes, cocoyam, mitotic division, metaphase, young healthy root tips. INTRODUCTION Cocoyam, a member of the Araceae family is an ancient .Ukpong (NCY 006), Ede Ghana (NCY 008) and Ede Ofe crop grown throughout the humid tropics for its edible corms, (NCY 00Sa). The edible aroids are very nutritious.
    [Show full text]
  • The Evolution of Pollinator–Plant Interaction Types in the Araceae
    BRIEF COMMUNICATION doi:10.1111/evo.12318 THE EVOLUTION OF POLLINATOR–PLANT INTERACTION TYPES IN THE ARACEAE Marion Chartier,1,2 Marc Gibernau,3 and Susanne S. Renner4 1Department of Structural and Functional Botany, University of Vienna, 1030 Vienna, Austria 2E-mail: [email protected] 3Centre National de Recherche Scientifique, Ecologie des Foretsˆ de Guyane, 97379 Kourou, France 4Department of Biology, University of Munich, 80638 Munich, Germany Received August 6, 2013 Accepted November 17, 2013 Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. An- tagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was recon- structed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precon- dition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences.
    [Show full text]
  • Giant Swamp Taro, a Little-Known Asian-Pacific Food Crop Donald L
    36 TROPICAL ROOT CROPS SYMPOSIUM Martin, F. W., Jones, A., and Ruberte, R. M. A improvement of yams, Dioscorea rotundata. wild Ipomoea species closely related to the Nature, 254, 1975, 134-135. sweet potato. Ec. Bot. 28, 1974,287-292. Sastrapradja, S. Inventory, evaluation and mainte­ Mauny, R. Notes historiques autour des princi­ nance of the genetic stocks at Bogor. Trop. pales plantes cultiVl!es d'Afrique occidentale. Root and Tuber Crops Tomorrow, 2, 1970, Bull. Inst. Franc. Afrique Noir 15, 1953, 684- 87-89. 730. Sauer, C. O. Agricultural origins and dispersals. Mukerjee, I., and Khoshoo, T. N. V. Genetic The American Geogr. Society, New York, 1952. evolutionary studies in starch yielding Canna Sharma, A. K., and de Deepesh, N. Polyploidy in edulis. Gen. Iber. 23, 1971,35-42. Dioscorea. Genetica, 28, 1956, 112-120. Nishiyama. I. Evolution and domestication of the Simmonds, N. W. Potatoes, Solanum tuberosum sweet potato. Bot. Mag. Tokyo, 84, 1971, 377- (Solanaceae). In Simmonds, N. W., ed., Evolu­ 387. tion of crop plants. Longmans, London, 279- 283, 1976. Nishiyama, I., Miyazaki, T., and Sakamoto, S. Stutervant, W. C. History and ethnography of Evolutionary autoploidy in the sweetpotato some West Indian starches. In Ucko, J. J., and (Ipomea batatas (L). Lam.) and its preogenitors. Dimsley, G. W., eds., The domestication of Euphytica 24, 1975, 197-208. plants and animals. Duckworth, London, 177- Plucknett, D. L. Edible aroids, A locasia, Colo­ 199, 1969. casia, Cyrtosperma, Xanthosoma (Araceae). In Subramanyan, K. N., Kishore, H., and Misra, P. Simmonds, N. W., ed., Evolution of crop plants. Hybridization of haploids of potato in the plains London, 10-12, 1976.
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Bonpland and Humboldt Specimens, Field Notes, and Herbaria; New Insights from a Study of the Monocotyledons Collected in Venezuela
    Bonpland and Humboldt specimens, field notes, and herbaria; new insights from a study of the monocotyledons collected in Venezuela Fred W. Stauffer, Johann Stauffer & Laurence J. Dorr Abstract Résumé STAUFFER, F. W., J. STAUFFER & L. J. DORR (2012). Bonpland and STAUFFER, F. W., J. STAUFFER & L. J. DORR (2012). Echantillons de Humboldt specimens, field notes, and herbaria; new insights from a study Bonpland et Humboldt, carnets de terrain et herbiers; nouvelles perspectives of the monocotyledons collected in Venezuela. Candollea 67: 75-130. tirées d’une étude des monocotylédones récoltées au Venezuela. Candollea In English, English and French abstracts. 67: 75-130. En anglais, résumés anglais et français. The monocotyledon collections emanating from Humboldt and Les collections de Monocotylédones provenant des expéditions Bonpland’s expedition are used to trace the complicated ways de Humboldt et Bonpland sont utilisées ici pour retracer les in which botanical specimens collected by the expedition were cheminements complexes des spécimens collectés lors returned to Europe, to describe the present location and to de leur retour en Europe. Ces collections sont utilisées pour explore the relationship between specimens, field notes, and établir la localisation actuelle et la composition d’importants descriptions published in the multi-volume “Nova Genera et jeux de matériel associés à ce voyage, ainsi que pour explorer Species Plantarum” (1816-1825). Collections in five European les relations existantes entre les spécimens, les notes de terrain herbaria were searched for monocotyledons collected by et les descriptions parues dans les divers volumes de «Nova the explorers. In Paris, a search of the Bonpland Herbarium Genera et Species Plantarum» (1816-1825).
    [Show full text]
  • Boos, J. O. 1993. Experiencing Urospathas. Aroideana 16
    JULIUS O. BOOS, 1993 33 Experiencing Urospathas Julius o. Boos 1368 Scottsdale Road East West Palm Beach Florida 33417, USA In 1988 I visited Dewey Fisk in Miami. along the Tortuguero Canal in northeastern Among his magnificent collection of aroids Costa Rica by Fred Berry. was a specimen of Urospatha in flower, the The Central American species is Uros­ first of this genus I had seen. I immediately patha grandis Schott originally described fell in love with these plants. Although they in 1857 from a specimen collected in Pan­ lack the bright colors or dramatically pat­ ama. A review of this genus is badly needed, terned leaves of some other aroid genera especially in South America. Synonyms of such as Anthurium and Alocasia, Urospa­ U. grandis include U. tonduzii Engler de­ tha, with their magnificent, large sagittate scribed in 1885 from Costa Rica, and U. leaves with purple and green patterned pet­ tuerckheimiiEngler described in 1905 from ioles and elongated spathes in muted col­ Guatemala. Urospatha jriedrichsthalii ors of bronze and ivory elegantly twisted at Schott described in 1853 (and thus the old­ their tips, possess a somber beauty you may est name) from material collected in Nic­ find hard to ignore or resist. aragua, an illustration of which accompa­ As far as it is presently known, the genus nies the generic protologue (Schott, Fig. Urospatha is found only along the Carib­ 7) is in fact a Sagittaria (possibly S. mon­ bean coast of Central America and through­ tividenis Cham. & Schlect.) in the Alis­ out the tropical lowlands of eastern South mataceae, according to Hay (1992).
    [Show full text]
  • An Electronic Checklist of the New World Chafers (Coleoptera: Scarabaeidae: Melolonthinae)
    AN ELECTRONIC CHECKLIST OF THE NEW WORLD CHAFERS (COLEOPTERA: SCARABAEIDAE: MELOLONTHINAE) Version 3 ARTHUR V. EVANS Research Associate, Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC; Department of Recent Invertebrates, Virginia Museum of Natural History, Martinsville, VA; Department of Biology, Virginia Commonwealth University, Richmond, VA; c/o1600 Nottoway Ave., Richmond, VA 23227, USA; [email protected] and ANDREW B. T. SMITH Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, ON, K1P 6P4, Canada; [email protected] INTRODUCTION The following is a checklist of all Melolonthinae (Coleoptera: Scarabaeidae) found in the New World. It has been modified from Evans (2003), Evans and Smith (2005), and Smith and Evans (2005) and has been updated to 13 March 2009. Included in this checklist are all of the available names given for New World Melolonthinae (both valid and invalid). Tribes are listed in traditional order (pseudo-phylogenetically) with genera, species, and subspecies listed alphabetically within. Under each valid generic name the subgenera and synonymies are listed as are type species and, in some cases, citations for keys, checklists, and bibliographies. Listed under each valid species are synonymies, distributional data by country, and citations for new combinations and spellings. A complete bibliography is included in the “References” section of all papers mentioned in the checklist. The purpose of this checklist is to present accurate and complete information for all the names of Melolonthinae in the New World. The taxonomy herein is based on the current literature (even if we have unpublished data contradicting what has been published) and the nomenclature carefully follows the International Code of Zoological Nomenclature.
    [Show full text]
  • Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area
    Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons Stanwyn G. Shetler Sylvia Stone Orli Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 MAP OF THE CHECKLIST AREA Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Systematic Biology Botany Section National Museum of Natural History 2002 Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 Cover illustration of Canada or nodding wild rye (Elymus canadensis L.) from Manual of the Grasses of the United States by A. S. Hitchcock, revised by Agnes Chase (1951). iii PREFACE The first part of our Annotated Checklist, covering the 2001 species of Ferns, Fern Allies, Gymnosperms, and Dicotyledons native or naturalized in the Washington-Baltimore Area, was published in March 2000. Part II covers the Monocotyledons and completes the preliminary edition of the Checklist, which we hope will prove useful not only in itself but also as a first step toward a new manual for the identification of the Area’s flora. Such a manual is needed to replace the long- outdated and out-of-print Flora of the District of Columbia and Vicinity of Hitchcock and Standley, published in 1919. In the preparation of this part, as with Part I, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. As with the first part, we are distributing this second part in preliminary form, so that it can be used, criticized, and updated while the two parts are being readied for publication as a single volume.
    [Show full text]
  • The Genus Amorphophallus
    The Genus Amorphophallus (Titan Arums) Origin, Habit and General Information The genus Amorphophallus is well known for the famous Amorphophallus titanum , commonly known as "Titan Arum". The Titan Arum holds the plant world record for an unbranched single inflorescence. The infloresence eventually may reach up to three meters and more in height. Besides this oustanding species more than 200 Amorphophallus species have been described - and each year some more new findings are published. A more or less complete list of all validly described Amorphophallus species and many photos are available from the website of the International Aroid Society (http://www.aroid.org) . If you are interested in this fascinating genus, think about becoming a member of the International Aroid Society! The International Aroid Society is the worldwide leading society in aroids and offers a membership at a very low price and with many benefits! A different website for those interested in Amorphophallus hybrids is: www.amorphophallus-network.org This page features some awe-inspiring new hybrids, e.g. Amorphophallus 'John Tan' - an unique and first time ever cross between Amorphophallus variabilis X Amorphophallus titanum ! The majority of Amorphophallus species is native to subtropical and tropical lowlands of forest margins and open, disturbed spots in woods throughout Asia. Few species are found in Africa (e.g. Amorphophallus abyssinicus , from West to East Africa), Australia (represented by a single species only, namely Amorphophallus galbra , occuring in Queensland, North Australia and Papua New Guinea), and Polynesia respectively. Few species, such as Amorphophallus paeoniifolius (Madagascar to Polynesia), serve as a food source throughout the Asian region.
    [Show full text]
  • Appendix 1. Available Information on Pollination Traits of Araceae Species with Bisexual Flowers, Including Appropriate References
    Appendix 1. Available information on pollination traits of Araceae species with bisexual flowers, including appropriate references. Confirmed pollinators, as identified by the studies cited, are shown in bold. In cases where floral visitors have been confirmed or suggested as pollinators, the remaining documented floral visitors were excluded from this list. (*) possible advertisement/ pollinator/ reward according to the studies cited. Rewards used by only one specific visitor group are indicated as: Ap: Apini, Ag: Augochlorini, Be: Beetles, Eg: Male Euglossini, Fl: Flies, Ha: Halictini, Me: Meliponini. Subfamily/Genus Species Breeding Advertisements Type of floral Dominant Floral Rewards or References system scent/time of chemical visitors/pollination resources emission scent class vectors ORONTIOIDEAE Orontium O. aquaticum L. Unknown Unknown Unpleasant Unknown Dragonflies Unknown Klotz, 1992 (fungal) Lysichiton L. americanus Facultative Floral scent Unpleasant and Lipid- Beetles: Shelter, Pellmyr & Hultén & xenogamy (spathe/spadix), strong (carrion, derived Staphylinidae Mating site, Patt, 1986; H.St.John Spathe color feces) compounds, Pollen Willson & Nitrogen- Hennon, containing 1997; Brousil compounds et al., 2015; Brodie et al., 2018 L. Facultative Floral scent Pleasant Unknown Flies: Unrewarded Tanaka, 2004 camtschatcensis xenogamy (spadix) Anthomyiidae, (L.) Schott Lauxaniidae*; Wind Symplocarpus S. foetidus (L.) Unknown Heat, Floral Unpleasant (dung, Sulfur- Stone flies: Shelter*, Moodie, Salisb. ex scent carrion)/ morning containing Nemouridae*; Pollen* 1976; W.P.C.Barton (spathe/spadix) and afternoon compounds Wind Knutson, 1979; Camazine & Niklas, 1984; Kevan, 1989; Thorington, 2000; Kozen, 2013 S. renifolius Facultative Heat, Floral Unpleasant and Unknown Flies: Pollen Uemura et al., Schott ex Tzvelev xenogamy scent (spadix), weak (carrion) Anthomyiidae, 1993; Hong & CO2* Drosophilidae, Sohn, 2003 Lauxaniidae, Fanniidae, Simuliidae, Syrphidae*; Beetles: Staphylinidae* POTHOIDEAE Anthurium A.
    [Show full text]