1 • Jeder Vortrag 30 Min. Inklusive Diskussion • Zu Jedem

Total Page:16

File Type:pdf, Size:1020Kb

1 • Jeder Vortrag 30 Min. Inklusive Diskussion • Zu Jedem Jeder Vortrag 30 min. inklusive Diskussion zu jedem Vortrag eine Zusammenfassung von 4 Seiten inklusive Abbildungen (hoher Qualität!) 1. Tag Literaturempfehlungen 1 Südamerika: Geologische Gliederung und plattentektonische Entwicklung Ramos 2009; Bahlburg et seit dem Spätpräkambrium, Mielke al. 2009; Cawood 2005 (ESR) 2 Proterozoisch‐paläozoische Beckenentwicklung und Geotektonik in Bahlburg & Herve 1997; Nordchile und NW‐Argentinien, Falk Bahlburg & Breitkreuz 1993; Lucassen et al. 2011 3 Plattentektonik an einem aktiven Kontinentalrand und die mesozoisch‐ Beck 1998; Gephard 1994; känozoische Dynamik der ozeanischen Platten westlich Südamerikas, Lamb 2001; Müller 4 Petrologie und Magmengenese am aktiven Kontinentalrand, Feig Davidson et al. 1991; Stern 2004 5 Das jurassische transtensionale Arc‐System in N‐Chile I: Geotektonik, Scheuber & Gonzalez 1999, Gerz Lucassen et al. 2006 6 Das jurassische transtensionale Arc‐System in N‐Chile II: Vulkanite und Lucassen et al. 1996; Plutonite, Brombacher 7 Kretazisch‐paläogene Entwicklung Nordchiles: Arc‐Migration, Jordan et al. 2007, Hartley Beckenentwicklung und Geotektonik, Luthardt & Evenstar 2010; Mpodozis et al. 2005; Janssen et al. 2002; Oncken et al. 2006 8 Mesozoisches Rifting und känozoische Kompressionstektonik in NW‐ Lucassen et al. 2007; Argentinien, Schmidt Deeken et al. 2006; Monaldi et al. 2008 9 Die Argentinische Puna: Tektonik, Vulkanismus und Allmendiger et al. 1997; Landschaftsentwicklung, Meischner Caffe et al. 2008 10 Neogene Hebung, Landschafts‐ und Klimaentwicklung in N‐Chile, Lamb & Davis 2003, Jordan Neuwirth et al. 2010; Placzek et al. 2010 11 Der nordchilenische Offshore‐Bereich (trench ‐ fore‐arc) und die Gonzalez et al. 2003 Mejillones‐Halbinsel bei Antofagasta: Morphologie und Tektonik, Kreher 1 2. Tag 12 Die Struktur der südlichen Zentralanden aus geophysikalischer Sicht: Oncken et al. 2006 (darin: Gravimetrie, Magnetotellurik, Seismik und Seismologie, Freudenberg Asch et al.!), Brasse et al. 2002; Buske et al. 2002, Hindle et al. 2005, Husen et al. 1999; Onkcen et al. 2003 13 Rezentes Deformationsfeld der südlichen Zentralanden: GPS und Oncken et al. 2006; Klotz et seismologische Daten, Rembe al. 2001; Angermann et al. 1999 14 Neogener Vulkanismus in den südlichen Zentralanden I: APVC und die Lindsay et al. 2001, anderen großen Caldera‐Systeme und SiO2‐reichen Lavakomplexe, Salisbury et al. 2011, de Hohlfeld Silva & Francis 1989; Chmielowski et al. 1999; Riller et al. 2001, de Silva 1994 15 Neogener Vulkanismus in den südlichen Zentralanden II: Stratovulkane – Vezzolli et al. 2008; Calder Aufbau, vulkanische Prozesse und Sektorkollaps, Schmiedel, T. et al. 2011; Hellweg 1999; San Pedro, San Pablo, Volcan Ollague, V. Lincancabur, V. Lascar 16 Lagerstätten in N‐Chile und NW‐Argentinien I: Erzlagerstätten – SERNAGEOMIN home Überblick, inkl. IOCG, Schmiedel, J. page; Segemar hompage Argentina; Kay et al. 1999; Economic Geology! 17 Lagerstätten in N‐Chile und NW‐Argentinien II: Erzlagerstätten ‐ Bitte Profs. Gutzmer, Methoden und Probleme der Gewinnung, Aufbereitung und Export, Bongaerts, Stelter & Seifert Hengst fragen! 18 Lagerstätten in N‐Chile und NW‐Argentinien III: Salpeter und Salare ‐ Alonso et al. 1991, Chong Genese und Nutzung, Jacobs 1984; Risacher & Fritz 2009; Lithium!! 19 Öl‐ und Gas‐Plays in NW‐Argentinien, Richter Tankard et al. 1995; viele AAPG abstracts! 20 Natürliche Gefahren in den südlichen Zentralanden: Vulkanismus, Hermanns et al. 2001, Klotz Erdbeben, Hangrutsch, Tsunami, Überschwemmung durch et al. 1999; Latrubesse Starkregenereignisse, Mönchgenger 2009; The big seismic gap (Arica‐Iquique) 21 Hydrogeologie der Atacama‐Wüste in Nordchile: Ressourcen, Nutzung Lahsen 1988; Lopez et al. und natürliche Kontamination, Geothermie, Brink 2012; Quierolo et al. 2000; Fernandez‐Turiel et al. 2005; Cortecci et al. 2005 2 Literatur-Empfehlungen - Breitkreuz Amilibia a A.,*, F. Sa` bat a, K.R. McClay b, J.A. Mun˜oz a, E. Roca a, G. Chong c (2008): The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko.- Journal of Structural Geology, 30: 1520–1539 Amundson1 Ronald,†, William Dietrich2, Dino Bellugi2, Stephanie Ewing3, Kunihiko Nishiizumi4, Guillermo Chong5, Justine Owen1, Robert Finkel2,6, Arjun Heimsath7, Brian Stewart8, and Marc Caffee9 (2012): Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert.- GSA Bulletin; 124; no. 7/8; p. 1048–1070; doi: 10.1130/B30445.1; Babeyko A Y, Sobolev S V (2005) Quantifying different modes of the Late Cenozoic shortening in the Central Andes. Geology 33:621- 624 [Highlighted by Nature (2005) 436: 756] Babeyko A, Sobolev S V, Trumbull R B, Oncken O, Lavier L (2002) Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau. EPSL 199: 373-388 Bahlburg a Heinrich,, Jeffrey D. Vervoort b, S. Andrew Du Frane b, Barbara Bock c, Carita Augustsson a, Cornelia Reimann a (2009): Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America.- Earth Sci Rev. 97: 215–241. Bahlburg, H., Breitkreuz, C., 1993. Differential response of a Devonian–Carboniferous platform- deeper basin system to sea-level change and tectonics, N. Chilean Andes. Basin Research 5, 21–40. Bahlburg, H., Hervé, F., 1997. Geodynamic evolution and tectonostratigraphic terranes of NW- Argentina and N-Chile. Geological Society of America Bulletin 109, 869–884. Bahlburg, H., Hervé, F., 1997. Geodynamic evolution and tectonostratigraphic terranes of NW-Argentina and N-Chile. Geological Society of America Bulletin 109, 869–884. Bailey a John E.,, Stephen Self b, Luke K. Wooller b, Peter J. Mouginis-Mark c (2007): Discrimination of fluvial and eolian features on large ignimbrite sheets around La Pacana Caldera, Chile, using Landsat and SRTM-derived DEM.- Remote Sensing of Environment 108: 24–41 BELL C . M.(1987): The origin of the Upper Palaeozoic Chanaral melange of N Chile.- Journal of the Geological Society, London, Vol. 144: 599-610, Bissig Thomas ,1, Rodrigo Riquelme (2010): Andean uplift and climate evolution in the southern Atacama Desert deduced from geomorphology and supergene alunite-group minerals.- Earth and Planetary Science Letters, 299:447–457 Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W & Haak V (2002) The Bolivian Altiplano conductivity anomaly. JGR, 107 (B5), DOI: 10.1029/2001JB000391 Buske S, Lüth S, Meyer H, Patzig R, Reichert C, Shapiro S, Wigger P, Yoon M (2002) Broad depth range seismic imaging of the subducted Nazca Slab, North Chile. Tectonophysics 350 (4): 273-282 Caldera E.S.,*, R.S.J. Sparksa, M.C. Gardewegb(2000): Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile.- Journal of Volcanology and Geothermal Research 104: 201-235 Chmielowski J, Zandt G, Haberland Ch (1999) The Central Andean Altiplano-Puna Magma Body. GRL 26 (6): 783-786 Chong, G. (1984): Die Salare in Nordchile – Geologie, Struktur und Geochemie.- Geotek. Forsch., 67: 146pp. CORTECCI, GIANNI 1* TIZIANO BOSCHETTI,2 MARIO MUSSI,1 CHRISTIAN HERRERA LAMELI,3, CLAUDIO MUCCHINO4 and MAURIZIO BARBIERI5 (2005): Geochemical Journal, Vol. 39, pp. 547 to 571. De Silva, S. et al. (1994): Effusive silicic volcanism in the Central Andes: The Chao dacite and other young lavas of the Altiplano-Puna Volcanic Complex.- J. Geophys. Res., 99, B9: 17805 – 17825. 3 Deeken A, Sobel E R, Coutand I, Haschke M, Riller U, Strecker M R (2006) Construction of the southern Eastern Cordillera, NW-Argentina: From early Cretaceous extension to middle Miocene contraction, constrained by AFT-thermochronometry. Tectonics: xxx? Fernandez-Turiel a J.L.,*, M. Garcia-Valles b, D. Gimeno-Torrente c, J. Saavedra-Alonso d, S. Martinez-Manent b (2005) The hot spring and geyser sinters of El Tatio, Northern Chile.- Sedimentary Geology 180: 125–147 Gonzalez Gabriel *, Jose´ Cembrano, Daniel Carrizo, Alejandro Macci, Heinz Schneider (2003): The link between forearc tectonics and Pliocene–Quaternary deformation of the Coastal Cordillera, northern Chile.- Journal of South American Earth Sciences 16: 321–342 Guillermo Chong Dıaz a, Mariangeles Mendoza a, Javier Garcıa-Veigas b, Juan Jose´ Pueyo c,_,Peter Turner (1999): Evolution and geochemical signatures in a Neogene forearc evaporitic basin: the Salar Grande (Central Andes of Chile).- Palaeogeography, Palaeoclimatology, Palaeoecology 151: 39–54 Hartley Adrian J. , Laura Evenstar (2010): Cenozoic stratigraphic development in the north Chilean forearc: Implications for basin development and uplift history of the Central Andean margin.- Tectonophys. 495: 67–77 Hellweg M (1999) Seismic Signals from Lascar Volcano. J South Am Earth Sci 12: 123-133 Hermanns R L, Niedermann S, Villanueva A, Sosa Gomez J, Strecker M R (2001) Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina. Geology 29: 619-623 Hindle D, Kley J, Oncken O, Sobolev S (2005) Crustal flux and crustal balance from shortening estimates in the Central Andes. EPSL 230: 113-124 Husen S., Kissling E, Flueh E, Asch G (1999) Accurate Hypocentre Determination of the Subducting Nazca Plate in Northern Chile Using a Combined On-/Offshore Network. Geophys J Int 138 (3): 687-701 Janssen C, Hoffmann-Rothe A, Tauber S, Wilke H (2002) Internal structure of the Precordilleran fault system (Chile) - insights from structural and geophysical observations.
Recommended publications
  • Clarkia Tenella Is Tetraploid, Having N 34 (Hiorth, 1941; Raven and Lewis, 1959) and 2Fl32 (Moore and Lewis, I965b)
    VARIATION AND EVOLUTION IN SOUTH AMERICAN CLARKIA D. M. MOORE and HARLAN LEWiS Botany Department, University of Leicester and Botany Department, University of California, Los Angeles Received5.V.65 1.INTRODUCTION THEgenus Clarkia (Onagracee), currently considered to contain 36 species, is restricted to the western parts of North and South America (fig. i). The 35 North American species are distributed from Baja California to British Columbia (300N.to 48° N.), most of them occurring in California. The South American populations, which have a smaller though still considerable latitudinal spread (290 30' S. to 42030'S.), comprise a single variable species, Clarkia tenella (Cay.) H. and M. Lewis (Lewis and Lewis, within which four sub.. species have been recognised (Moore and Lewis, i 965b). Clarkia tenella is tetraploid, having n 34 (Hiorth, 1941; Raven and Lewis, 1959) and 2fl32 (Moore and Lewis, i965b). It is placed in section Godetia, together with seven North American species, and shows its closest affinities with the only tetraploid among these, C. davyi (Jeps.) H. and M. Lewis. A study of artificial hybrids between C. tenella and C. davji, together with pakeo-ecological evidence, led Raven and Lewis (i) to hypothesise that the two species were derived from a common tetraploid ancestor which had traversed the tropics by long-distance dispersal during or since the Late-Tertiary and given rise to the populations now comprising C. tenella. Detailed study of the variation within Clarkia tenella was made possible by a field trip to Chile and Argentina during 1960-61 and by subsequent experimental work at Leicester and Los Angeles.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Volcán Lascar
    Volcán Lascar Región: Antofagasta Provincia: El Loa Comuna: San Pedro de Atacama Coordenadas: 21°22’S – 67°44’O Poblados más cercanos: Talabre – Camar – Socaire Tipo: Estratovolcán Altura: 5.592 m s.n.m. Diámetro basal: 8.9 km Área basal: 62.2 km2 Volumen estimado: 28.5 km3 Última actividad: 2015 Última erupción mayor: 1993 Volcán Lascar. Vista desde el norte Ranking de riesgo (Fotografía: Gabriela Jara, SERNAGEOMIN) 14 específico: Generalidades El volcán Láscar corresponde a un estratovolcán compuesto, elongado en dirección este-oeste, activo desde hace unos 240 ka y emplazado en el margen oeste de la planicie altiplánica. Está conformado por lavas andesíticas, que alcanzan más de 10 km de longitud, y por potentes lavas dacíticas que se extienden hasta 5 km, las que fueron emitidas desde los flancos NO a SO. La lava más reciente se estima en 7 mil años de antigüedad. En los alrededores del volcán se reconocen depósitos de flujo y caída piroclástica, además de numerosos cráteres de impacto asociados a la eyección de bombas durante erupciones plinianas y subplinianas. El principal evento eruptivo durante su evolución se denomina Ignimbrita Soncor, generado hace unos 27 ka al oeste del volcán y con un volumen estimado cercano a los 10 km3. En la cima de este volcán se observan seis cráteres, algunos anidados, y el central de estos se encuentra activo. Registro eruptivo Este volcán ha presentado alrededor de 30 erupciones explosivas desde el siglo XIX, lo que lo convierte en el volcán más activo del norte de Chile. Estos eventos han consistido típicamente en erupciones vulcanianas de corta duración, con emisión de ceniza fina y proyecciones balísticas en un radio de 5 km, donde el último evento de este tipo ocurrió el 30 de octubre del 2015.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • Three-Dimensional Resistivity Image of the Magmatic System Beneath
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Three-dimensional resistivity image of the magmatic system 10.1002/2015GL064426 beneath Lastarria volcano and evidence for magmatic Key Points: intrusion in the back arc (northern Chile) • Electrical resistivity images of the Lastrarria volcano Daniel Díaz1,2, Wiebke Heise3, and Fernando Zamudio1 • The magmatic source is located to the south of Lastarria volcano 1Departamento de Geofísica, Universidad de Chile, Santiago, Chile, 2Centro de Excelencia en Geotermia de Los Andes, • Deep conductor in the back arc 3 suggests magmatic intrusion Santiago, Chile, GNS Science, Lower Hutt, New Zealand Supporting Information: Abstract Lazufre volcanic center, located in the central Andes, is recently undergoing an episode of uplift, • Readme conforming one of the most extensive deforming volcanic systems worldwide, but its magmatic system and • Text S1 • Figure S1 its connection with the observed uplift are still poorly studied. Here we image the electrical resistivity structure • Figure S2 using the magnetotelluric method in the surroundings of the Lastarria volcano, one of the most important • Figure S3 features in the Lazufre area, to understand the nature of the magmatic plumbing, the associated fumarolic • Figure S4 activity, and the large-scale surface deformation. Results from 3-D modeling show a conductive zone at 6 km Correspondence to: depth south of the Lastarria volcano interpreted as the magmatic heat source which is connected to a shallower D. Díaz, conductor beneath the volcano, showing the pathways of volcanic gasses and heated fluid. A large-scale [email protected] conductive area coinciding with the area of uplift points at a magma intrusion at midcrustal depth.
    [Show full text]
  • NI 43-101 Technical Report
    Independent Technical Report on the Carrizal Cu‐Co‐Au Property Carrizal Alto Mining District, III Region de Atacama, Chile Centred: 308750 mE and 6895000 mN (PSAD56 /UTM Zone 19 Southern Hemisphere) Prepared for: Red Metal Resources Ltd. Suite 102, 278 Bay Street Thunder Bay, Ontario, Canada P7B 1R8 Prepared by: Caracle Creek International Consulting Inc. Scott Jobin‐Bevans, Ph.D., PMP, P.Geo. Principal Geoscientist 2018‐1545 Maley Drive Sudbury, Ontario, Canada P3A 4R7 Effective Date: June 30, 2019 Report Date: November 28, 2020 1 Red Metal Resources Ltd: Carrizal Cu‐Co‐Au Property, Chile NI 43‐101 Technical Report DATE AND SIGNATURE PAGE The Report, “Independent Technical Report on the Carrizal Cu‐Co‐Au Property, Chile”, with an Effective Date of June 30, 2019, was authored by the following: “signed and sealed original on file” _______________________________________ Scott Jobin‐Bevans, P.Geo., Ph.D., PMP Caracle Creek International Consulting Inc. Dated: November 28, 2020 November 28, 2020 2 Red Metal Resources Ltd: Carrizal Cu‐Co‐Au Property, Chile NI 43‐101 Technical Report Table of Contents Table of Contents ........................................................................................................................................... 2 List of Figures ................................................................................................................................................. 4 List of Tables .................................................................................................................................................
    [Show full text]
  • Persistent Uplift of the Lazufre Volcanic Complex (Central 10.1002/2014GC005370 Andes): New Insights from PCAIM Inversion of Insar Time
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Persistent uplift of the Lazufre volcanic complex (Central 10.1002/2014GC005370 Andes): New insights from PCAIM inversion of InSAR time Key Points: series and GPS data InSAR and GPS analysis using PCAIM D. Remy1, J. L. Froger2, H. Perfettini3, S. Bonvalot1, G. Gabalda1, F. Albino2,4, V. Cayol2, 5,6 1 Correspondence to: D. Legrand , and M. De Saint Blanquat D. Remy, 1 2 [email protected] GET/UMR 5563 (UPS, CNRS, IRD, CNES), Observatoire Midi-Pyren ees, Universite P. Sabatier, Toulouse, France, LMV/UMR 6524 (UBP-CNRS-IRD), Observatoire de Physique du Globe de Clermont-Ferrand, Universite B. Pascal, Clermont-Ferrand, France, 3ISTERRE/UMR 5275 (UJF, CNRS, IRD), Observatoire des Sciences de l’Univers de Grenoble, Universite Joseph Fou- Citation: 4 Remy, D., J. L. Froger, H. Perfettini, rier, Grenoble, France, Now at Department of Earth Sciences, Cartography & Remote Sensing Unit, Royal Museum for S. Bonvalot, G. Gabalda, F. Albino, Central Africa, Tervuren, Belgium, 5Departamento de Geofısica, Universidad de Chile, Santiago, Chile, 6Now at Instituto de V. Cayol, D. Legrand, and M. Saint Geofisica, Universidad Nacional Autonoma de Mexico, Coyoacan, Mexico Blanquat (2014), Persistent uplift of the Lazufre volcanic complex (Central Andes): New insights from PCAIM inversion of InSAR time series and GPS Abstract We reanalyzed the surface displacements observed at the Lazufre volcanic complex in the data, Geochem. Geophys. Geosyst., 15, Southern Andean Central Volcanic Zone using GPS measurements made between 2006 and 2008 and a doi:10.1002/2014GC005370. large InSAR data set. We performed a detailed spatiotemporal analysis of the displacements using a princi- pal component analysis inversion method (PCAIM).
    [Show full text]
  • Processes Culminating in the 2015 Phreatic Explosion at Lascar Volcano, Chile, Monitored by Multiparametric Data Ayleen Gaete1, Thomas R
    https://doi.org/10.5194/nhess-2019-189 Preprint. Discussion started: 25 June 2019 c Author(s) 2019. CC BY 4.0 License. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, monitored by multiparametric data Ayleen Gaete1, Thomas R. Walter1, Stefan Bredemeyer1,2, Martin Zimmer1, Christian Kujawa1, Luis Franco3, Juan San Martin4, Claudia Bucarey Parra3 5 1 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2 GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 3 Observatorio Volcanológico de Los Andes del Sur (OVDAS), Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco, Chile. 4 Physics Science Department, Universidad de la Frontera, Casilla 54-D, Temuco, Chile. 10 Correspondence to: Ayleen Gaete ([email protected]) Abstract. Small steam-driven volcanic explosions are common at volcanoes worldwide but are rarely documented or monitored; therefore, these events still put residents and tourists at risk every year. Steam-driven explosions also occur frequently (once every 2-5 years on average) at Lascar volcano, Chile, where they are often spontaneous and lack any identifiable precursor activity. Here, for the first time at Lascar, we describe the processes culminating in such a sudden 15 volcanic explosion that occurred on October 30, 2015, which was thoroughly monitored by cameras, a seismic network, and gas (SO2 and CO2) and temperature sensors. Prior to the eruption, we retrospectively identified unrest manifesting as a gradual increase in the number of long-period (LP) seismic events in 2014, indicating an augmented level of activity at the volcano. Additionally, SO2 flux and thermal anomalies were detected before the eruption.
    [Show full text]
  • Application of INSAR Interferometry and Geodetic Surveys for Monitoring Andean Volcanic Activity : First Results from ASAR-ENVISAT Data
    6th International Symposi um on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts: 115-118 Application of INSAR interferometry and geodetic surveys for monitoring Andean volcanic activity : First results from ASAR-ENVISAT data S. Bonvalot (1,2,4), J.-L. Froger (1,3,4), D. Rémy (1,2,4), K. Bataille (5), V. Cayol (3), J. Clavera (6), D. Comte (4), G. Gabalda (1,2,4), K. Gonzales (7), L. Lara (6), D. Legrand (4), O. Macedo (8), J. Naranjo (6), P. Mothes (9), A. Pavez (1,10), & C. Robin (1,3,4) (1) IRD (Institut de Recherche pour le Développement) - [email protected], [email protected], [email protected] ; (2) UMR5563 Toulouse, France; (3) UMR6524 Clermont-Ferrand, France; (4) Deptos de Geofisica / Geologia, Facultad de Ciensas y Matematicas, Universidad de Chile , Blanco Encalada 2002, Santiago, Chile ; (5) Universidad de Concepcion, Chile; (6) SERNAGEOMIN, Santiago, Chile ; (7) CON IDA, Lima, Perù, (8) Instituto Geofisico dei Perù, Arequipa, Perù ; (9) Instituto Geofisico, Escuela Politecnica Nacional, Quito, Ecuador ; (10) Institut de Physique du Globe de Paris, Lab. de Gravimétrie et Géodynamique KEYWORDS : Radar interferometry, geodetic surveys, ground deformations, Andes, volcanoes INTRODUCTION Within the last few years, several SAR interferometry studies mostly based on ERS-IIERS-2 radar data have been conducted to monitor the volcanic deformations along the South American volcanic arc. They allowed a first evaluation of the potentialities of INSAR imaging in the northern, central and southern volcanic zones (respectively NVZ, CVZ and SVZ) as weil as the first quantitative satellite measurements of volcanic unrest since the initial launch of ERS-l satellite (1992) to nowdays.
    [Show full text]
  • The Causes and Effect of Temporal Changes in Magma Generation Processes in Space and Time Along the Central Andes (13°S – 25°S)
    The causes and effect of temporal changes in magma generation processes in space and time along the Central Andes (13°S – 25°S) Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS) vorgelegt von Rosanne Marjoleine Heistek aus Nederland/Niederlande Göttingen 2015 Betreuungsausschuss: Prof. Dr. Gerhard Wörner, Abteilung Geochemie, GZG Prof. Dr. Andreas Pack, Abteilung Isotopengeologie, GZG Referent: Prof. Dr. Gerhard Wörner Prof. Dr. Andreas Pack Weitere Mitglieder der Prüfungskommission: Prof. Dr. Sharon Webb Prof. Dr. Hilmar von Eynatten Prof. Dr. Jonas Kley Dr. John Hora Tag der mündlichen Prüfung: 25.06.2015 TABLE OF CONTENTS Acknowledgements .................................................................................................................................1 Abstracts .................................................................................................................................................2 Chapter 1: Introduction .........................................................................................................................7 1.1.The Andean volcanic belt .............................................................................................................................. 7 1.2. The Central volcanic zone ...........................................................................................................................
    [Show full text]
  • Chile by Martin Nicholas and Ivan.Pdf
    FLAG • The Chilean flag is also known in Spanish as La Estrella Solitaria (The Lone Star). • It was adopted on 18 October 1817. • The flag of Chile consists of two equal horizontal bands of white and red, with a blue square the same height as the white band in the canton, which bears a white five-pointed star in the centre. CAPITAL • The capital of Chile is called ‘Santiago’. • Santiago is the biggest city in Chile. • It sits in a valley surrounded by the snow- capped Andes and the Chilean Coast Range. • Plaza de Armas, the grand heart of the city’s old colonial core, is home to 2 neoclassical landmarks: the 1808 Palacio de la Real Audiencia, housing the National History Museum, and the 18th-century Metropolitan Cathedral. POPULATION • The population of Chile is 18,183,803. • The population rate growth for Chile was decreasing in 1990. • By 2050 the population is expected to reach approximately 20.2 million people. • About 85% of the country's population lives in urban areas, with 40% living in Greater Santiago. FOOD • Pastel de Choclo: corn casserole with meat stuffing. • Empanadas: pastry filled with meat, cheese or mussels. • Cazuela: homemade stew with beef, chicken, corn, rice and potatoes. • Asado: barbeque of beef, pork or chicken. FESTIVALS • Viña del Mar International Song Festival: This festival the largest and best known music festival in Latin America. • Lollalpalooza Chile: this festival is the Chile based version of the popular music festival Lollapalooza. • Ultra Chile: this is an outdoor electronic music festival that is a part of Ultra Music Festival’s worldwide expansion, which has now spread to 20 different countries.
    [Show full text]