Stellar Rotation and the Extended Main-Sequence Turnoff in the Open Cluster NGC 5822

Total Page:16

File Type:pdf, Size:1020Kb

Stellar Rotation and the Extended Main-Sequence Turnoff in the Open Cluster NGC 5822 The Astrophysical Journal, 876:113 (9pp), 2019 May 10 https://doi.org/10.3847/1538-4357/ab16e4 © 2019. The American Astronomical Society. All rights reserved. Stellar Rotation and the Extended Main-sequence Turnoff in the Open Cluster NGC 5822 Weijia Sun1 , Richard de Grijs2,3 , Licai Deng4,5,6 , and Michael D. Albrow7 1 Kavli Institute for Astronomy & Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871, Peopleʼs Republic of China 2 Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia 3 International Space Science Institute—Beijing, 1 Nanertiao, Hai Dian District, Beijing 100190, Peopleʼs Republic of China 4 Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, Peopleʼs Republic of China 5 School of Astronomy and Space Science, University of the Chinese Academy of Sciences, Huairou 101408, Peopleʼs Republic of China 6 Department of Astronomy, China West Normal University, Nanchong 637002, Peopleʼs Republic of China 7 School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Received 2019 February 2; revised 2019 March 20; accepted 2019 April 6; published 2019 May 9 Abstract The origin of extended main-sequence turnoffs (eMSTOs) in intermediate-age (1–3 Gyr) clusters is one of the most intriguing questions in current star cluster research. Unlike the split main sequences found in some globular clusters, which are caused by bimodal populations in age and/or chemical abundances, eMSTOs are believed to be due to stellar rotation. We present a spectroscopic survey of MSTO stars in a nearby, intermediate-age (0.9 Gyr), 3 low-mass (∼1.7×10 Me) Galactic open cluster, NGC 5822. We derive a clean sample of member stars based on Gaia proper motions and parallaxes and confirm the existence of an eMSTO. Using medium-resolution (R∼4000) Southern African Large Telescope spectra, we derive the rotational velocities of 24 member stars (representing 20% completeness around the eMSTO region) and find that the loci of the main-sequence stars in the eMSTO region show a clear correlation with the projected rotational velocities in the sense that fast rotators are located on the red side of the eMSTO and slow rotators are found on the blue side. By comparison with a synthetic cluster model, we show that the stellar rotational velocities and the eMSTO of NGC 5822 can be well reproduced, and we conclude that stellar rotation is the main cause of the eMSTO in NGC 5822. Key words: galaxies: star clusters: general – open clusters and associations: individual (NGC 5822) – stars: rotation 1. Introduction Aided by Gaia Data Release 2 (DR2), we can derive “clean” The extended main-sequence turnoff (eMSTO) phenomenon samples of open clusters in the Milky Way free of contamina- tion by field stars (Cantat-Gaudin et al. 2018). The discovery of —i.e., the notion that the main-sequence turnoff (MSTO) in the eMSTOs in Galactic open clusters, similar to those observed in color–magnitude diagram (CMD) is much wider than the Magellanic Cloud clusters, has opened up a new chapter in our prediction from single stellar population modeling—first comprehension of the formation of eMSTOs and the evolution discovered in NGC 1846 by Mackey & Broby Nielsen of open clusters. Cordoni et al. (2018) found the existence of (2007), is a common feature found in a large fraction of eMSTOs in all 12 open clusters younger than ∼1.5 Gyr they young and intermediate-age (2 Gyr) massive Large and Small analyzed (including NGC 5822), suggesting that eMSTOs are a Magellanic Cloud clusters (e.g., Mackey et al. 2008; Milone common feature of intermediate-age clusters in the Milky Way et al. 2009, 2015; Goudfrooij et al. 2011; Li et al. 2014b; and that they are regulated by the same mechanism as that Correnti et al. 2017). operating in Magellanic Cloud clusters. The understanding of In the past few years, our understanding of the eMSTO open clusters, which used to be considered prototypes of a phenomenon in these clusters has been enriched and enhanced single stellar population, encountered a significant upheaval significantly. Rather than due to intrinsic age spreads, stellar due to the discovery of eMSTOs in Galactic open clusters. It rotation is believed to play an important role in shaping the has been reported that stars exhibit a wide range of rotation morphology of the eMSTO (e.g., Bastian & de Mink 2009;Li rates both in the field (Huang et al. 2010) and in open clusters et al. 2014a; Niederhofer et al. 2015). This theory is further (Huang & Gies 2006). A number of studies have explored the reinforced by multiple lines of photometric and spectroscopic effect of stellar rotation on the CMD around the MSTO region evidence. Using narrowband photometry, Bastian et al. (2017) (Brandt & Huang 2015a, 2015b, 2015c). However, the direct detected a large fraction (∼30%–60%) of Be stars in the MSTO connection between the stellar rotation rates of MSTO stars and regions of NGC 1850 (∼80 Myr) and NGC 1856 (∼280 Myr), their loci in the CMD was only revealed recently. Bastian et al. favoring the interpretation that their split main sequences are (2018) used Very Large Telescope/FLAMES spectroscopy of caused by the effects of fast rotators. Similar mechanisms were 60 cluster members in NGC 2818, an 800 Myr open cluster, to later confirmed in NGC 1866 (∼200 Myr) and NGC 1818 measure the stellar rotational velocities and found that stars (∼40 Myr) through high-resolution spectroscopic surveys, exhibiting high rotational velocities are located on the red side suggesting that these clusters host a blue main sequence of the eMSTO and those rotating slowly are on the blue side, in composed of slow rotators and a red one composed of fast agreement with the prediction of the stellar rotation scenario. rotators (Dupree et al. 2017; Marino et al. 2018b). Marino et al. (2018a) also reported that the multiple sequences 1 The Astrophysical Journal, 876:113 (9pp), 2019 May 10 Sun et al. Table 1 Observation Log of the SALT Runs Na ( ) ( ) Mask Name Program aJ2000 dJ2000 Exp. Time s Date UT (1)(2)(3)(4)(5)(6)(7) NGC5822p2 2017-2-SCI-038 15h04m33 43 −54°26′33 16 13 600 2018 Feb 8 2018-1-SCI-006 15h04m33 43 −54°26′33 16 13 764 2018 Aug 3 NGC5822p3 2017-2-SCI-038 15h04m19 43 −54°16′44 52 10 600 2018 Apr 26 NGC5822p4 2017-2-SCI-038 15h03m11 44 −54°16′22 93 11 600 2018 Feb 8 2018-1-SCI-006 15h03m11 44 −54°16′22 93 11 764 2018 Jul 30 NGC5822p6 2017-2-SCI-038 15h03m09 95 −54°31′46 39 9 600 2018 Feb 11 2018-1-SCI-006 15h03m09 95 −54°31′46 39 9 764 2018 Aug 14 NGC5822p8 2017-2-SCI-038 15h05m10 13 −54°19′41 91 7 600 2018 Feb 26 NGC5822p9 2017-2-SCI-038 15h04m36 35 −54°34′51 48 5 600 2018 Apr 30 Note. a Number of science slits in each field. they found in the young cluster NGC 6705 correspond to stellar of ∼4000 with a per-pixel resolution of 0.33 Å at a central populations with different rotation rates. wavelength of 4884.4 Å. Regular bias, argon arc lamp, and In this paper, we present a spectroscopic survey of MSTO quartz lamp flat-field calibration frames were taken as part of stars in the nearby (∼760 pc) intermediate-age (0.9 Gyr) open normal SALT operations. We used the PySALT package cluster NGC 5822. We find the presence of an eMSTO in this (Crawford et al. 2010) to perform the primary reduction and cluster and verify that it is not an artifact caused by differential wavelength calibration. For all of our samples, we obtained extinction. The loci of the main-sequence stars in the eMSTO spectra with a signal-to-noise ratio (S/N) per pixel in excess region show a clear correlation with the projected rotational of 200. velocities, with fast rotators lying on the red side of the eMSTO and slow rotators on the blue side. By comparison with a 2.2. Membership Determination synthetic cluster within the framework of stellar rotation, we Gaia ( argue that the observed morphology of the eMSTO in the CMD We exploited the DR2 Gaia Collaboration et al. ) can be properly explained by the model and that stellar rotation 2016, 2018 to analyze the stellar photometry, proper motions, is likely the main contributor to the eMSTO morphology in and parallaxes, and to perform membership determination in fi NGC 5822. the NGC 5822 eld. First, we acquired the stellar catalog from Gaia ( ′ This article is organized as follows. In Section 2 we present the database within 2.5 times the cluster radius 35 ; Dias ) the observations, data reduction procedures, and membership et al. 2002 . In the vector-point diagram of stellar proper motions, NGC 5822 showed a clear concentration centered at determination. Section 3 reports our main results, showing a -1 strong correlation between the stellar rotation rates and their (mqmadcos ,)(»- 7.44, - 5.52 ) mas yr . The other overden- -1 loci in the CMD region covered by the eMSTO. A discussion sity located at (mqmadcos ,)(»- 3.67, - 2.52 ) mas yr cor- and our conclusions are summarized in Section 4. responds to a nearby cluster, NGC 5823. Then, we derived the 22 quantity mR =-áñ+-áñ()()mqmqaacos cos mm ddand -1 2. Data Reduction and Analysis applied a cut of mR = 0.4 mas yr to conduct our primary 2.1.
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • The AGB Stars of the Intermediate-Age LMC Cluster NGC 1846 Variability and Age Determination
    A&A 475, 643–650 (2007) Astronomy DOI: 10.1051/0004-6361:20078395 & c ESO 2007 Astrophysics The AGB stars of the intermediate-age LMC cluster NGC 1846 Variability and age determination T. Lebzelter1 andP.R.Wood2 1 Institute of Astronomy, University of Vienna, Tuerkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [email protected] 2 Research School for Astronomy & Astrophysics, Australian National University, Weston Creek, ACT 2611, Australia Received 1 August 2007 / Accepted 18 September 2007 ABSTRACT Aims. We investigate variability and we model the pulsational behaviour of AGB variables in the intermediate-age LMC cluster NGC 1846. Methods. Our own photometric monitoring has been combined with data from the MACHO archive to detect 22 variables among the cluster’s AGB stars and to derive pulsation periods. According to the global parameters of the cluster we construct pulsation models taking into account the effect of the C/O ratio on the atmospheric structure. In particular, we have used opacities appropriate for both O-rich stars and carbon stars in the pulsation calculations. Results. The observed P-L-diagram of NGC 1846 can be fitted using a mass of the AGB stars of about 1.8 M. We show that the period of pulsation is increased when an AGB star turns into a carbon star. Using the mass on the AGB defined by the pulsational behaviour of our sample we derive a cluster age of 1.4 × 109 years. This is the first time the age of a cluster has been derived from the variability of its AGB stars.
    [Show full text]
  • A Wild Animal by Magda Streicher
    deepsky delights Lupus a wild animal by Magda Streicher [email protected] Image source: Stellarium There is a true story behind this month’s constellation. “Star friends” as I call them, below in what might be ‘ground zero’! regularly visit me on the farm, exploiting “What is that?” Tim enquired in a brave the ideal conditions for deep-sky stud- voice, “It sounds like a leopard catching a ies and of course talking endlessly about buck”. To which I replied: “No, Timmy, astronomy. One winter’s weekend the it is much, much more dangerous!” Great Coopers from Johannesburg came to visit. was our relief when the wrestling match What a weekend it turned out to be. For started disappearing into the distance. The Tim it was literally heaven on earth in the altercation was between two aardwolves, dark night sky with ideal circumstances to wrestling over a bone or a four-legged study meteors. My observatory is perched lady. on top of a building in an area consisting of mainly Mopane veld with a few Baobab The Greeks and Romans saw the constel- trees littered along the otherwise clear ho- lation Lupus as a wild animal but for the rizon. Ascending the steps you are treated Arabians and Timmy it was their Leopard to a breathtaking view of the heavens in all or Panther. This very ancient constellation their glory. known as Lupus the Wolf is just east of Centaurus and south of Scorpius. It has no That Saturday night Tim settled down stars brighter than magnitude 2.6.
    [Show full text]
  • GRANDE OURSE URSA MAJOR La Plus Grande Des Constellations
    CONSTELLATIONS DE PRINTEMPS Club d'astronomie de Breuillet – Guide d'observation GOTO – 1/27 GRANDE OURSE URSA MAJOR La plus grande des constellations. Toutes les étoiles du chariot sont des cousines sauf DUBHE et la dernière. Amas de la Grande Ourse, étoiles bleues, d = 80 al, D = 30 al, V = 14 km/s vers le sagittaire. ALCOR et MIZAR double optique mais MIZAR étoile double, d = 78 al, D = 5 millions km, L = 60 sol. ALIOTH géante bleue, d = 82 al, D = 6 millions km, L = 100 sol. ALULA AUSTRALIS couple type soleil, d = 26 al, D = 3 millions km, T = 60 ans M 81 M 82 couple de galaxie d = 11 m.al, Pont gazeux entre les deux M 81 galaxie de Bode, type spirale Seyfert M 82 galaxie du cigare, irrégulière, flambée d’étoiles. M 97 nébuleuse planétaire du Hibou, peu visible M 101 galaxie spirale intermédiaire M 108 galaxie spirale barrée M 109 galaxie spirale barrée PETITE OURSE URSA MINOR Alpha POLARIS super géante bleue double avec compagnon bleu d = 400 al, D = 200 millions km, L = 200 sol. Béta PolarisKOCHAB géante rouge d = 130 al, D = 80 millions km, L = 190 sol. Eta Polaris PERCHAD géante bleue, fausse double. Club d'astronomie de Breuillet – Guide d'observation GOTO – 2/27 d = 500 al, D = 15 millions km, L = 1000 sol. CHIENS DE CHASSE CANES VENATICI Alpha COR CAROLI étoile double d = 100 al, D = 5 millions km, L = 70 sol. M 51 WHIRLPOOL galaxy, galaxie du tourbillon, type spirale de Seyfert, absorption de NGC 5195. M3 amas globulaire d = 340000 al, D = 220 al, V = 147 km/s M 63 galaxie du tournesol d = 36 millions al, V = 570 km/s éloignement M 94 galaxie spirale M 106 galaxie NGC 4631 galaxie LION LEONIS M 65 M 66 Couple de galaxie d = 35 millions al M 65 galaxie spirale intermédiaire M 66 galaxie spirale de Seyfert Amas du Lion M 95 et M 96 galaxie, d = 30 millions al M 105 galaxie elliptique NGC 2903 NGC 3628 Club d'astronomie de Breuillet – Guide d'observation GOTO – 3/27 VIER GE VIR GO Alpha SPICA, Epi de la Vierge, géante bleu d = 270 al, D = 10 millions km, L = 2000 sol.
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • A Double Main Sequence Turn-Off in the Rich Star Cluster NGC 1846 In
    Mon. Not. R. Astron. Soc. 000, 1–9 (2007) Printed 4 December 2018 (MN LATEX style file v2.2) A double main sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud A. D. Mackey1 and P. Broby Nielsen1 1Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK Draft version 4 December 2018 ABSTRACT We report on HST/ACS photometry of the rich intermediate-age star cluster NGC 1846 in the Large Magellanic Cloud, which clearly reveals the presence of a dou- ble main sequence turn-off in this object. Despite this, the main sequence, sub-giant branch, and red giant branch are all narrow and well-defined, and the red clump is compact. We examine the spatial distribution of turn-off stars and demonstrate that all belong to NGC 1846 rather than to any field star population. In addition, the spatial distributions of the two sets of turn-off stars may exhibit different central con- centrations and some asymmetries. By fitting isochrones, we show that the properties of the colour-magnitude diagram can be explained if there are two stellar populations of equivalent metal abundance in NGC 1846, differing in age by ≈ 300 Myr. The ab- solute ages of the two populations are ∼ 1.9 and ∼ 2.2 Gyr, although there may be a systematic error of up to ±0.4 Gyr in these values. The metal abundance inferred from isochrone fitting is [M/H] ≈−0.40, consistent with spectroscopic measurements of [Fe/H]. We propose that the observed properties of NGC 1846 can be explained if this object originated via the tidal capture of two star clusters formed separately in a star cluster group in a single giant molecular cloud.
    [Show full text]
  • Carbon Stars T. Lloyd Evans
    J. Astrophys. Astr. (2010) 31, 177–211 Carbon Stars T. Lloyd Evans SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK. e-mail: [email protected] Received 2010 July 19; accepted 2010 October 18 Abstract. In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material. Key words. Stars: carbon—stars: evolution—stars: circumstellar matter —galaxies: magellanic clouds. 1. Introduction Carbon stars have been reviewed on several previous occasions, most recently by Wallerstein & Knapp (1998). A conference devoted to this topic was held in 1996 (Wing 2000) and two meetings on AGB stars (Le Bertre et al. 1999; Kerschbaum et al. 2007) also contain much on carbon stars. This review emphasizes develop- ments since 1997, while paying particular attention to connections with earlier work and to some of the important sources of concepts. Recent and ongoing develop- ments include surveys for carbon stars in more of the galaxies of the local group and detailed spectroscopy and infrared photometry for many of them, as well as general surveys such as 2MASS, AKARI and the Sirius near infrared survey of the Magel- lanic Clouds and several dwarf galaxies, the Spitzer-SAGE mid-infrared survey of the Magellanic Clouds and the current Herschel infrared satellite project. Detailed studies of relatively bright galactic examples continue to be made by high-resolution spectroscopy, concentrating on abundance determinations using the red spectral region, and infrared and radio observations which give information on the history of mass loss.
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • SPIRIT Target Lists
    JANUARY and FEBRUARY deep sky objects JANUARY FEBRUARY OBJECT RA (2000) DECL (2000) OBJECT RA (2000) DECL (2000) Category 1 (west of meridian) Category 1 (west of meridian) NGC 1532 04h 12m 04s -32° 52' 23" NGC 1792 05h 05m 14s -37° 58' 47" NGC 1566 04h 20m 00s -54° 56' 18" NGC 1532 04h 12m 04s -32° 52' 23" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1672 04h 45m 43s -59° 14' 52" NGC 1313 03h 18m 16s -66° 29' 43" NGC 1313 03h 18m 15s -66° 29' 51" NGC 1365 03h 33m 37s -36° 08' 27" NGC 1566 04h 20m 01s -54° 56' 14" NGC 1097 02h 46m 19s -30° 16' 32" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1232 03h 09m 45s -20° 34' 45" NGC 1433 03h 42m 01s -47° 13' 19" NGC 1068 02h 42m 40s -00° 00' 48" NGC 1792 05h 05m 14s -37° 58' 47" NGC 300 00h 54m 54s -37° 40' 57" NGC 2217 06h 21m 40s -27° 14' 03" Category 1 (east of meridian) Category 1 (east of meridian) NGC 1637 04h 41m 28s -02° 51' 28" NGC 2442 07h 36m 24s -69° 31' 50" NGC 1808 05h 07m 42s -37° 30' 48" NGC 2280 06h 44m 49s -27° 38' 20" NGC 1792 05h 05m 14s -37° 58' 47" NGC 2292 06h 47m 39s -26° 44' 47" NGC 1617 04h 31m 40s -54° 36' 07" NGC 2325 07h 02m 40s -28° 41' 52" NGC 1672 04h 45m 43s -59° 14' 52" NGC 3059 09h 50m 08s -73° 55' 17" NGC 1964 05h 33m 22s -21° 56' 43" NGC 2559 08h 17m 06s -27° 27' 25" NGC 2196 06h 12m 10s -21° 48' 22" NGC 2566 08h 18m 46s -25° 30' 02" NGC 2217 06h 21m 40s -27° 14' 03" NGC 2613 08h 33m 23s -22° 58' 22" NGC 2442 07h 36m 20s -69° 31' 29" Category 2 Category 2 M 42 05h 35m 17s -05° 23' 25" M 42 05h 35m 17s -05° 23' 25" NGC 2070 05h 38m 38s -69° 05' 39" NGC 2070 05h 38m 38s -69°
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]